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1. Let a prime number p be fixed, and let F,, n =0, denote the cyclotomic
field of p"*1-th roots of unity over the rational field Q. Let p*™ be the highest
power of p dividing the class number £, of F,. Then there exist integers 2,
U and v, (4,, ¢, =0), depending only upon p, such that

e(n) = Zpn+ v,y
for every sufficiently large integer n. In the present paper, we shall deter-
mine, by the help of a computer, the coefficients 4,, g, and vy, in the above
formula for all prime numbers p=<4001. We shall see in particular that g,=0
for every p<4001. Let S, denote the Sylow p-subgroup of the ideal class
group of F,. For the above primes, we shall determine not only the order
p¢™ of S, but also the structure of the abelian group S, for every n=0.

Let p=2. Then we know by Weber’'s theorem that ¢(n)=0, S,=1 for
any n=0 so that 2,=py,=v,=0. Therefore, we shall assume throughout the
following that p is an odd prime, p> 2.

2. Let Q, and Z, denote the field of p-adic numbers and the ring of
p-adic integers, respectively. Let F be the union of all fields F,, n=0. Then
F is an abelian extension of @, and we denote the Galois group of F/@Q by G.
For each p-adic unit u in @,, there is a unique automorphism o, of F such
that ¢,{)={_{" for any root of unity ¢ in F with order a power of p. The
mapping u— o, then defines a topological isomorphism of the group of p-adic
units in @, onto the compact abelian group G. Let I' and 4 denote the sub-
groups of G corresponding to the group of l-units in @, and the group V of
all (p—1)-st roots of unity in Q,, respectively. Then we have

G=1Ix4;

* The work of this author was supported in part by the National Science Foun-
dation grant GP-2496.

1) For the results on cyclotomic fields used in the present paper, see K. Iwasawa,
On the theory of cyclotomic fields, Ann. of Math., 70 (1959), 530-561; K. Iwasawa,
On some modules in the theory of cyclotomic fields, J. Math. Soc. Japan, 16 (1964),
42-82.
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I' is the Galois group of F/F,, and 4 is a cyclic group of order p—1, canoni-
cally isomorphic to the Galois group of F,/Q.

For any m=n =0, the injective homomorphism of the ideal group of F,
into that of F,, induces a natural homomorphism S,—S,. Let S be the direct
limit of S,, n =0, relative to these homomorphisms. The Galois group G acts
on S in the obvious manner. For each integer i, 0 <i< p—1, let S denote
the subgroup of all elements s in S such that o,(s)=s" for every v in V.
Then S is the direct product of the G-subgroups ®S:

p-2
S=T1I"S.
i=0

We have a similar decomposition for each S,, n =0, and %S is the direct limit
of the subgroups *S,, n=0.

3. Let A denote the ring of formal power series in an indeterminate T
with coefficients in Z,: 4=Z,[[T]]. Then there is an injective homomor-
phism of /" into the multiplicative group of 4 such that ¢,,,—1+7. There-
fore, if M is any A-module, we can make it into a I'-module so that o,.,(x)
=({+T)x for every x in M.

For any a in Q,, there exist a rational integer b and a power of p, p™
(m =0), such that p"a=b mod p™, 0<b< p™ The rational number b/p™ is
then uniquely determined by a so that we denote it by <{a).

For each odd integer i, 0 <1< p—1, we shall next define a power series
‘g(T) in A. First, we put ?2g(T)=1. Let i+ p—2. For each n=0, let

‘gu(T)= PPN OIS A VAT,

where 0=<m < p", ve V. Then ‘g,(T) is a polynomial in 7 with coefficients:
in Z,, and when n tends to infinity, °g,(7T) converges, on each coefficient of
T™ m=0, to a power series in 4, which we denote by g(T):
‘g(T)=lim 'g,(T).

We see easily that
@) ‘e(T)="g(T) mod A-1+T)"4, n=z=0.
For each odd 1, there exist, by Weierstrass’ preparation theorem, an integer
e; =0, a unit ‘u(T) of the ring 4, and a polynomial *m(T) of the form

Zm<T) - iao'*’ ne +iadi—lei—l+Tdi b Zak = pr ’
such that

‘g(T) = p**w(T)'m(T) .
Now, let
‘M=A4/g(T)4, 0=i<p—1, G2)=1.

As noted in the above, we may consider ‘M as I'-modules. These ['-modules.
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are fundamental in the theory of cyclotomic fields, and we shall next consider
some special cases in which the structure of ‘M can be easily determined.

4. For each odd index i, let

g(T)="a+'BT+T*+ -,

with ‘a, '8, 'y, etc. in Z,. Then it is clear that ‘M =0 if and only if ‘a is a
p-adic unit, namely, if and only if d;=¢;=0. Since ?2g(T)=1, we imme-
diately have ?2M =0,

For any integer a, 1 <a < p—1, let v, denote the element of ¥ such that

vo=a mod p.
Let

Ap,)="Savi, 0Zi<p—1, (,2=L1.
a=1

Then A(p,1)=0mod p for i+ p—2, and A(p, p—2)=—1mod p. Using v,=a”
mod p?, we see easily that A(p,7)=0mod p? if and only if the Bernoulli
number By, i divisible by p.

Suppose that i1 p—2. It follows from (1), with n =0, that

. . p-1 . 1 »-1 1 .
=g 0)= 3 (va/pdvh = S avk =5 Alp, ).

Hence we obtain the following result (including i=p—2):
I. M;=0 if and only if

A(p,1)==0 mod p2,
namely, if and only if
Bisne#0 mod p.

For each odd index 7, 0 <i< p—1, let
) p-1 )
B(p; l): E Ctl.,bbva:
a,b=1
where C,,, denotes the integer defined by
Cap= 5 Wo—aytab mod p, 0= Cop<p.

It follows from (1), with n =1, that
tg(T)="'g(T) mod (pT, T? 1%+ p—2.

Hence we obtain

g Eiz—jog v +mp)/p2d>vim

-1
= p§1<(va+vabp)/p2>bvg mod p.
However,
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Vot vabp= a+~})—(va~a)p+abp =a+4Cypp mod p2,

0=a+Copp=(p—D+(p—Dp < p?

so that
(Wartvbp)/B*> =5 (a+Casb)

Therefore,

in— 1 23 C bt

ﬂ - ;}DTa,bzzl (a+ a.,bp) Vg

-1

Ii

PEL A D+ 5 B(pi) mod .
It follows in particular that B(p,:)=0 mod p for ¢ p—2.

Now, suppose that A(p,i)=0 mod p? and B(p,i)==0 mod p2 @+ p—2).
We see from the above that ‘a =0 mod p, ‘80 mod p so that d;=1, ¢;=0.

Let
MT)=T-'w, ‘we pZ,.

Then ‘g(T) ="u(T)(T—'w) and ‘M= A/'g(T)A = A/(T—'w)A. Hence we obtain
the following result:
II. Suppose that

A(p,1)=0 mod p2, B(p,1)#0 mod p2.

Then ‘g(T)=0 has a unique solution T'="‘w in pZ,, and there is a [ -isomor-
phism
‘M=2,,

where the action of /" on Z, is defined by
o) =A+'0)y, yEZ,.

Let p7, f=1, be the highest power of p dividing ‘w. Then, for each n=0,
the above isomorphism induces a /’-isomorphism

Mo — 1M =Z,/p* Z, .

It follows in particular that *M/(sg},—1)!M is a cyclic group of order p"*/.
We also note that ‘g(*fw)=0 implies

) ‘w=—ta/'f=—A(p,1)/B(p,i) mod p*.
Therefore, f=1 if and only if
A(p,1)=0 mod p3.

5. We shall now explain the arithmetic meaning of the modules *M.
It is well known that the class number 4, of F, is the product of two
integers, the so-called first and the second factor of h,:
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h,="h,*h, .

Let p®®’ denote the highest power of p dividing the first factor ~h, of h,.
Then there exist again integers 1j, ,, and v, (45, ¢, =0) such that

c(ny = 2pn—+ppp"+vy,

for every sufficiently large n. For the coefficients 4, and g}, we then have
the following formula:

N=Xd, th=Xe, 0=i<p—1,G2=1.

Therefore, the integers A}, and pj, can be obtained by computing d; and e;
from the power series ‘g(T).

A prime number p is called regular if the class number 4, is prime to p.
In the following, we shall make an assumption on p which is weaker than
the regularity. Namely, we assume that the second factor *h, of h, is prime
to p:
(A) (hy, p)=1.

Under this assumption, we have the following results on F,:
i) For each n=0, the second factor *h, of h, is also prime to p so that
c(n) =c(n)’. Hence

Ap=124p, o= Up, Vp ==V .
ii) For every even index ¢ and for every n =0,
S=1S,=1.

iii) For any m =n =0, the homomorphism S,—S,, is injective so that S
may be simply regarded as the union of all S,, n=0. S, is then the sub-
group of S consisting of all s in S such that ¢2}(s)=s. For each 7, a similar
result holds also for S and °S,, n=0.

iv) Let 7 and j be odd indices such that i+j=p—1. Then there exist a
non-degenerate pairing of ‘M and ‘S into the additive group Q,/Z, such that
[o(x), o(s)]=[xs], =x&°‘M,se’S,

for any ¢ in I, _

v) It follows from iii) that for each n =0, the above pairing induces a
similar pairing of ‘M/(¢f,—1)M and 7S,. Hence these two are isomorphic
finite abelian groups.

It is now clear that we can obtain the following results from I and I in
the above:

III. Under the assumption (A), suppose that

A(p, D=0 mod p?,
namely,
Biy/2#=0 mod p,
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for an odd index i, 0<i< p—1. Then, for the odd index j=p—1—i and for

every n =0,
IS=7S,=1.

1V. Under the same assumption (A), suppose that
A(p,1)=0 mod p?, B(p,1)#0 mod p?,
for an odd index i. Let ‘w and f be defined as in II, and let j=p—1—i.
Then there is a ['-isomorphism
i1S=Q,/Z,,
where the action of /' on Q,/Z, is defined by
014,(2) =(14+'w) 'z, zeQ,/Z,.
For each n =0, it induces a [ -isomorphism
ISy p "Ly Zy
so that /S, is a cyclic group of order p™*/. Furthermore, if
A(p,1)#=0 mod p?,

then the above integer f is equal to 1:f/=1.

Suppose that p is a regular prime (p>2) so that (A) is satisfied for p.
Then, by a theorem of Kummer, the Bernoulli numbers B,, 1<k (p—1)/2,
are not divisible by p. Hence it follows from ii) and III that S,=1 for any
i and n, namely, that S,=1 for every n=0. Therefore ¢(n)=0 for n=0,
and, consequently, 2,=p¢,=v,=0. We note that this result can be proved
also by a direct method without referring to the modules M.

6. In a sequence of papers®, Vandiver and others verified that our as-
sumption (A) is satisfiled for all prime numbers p=<4001. For such a prime
p, they also determined all integers k, 1<k <(p—1)/2, such that B, is divi-
sible by p. Putting

1=2k—1,
we then obtain all odd indices i for p such that
A(p,1)=0 mod p2.
Let {p, i} be such a pair, p=<4001, and let

2) D.H.Lehmer, Emma Lehmer, and H.S. Vandiver, An application of high-speed
computing to Fermat’s last theorem, Proc. Nat. Acad. Sci. USA, 40 (1954), 25-33; H.S.
Vandiver, Examination of methods of attack on the second case of Fermat’s last
theorem, Ibid., 40 (1954), 732-735; J. L. Selfridge, C. A. Nicol, and H.S. Vandiver, Proof
of Fermat’s last theorem for all prime exponents less than 4002, Ibid., 41 (1955), 970-
973.
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A )= ab", B i)=Xbat", 0=a,b,<p,

be the p-adic expansions of the p-adic integers A(p, i) and B(p, 1) respectively.
We know from the above that

aO:aI:bO:O;
By using a computer, we have computed the next coefficients a, and b,, and
found that
® a,#0, b#0
for every such pair {p,i}. A part of the results of these computations will

be given at the end of the paper.
Now, it follows from (3) that

A(p,1)#=0 mod p?, B(p,1)=0 mod p?.

Therefore the following result is obtained from III and IV above:

Let p=<4001 and let 0, denote the number of those Bernoulli numbers By,
1< k< (p—1)/2, which are divisible by p. Then, for each n=0, the Sylow
p-subgroup S, of the ideal class group of F, is the dirvect product of 9, cyclic
groups of order p*+'. Hence

c(n)=(n+130,,
for every n=0, and consequently
Ap=V,=0,, tr=0.
Since the values of J, are known for p=<4001®, the structure of S, is
completely determined for such primes.
Actually, III and IV provide us more information on the structure of the
G-groups S=T[%S and S,=TI°%S,, n=0: if 7 is an odd index such that A(p, 1)

=0 mod p2, p<4001, then 7S, j = p—1-—1, is isomorphic to the /"-module Q,/Z,
as described in IV.

Now, our computations of a, and b, show that
a, # b,
for every pair {p,i} as stated above. Hence it follows from (2) that
‘w=—p mod pz.
Therefore, if z is an element of Q,/Z, such that ¢%(z)=(1+p)*"z for some

n=0, then p"*z=0. Since 'S=Q,/Z,, the I'-group /S has the same property.
By the theory of cyclotomic fields, we can then obtain the following result:

3) See the tables in the papers of the footnote 2). For example, d,=1 for p=37,
59, 67, §,=2 for p=157, and §,=3 for p=491.
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Let p<4001. Let @,, n =0, be the local cyclotomic field of p™*'-th roots
of unity over Q,. Then the group of l-units in the local field @, contains

—%f(p—l)p"—l global units in F, which are multiplicatively independent over

the ring of p-adic integers Z,.

7. The computations of a, and b, for those pairs {p, i} such that A(p,1)
=0 mod p? were carried out on an IBM 7094 computer®. During the prepara-
tion of the program it became clear that b, presented by far the greater
difficulty. As defined,

. r-t .
B(p, D=3 Cuubl.

For p=4001, the largest value we were considering, this sum has 16x10¢
terms. No more than about 10¢ terms could be computed per second, and so
it seemed that for the larger values of p the computation time might be 30
minutes or more for each case. With 278 pairs to be run, this would have
required more computer time than could be justified.

The problem was solved by finding a more efficient method of computing

S Canh .
b=1
If ,}1; (v,—a)=m mod p, 0 <m < p, then
Cop= m+ab—l>[ ”"fg“” ] .

(Here and throughout this section [x] denotes the greatest integer less than
or equal to x.) Thus

S Conp="3 b(mt-ap—p[ "]

mp(p—1) | ap(p—D@2p—-1) 25,1 m+ab
Tt 6 p 3] L
For any integers m, a, 7, and s with s >0, » >m =0, and a =0, define

F(m,a,r,s)= é; [M] ,
G(m,a,r, s)= Ié b[ﬂj’;‘z[{] ,

_ & m+tab
H(m, a,r, s)ﬁbzz1 [——7 ] .
We have

4) The computation was done at the M.IL T. Computation Center, Cambridge,
Massachusetts.
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-1 - . _
5 Copb = T2G=D. 1 PP=DE=D G m, a, p,p-.

F, G, and H satisfy certain recursion relations. Let r=wua-+v, m+1
=xa—y, 0=Zv, y<a. Also let

[ m—+as

Z_[ ¥ ]
If z=0, then F(m,a,r,s)=G0m, a,r, s)=H(m, a,r,s)=0. If z>0, thena>0
and

uz(z+1)
2

F(m, a,r, s)=z(s+x)— —F(y,v,a,z),

2G(m, a, r, )= zs(s+1)—zx(x—1)— “22(2‘1‘_%&2,24—1)

_ u(l—2x)z(z+1)
2

—2uG(y, v, a, 2)

—(1-—2.96)F(y, v, a, Z)_H(y’ v, a, Z) s
uz(z+1)2z+1) |, Cx+uw)z(z+1)
3 ) -

H(m, a,r, s)=sz2— xz

“26(37, v, a, Z>+F(y: v, a, Z) .

The proofs of these formulas are similar and we give only the proof of the
first. We may assume z >0 and therefore a >0. For any positive integer {,

m-tab_
(4]
for k+1Zb< k., where
k, = [ﬁ’:él_f_’ﬁ .

Since r >m and z >0, we have 0<k, <s. If we redefine k.., to be s, then

s z Kk z
F(im,a,r, s)= E[ﬁq«[l]: > ‘i‘,‘ t=sz— > k;.
=1 r t=1 ky+1 =1

If r=uatv and m+1=xa—y, 0=, y<a, then

ky=tu—x+ [—J%@L] .
Thus

é}l k= —L’Z(ztll—xz+F(y, v, a, 2)

and

F(m, a, 7, s):z(s-lrx)m%ﬂl—my, v, 4, 2).

If these formulas are used to compute G(m, a, p, p—1), the computation
time for b, becomes proportional to plogp and for p=4001 is under two
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8. We possess a complete table of a, and b,, computed for all pairs {p, i},
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p <4001, satisfying A(p,i)=0 mod p2.

part of the table where 1< p <400 or 3600 < p<4001.
‘{g(T)=0 seems to have an important meaning in the theory of cyclotomic
fields, we also indicate in the last column the values of the integer ¢ such

that ¢= —a,/b, mod p, 0 < ¢ < p, namely, such that

37

59

67
101
103
131
149
157
157
233
257
263
271
283
293
307
311
347
353
353
379
379
389

3607
3613
3617
3617
3631
3637
3637
3671
3677
3697
3779
3797
3821

31
43
57
67
23
21
129
61
109
83
163
99
83
19
155
87
291
279
185
299
99
173
199

1975
2081

15
2855
1103
2525
3201
1579
2237
1883
2361
1255
3295

‘w=cp mod p?,

az
23
20
34
16
1
34
24
66
109

124

66
141
272

57
108
152
246
260
289
327
256
340

3279
1991
2574

57
3591
2894
1685
3619

31
3575
2454
3066
2776

0=c<p.

by
16
33
46
59
49
106
70
109
106
101
69
176
92
268
200
102
34
241
52
192
103
297
341

2832
1798
1314

667
3510
1313
1504

555
3273
1905
2855
1548
1320

However, we produce here only the
Since the root ‘@ of

24
28

10
21
59
55
21
36
143
28
164
78
37
218
17
87
166
348
118
236
188
234

2578
2147

989
2733
1200
2139
3174
3261
2594
1638
1794
3692

160
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3833
3833
3833
3851
3851
3853
3881
3881
3917
3967
3989
4001
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1839
1997
3285
215
403
747
1685
2137
1489
105
1935
533

156
2944
1307
2297
1828
2331
3189
2674
1658
-2505
679
3054

Massachusetts Institute of Technology

886
328
1329
1909
2438
2270
252
692
3382
1543
3616
3587

95
178
547
606
2555
1844
1050
1645

889
2883
2130
1515
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