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The purpose of this paper is to prove some analogous propositions to the
results of Kodaira in three dimensional case. Terminologies and notations
are the same as those in Kodaira [8] We shall use the fundamental results
of Hironaka [5]

Let M™ be a compact complex analytic manifold of complex dimension .
Let EF(M") be the field of all meromorphic functions on M". Then by a
theorem of Chow-Remmert F(M™) is an algebraic function field of com-
plex dimension not greater than n. Hence there is a non-singular projective
model V of F(M™. We identify F(M™ and the function field of V. Let
@, x%, .-+, x”) be a generic point of V. Then x*< F(M™). Hence we obtain a
mapping

Q. M>z-(1,x(z), -, xE)eV.

PROPOSITION. @ is a meromorphic mapping. That is, there exists an irre-
ducible and locally irreducible complex subspace X of M™ X V which is the closure
of the graph of @ and the natural projection p of X to M™ is a proper modi-
Jication.

v X —!—> M X V—>V
~ |
p M"
Proof is parallel to Remmert and we do not reproduce it here.
Let ¢ be the natural projection from X to the second component V.
Clearly the underlying continuous map of ¢ is surjective and ¢ induces
an isomorphism of F(X) and F(V), where F(X) and F(V) are the function
fields of X and V, respectively.
THEOREM 1. Every fibre of ¢ is connected. Consequently,if dim F(M™)=n,
then M™ is bimevomorphically equivalent to a non-singular projective variety.
COROLLARY. If dim F(M™)=n=23, then the first Betli number of M? is
even.
Let n be equal to 3 and p:M’— X be the resolution of singularities.



Compact complex analytic manifolds of complex dimension 3 439

Then the underlying continuous map of ¢y =¢op is surjective and ¢ induces
an isomorphism of the function fields of M’ and V.

THEOREM 2. If dim F(M")=dim V =2, then a general fibre of ¢ is a non-
-singular elliptic curve. Consequently,if dim F(M?3)=2, then M? is bimeromor-
phically equivalent to an elliptic fibre space over a projective surface.

§1. Preliminaries.

ProrosiTIiON 1 (H. Cartan [2]). If a morphism of complex spaces f: X—Y
is finite and Y is compact algebraic. Then X is also algebraic.

ProOOF. By Houzel [7] we may assume that X = Specan (A) where A4 is a
coherent algebra on Y. By a result due to Serre-Grothendieck (cf. Sém. H.
Cartan 1956/57 Exp. 2) A is algebraic. Taking these into account, follow the
construction of Specan (A) in Houzel [7]. Then the proof is immediate.

PROPOSITION 2. Let f: M— M’ be a morphism of compact complex mani-
folds of complex dimension n which is a modification. Then the induced homo-
morphism

fsx H{(M, R)— H,(M’, R)

is an isomorphism.

PrOOF. By Grauert and Remmert [3] there is a proper analytic set A
(resp. A" of M (resp. M’) (where the codimension of A’ is at least 2) and f
induces an isomorphism of M—A and M’—A’. Every l-cycle in M’ is homo-
topic to a l-cycle in M’—A’. Hence f is surjective. On the other hand from
the exact sequence

H2n—I(M__A’ R)__,HZYZ—I(M’ R)_,H2n~1(A’ R)

we have dim H» '(M—A, R)=dim H* (M, R). By the excision theorem
dim H*» (M’ — A’, R)=dim H*(M’, R). Hence dim H*"'(M’, R)=dim H*"Y(M, R)..
By Poincaré duality we have dim H,(M’, R) =dim H,(M, R).

COROLLARY. The first Betti number is invariant under bimeromorphic map-
pings of compact complex manifolds of complex dimension not greater than 3.

ProprosITION 3 (Bertini). Let D be an effective divisor on a compact com-
plex manifold. Then the singular point of a general member of | D| is a fixed
point of 1it.

Proof is well-known.

LEMMA 4. Let D be a non-singular divisor on a compact complex manifold
M?™ such that the restriction of [ D] to D contains an effective divisor. Then
for every positive integer m, dim H" (M, Q(F+mD)) is bounded, where F is an
arbitrary complex line bundle on M™.

Proor. From the exact sequence
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0— 2(F+(m— D[ DD— QF+m[ D) — Ln(F+m DD -0,
where QD(F—I—m[D]):Q(F+m[D])/Q(F+(m——1)[D]), we have the exact sequence
H" (M, Q(F+(m—DLDD)— H" (M, QF+m[D])
— H" (D, Q((F+m[D)p)-
Let K be the canonical line bundle of D, by the duality theorem we obtain
H" (D, Q(F+m[DDp)=H(D, 2(K—Fp—m({D]p)) .
The latter is 0 for sufficiently large m by Kodaira [8] Hence dim H" (M,

Q(F+m[D])) is a non-increasing function for sufficiently large m, which proves
the proposition.

§2. Proof of Theorem 1.

Let go:X—aX’—{V be the factorization of Stein. That is, X’ =(Specan
(©(Ox))rea- Clearly X’ is irreducible and f induces an isomorphism of the
function fields. By X'’ is algebraic. Hence by the connectedness
theorem of Zariski (cf. 4.3.7)) every fibre of f is connected. Therefore
every fibre of ¢ is also connected.

§3. Proof of Theorem 2.

We denote by S the set of degeneracy points of the jacabian of ¢». Then
S is a proper analytic set of M’ and the restriction of ¢ to M’—S is a simple
morphism. Therefore the fibre space ¢ | M’ —¢@=4(P(S)) : M —P=(P(S)—V —¢(S)
is differentiably locally trivial. Hence general fibres of ¢ are diffeomorphic
and homotopic to each other.

Let C be the divisor on ¥ by a hyperplane section. We set D=¢1(C).
For a given complex line bundle F on M/, if | F+mD/| contains no effective
divisor, then dim | F+mD|=-—1. If | F+mD| contains an effective divisor
D/, then F= D", where D’ =D’'—mD. Clearly

dim | F4ID |=dim | D’+({—m)D |, for I=m.

For every effective divisor £ on M’ we denote by a(E) the effective divisor
on V defined in the following way. FEach component of a(E) appears in E by
¢! and its multiplicity in a(E) is the same as in E. From the fact that ¢
induces an isomorphism of the function fields we have

dim | E |=dim | a(E)|.
‘Therefore dim | F+ID |=dim | a(D)+(—m)C|. For sufficiently large !|a(D’)
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+({—m)C| is ample and by the theorem of R.-R.-Hirzebruch we have

dim | a(D")-+(I—m)C | = »%f-~12c2+a11+a0

where a; is a constant. Consequently we obtain

dim | F+ID | =< %vl%cz_;_all_]_ Qo vvrereenonennnenes 1)

Let K be the canonical line bundle of M and ¢, (resp. d) be the first Chern
class of M’ (resp. [D]). Clearly we have

LM =D*=0.
Hence by the theorem of R.-R.-Hirzebruch ([1])
dim | nK-+1D | =5 (A—2m)Ede, LM/ 1+ afl+as

3
+ Zl (—Dtdim H(M/, QuK+ID)) +-+v-v-- )
where n is an arbitrary integer aud «f is some constant. Considering Pro-
position 3 and we have from (1) and (2)
A=2n)d?c,[M']<2C2. «vvvvevnnninnnnnnnn. ®

By a theorem of Hirzebruch [6] the arithmetic genus a(D?) of D? is

—[d3—%cld2][M’]. Hence if the the genus of a general fibre of ¢ is g, we

have

;— e d LM ] =C(1—g).

Inserting this into (3) we obtain
d-2m)(1l—g) =2,
from which we infer immediately that
g=1.
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