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Introduction. In this paper, a ring will mean a commutative ring with
unity 1, and a local (or semi-local) ring a Noetherian local (or semi-local) ring.
An element $x$ will be called algebraic or separably algebraic over an integral
domain $0$ , if it is algebraic or separably algebraic, respectively, over the
quotient field of $\mathfrak{o}$ . We say an integral domain $0^{\prime}$ is separably generated over
a subring $0$ , if the quotient field of $\mathfrak{o}^{\prime}$ is separably generated over that of $0$ .
An integral domain $\mathfrak{o}$ will be called an affine ring over a subring $I$ if it is a
finitely generated extension ring of $I$. A ring $P$ is called a spot over a sub-
ring $I$ if there exists an affine ring $\mathfrak{d}$ over $I$ which has a prime ideal $\mathfrak{p}$ such
that $P=0_{p}$ .

It has been shown by M. Nagata that if $\mathfrak{o}$ is an affine ring over a Dede-
kind domain (or a field) $I$ and if $\mathfrak{o}$ is separably generated over $I$, then the
derived normal ring of $0$ is a finite o-module (see [2]).

Recently L. J. Ratliff, Jr. has proved that this theorem holds in case $I$ is
a regular local ring of rank 2 such that its residue field contains infinitely
many elements (cf. [5]).

In the following lines, we shall show that the same is true if we replace
the ground domain $I$ by a Noetherian normal ring $I^{\prime}$ such that if $\mathfrak{p}$ is any
prime ideal of $I^{\prime}$ , then the local ring $I_{\mathfrak{p}}^{\prime}$ is analytically unramified. (We say
that a semi-local ring $0$ is analytically unramified if the completion of $0$ has
no nilpotent element different from zero.)

This special type of ring $I^{\prime}$ (more general than a Dedekind domain or a
regular local ring of rank 2) is termed, in this paper, “ a ground ring”.

The proof of the above result is performed making use of the following
property: If $P$ is a spot over a ground ring $I^{\prime}$ and if $P$ is separably gen-
erated over $I^{\prime}$ , then the derived normal ring of $P$ is a finite P-module.

This property follows from the next theorem.
THEOREM 1. Let $0$ be an analytically unramified local integral domain and

let $0^{\prime}=0[\chi_{1}, \cdots , x_{n}]$ be a separably generated integral domain over $0$ . Then for
any prime ideal $\ddagger)^{\prime}$ of $0^{\prime}$ , the local ring $\mathfrak{o}_{\mathfrak{p}}^{\prime}$, is analytically unramified.
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Therefore we shall first prove this theorem, and \S 1 will be devoted to
its proof. This theorem is a generalization of a result of D. Rees [6] (see
Lemma 1 below) which plays an essential role in the course of the proof of
the theorem.

In \S 2 we shall prove the main theorem stated above.
The author wishes to express his hearty thanks to Prof. M. Nagata for

his kind suggestion and encouragement.

\S 1

First we recall the following result, due to D. Rees.
LEMMA 1. Let $0$ be an analytically unramified local ring and let $K$ be the

total quotient ring of $0$ . Then if $x_{1},$
$\cdots$ , $x_{n}$ are elements of $K$ and if $\mathfrak{p}^{\prime}$ is any

prime ideal of $\mathfrak{o}^{\prime}=0[x_{1}, \cdots , x_{n}]$ , the local ring $0_{\mathfrak{p}}^{\prime}$ , is also analytically unramified.
For the proof, see D. Rees [6] Theorem 1.6.
$CoROLLARY1)$ . Let $0$ be an analytically unramified semi-local integral domain

and let $K$ be its quotient field. Then, for any element $x$ in $K$ which is integral
over $\mathfrak{o}$ , the semi-local integral domain $0[x]$ is also analytically unramified.

PROOF. Let $\mathfrak{m}$ be an arbitrary maximal ideal of $0^{\prime}=\mathfrak{o}[x]$ . Then $\mathfrak{p}=\iota\uparrow\iota\cap 0$

is a maximal ideal of $0$ , and $\iota)_{(\mathfrak{n}}^{\prime}=0_{\mathfrak{p}}[x]_{q}$ where $q=\mathfrak{n}\tau 0_{\mathfrak{m}}^{\prime}\cap 0\mathfrak{p}[x]$ . Since the com-
pletion $0_{\mathfrak{p}}^{*}$ of Dp is a direct summand of the completion $0^{*2)}$ , Op is analytically
unramified. Therefore $\mathfrak{o}_{\mathfrak{m}}^{\prime}$ is also analytically unramified by Lemma 1. On
the other hand, $0^{\prime*}=\mathfrak{o}_{\mathfrak{m}_{1}}^{\gamma*}\oplus\cdots\oplus \mathfrak{o}_{\mathfrak{m}_{\gamma}}^{\gamma*}$ (direct sum) where $\mathfrak{n}\iota_{1},$

$\cdots$ , $\mathfrak{m}_{\gamma}$ are all the
maximal ideals of $0^{\prime}$ . Hence $0^{\prime}$ is analytically unramified.

Next we shall prove the following:
LEMMA 2. Let $0$ be an analytically unramified semi-local integral domain,

and let $x$ be a separably integral element over $0$ (in some field containing $0$).

Then $0[x]$ is an analytically unramified semi-local integral domain.
PROOF. Let \={o} be the derived normal ring of $0$ , then \={o} is a finite o-module.

(Cf. M. Nagata [2], Appendix I, Proposition 1.) Hence \={o} is an analytically
unramified semi-local integral domain by the Corollary to Lemma 1. Further-
more $0[x]$ is a subspace of $\overline{\mathfrak{o}}[x]$ . Therefore we have only to prove this
lemma under the assumption that $0$ is normal.

Let $\mathfrak{p}_{1},$ $\cdots$ , $\mathfrak{p}_{\gamma}$ be all the prime ideals of height zero of $0^{*}$ , and set $\mathfrak{o}_{i}=0^{*}/\mathfrak{p}_{i}$

for $i=1,$ $\cdots,$ $r$. Then, by assumption, $0^{*}$ is a subring of $0_{1}\oplus\cdots\oplus \mathfrak{o}_{r}$ . Since $x$

is integral over $0$ , we have

1) This corollary and Lemma 2 below can be also proved easily without using
Lemma 1.

2) In this paper, the completion of a (semi-) local ring $0$ is denoted by 0*.
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$0[x]^{*}\cong 0[x]\otimes_{0}0^{*}\subseteqq 0[x]\otimes_{0}(0_{1}\oplus\cdots\oplus 0_{\gamma})$

$=(0[x]\otimes_{0}0_{1})\oplus\cdots\oplus(0[x]\otimes_{0}0_{r})$ .
On the other hand, since any non-zero-divisor of $0$ is also that of $0^{*}$ , we have
$\mathfrak{p}_{i}\cap 0=(0)$ for each $i$ . Hence $0$ is considered as a subring of the integral
domain $\mathfrak{o}_{i}$ for $i=1,$ $\cdots$ , $r$. Then, as is well known, each $0[x]\otimes_{0}0_{i}$ has no
nilpotent element other than $0$ , because $0$ is normal. Therefore $0[x]^{*}$ also
has no nilpotent element other than $0$ , which proves our lemma.

Now we obtain the following:
PROPOSITION 1. Let $0$ be an analytically unramified local integral domain

and let $x$ be a separably algebraic element over $0$ (in some field containing o).

Then, for any prime ideal $\mathfrak{p}^{\gamma}$ of $0^{\prime}=0[x]$ , the local ring $op$ , is analytically un-
ramified.

PROOF. We can find an element $a(\neq 0)$ of $0$ such that $ax$ is integral
over $0$ . If we set $0^{\prime\prime}=0[ax]_{P\cap 0[ax]}$ and $\mathfrak{p}^{\gamma\gamma}=\mathfrak{p}^{\gamma}0_{\mathfrak{p}}^{\prime},$ $\cap 0^{\prime\prime}[\chi]$ , we have $0_{\mathfrak{p}}^{\gamma},$ $=0^{\prime\prime}[x]_{\mathfrak{p}},$ ,

and $x$ belongs to the quotient field of $\mathfrak{o}^{\prime\prime}$ . Hence, for the proof of the prop-
osition, it is sufficient to show that $0^{\prime\prime}$ is analytically unramified (by virtue
of Lemma 1). In other words, we may assume originally that $x$ is separably
integral over $0$ . Now the proposition follows easily from Lemma 2 and
Lemma 1.

Secondly we shall prove the following proposition.
PROPOSITION 2. Let $\mathfrak{o}$ be an analytically unramified local integral domain

and let $x$ be a transcendental element over $0$ . Then, for any prime ideal $\mathfrak{p}^{\prime}$ of
$\mathfrak{v}^{\prime}=0[x]$ , the local ring $0_{\mathfrak{p}}^{\gamma}$, is analytically unramified.

PROOF. First we remark that we may assume that $\mathfrak{p}^{\prime}$ is a maximal ideal
of $0^{\prime}$ and $\mathfrak{p}^{f}\cap 0$ coincides with the unique maximal ideal $\mathfrak{m}$ of $\mathfrak{o}$ . Indeed, if
we replace $\mathfrak{o}$ by $0_{\mathfrak{p}\prime}\cap 0$

’ we may suppose that $\mathfrak{p}^{\prime}\cap \mathfrak{o}=\mathfrak{m}$ (by virtue of Lemma 1).

On the other hand, let $\mathfrak{P}$ be a maximal ideal of $0^{\prime}$ containing $\mathfrak{p}^{\prime}$ , then
$0\oint,$

$=(\mathfrak{o}_{\mathfrak{P}}^{\prime})_{\mathfrak{p}’ 0_{\mathfrak{P}}^{\prime}}$ . Therefore if we show that $0_{\mathfrak{P}}^{\prime}$ is analytically unramified, it fol-
lows from Lemma 1 that $op$, is also analytically unramified. Therefore we
suppose that $\mathfrak{p}^{\prime}$ is maximal and $\mathfrak{p}^{\gamma}\cap \mathfrak{o}=\mathfrak{m}$ .

Then there exists a monic polynomial $f(x)$ in $\mathfrak{o}^{\prime}$ which is irreducible
modulo $\mathfrak{m}$ , such that $\mathfrak{p}^{\prime}=\mathfrak{m}0^{\prime}+f(x)0^{\prime}$ . Hence we have $0_{\mathfrak{p}^{*}}^{\prime},=0^{*}\{f\}[x]$ where
$f=f(x)$ and $0^{*}\{f\}$ is the ring of formal power series in $f$ with coefficients in
0*. More precisely,

$0_{\mathfrak{p}}^{\prime},\#\cong 0^{*}\{f\}[X]/(f(X)-f)\mathfrak{o}^{*}\{f\}[X]$ ,

where $X$ is an indeterminate. Set $F(X)=f(X)-f$, then $F(X)$ is irreducible
modulo the maximal ideal of $D^{*}\{f\}$ . What we shall show is that $0^{*}\{f\}[X]$

$/F(X)\mathfrak{o}^{*}\{f\}[X]$ has no nilpotent element different from $0$ .
Let $\mathfrak{p}_{1},$ $\cdots$ , $\mathfrak{p}_{r}$ be all the prime ideals of height zero in $0^{*}$ , then each
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$0_{i}=0^{*}/\mathfrak{p}_{i}$ ($i=1,$ $\cdots$ , r) is a complete local integral domain containing $0$ as a
subring, and $0^{*}\{f\}[X]/F(X)0^{*}\{f\}[X]$ is a subring of the direct sum of all
$0_{i}\{f\}[X]/F(X)0_{i}\{f\}[X],$ $i=1,$ $\cdots$ , $r$. Furthermore each $0_{\dot{t}}\{f\}[X]/F(X)\mathfrak{o}_{i}\{f\}[X]$

is isomorphic to the completion of $\mathfrak{o}_{i}[x]_{\mathfrak{p}_{i}^{\prime}}$ , where $\mathfrak{p}_{i^{\prime}}=\mathfrak{m}0_{i}[x]+f(x)0_{i}[x]$ and $f(x)$

is irreducible modulo the maximal ideal $\mathfrak{m}0_{i}$ of $0_{i}$ . Hence, from the beginning,
we may assume that $0$ is a complete local integral domain.

Now let \={o} be the derived normal ring of $0$ . Then, as is well known, \={o} is
a complete normal local integral domain and is a finite o-module. Set $0^{\prime\prime}=\overline{0}[x]$

and $S=0^{\prime}-\mathfrak{p}^{\prime}$ (complementary set of $\mathfrak{p}^{\prime}$ in $0^{\prime}=0[x]$ ), then $0_{S}^{\prime\prime}$ is a finite $0_{\mathfrak{p}}^{\gamma},-$

module, and hence $0_{\mathfrak{p}\prime}^{\prime}*is$ a subring of $\mathfrak{o}_{s}^{\prime\prime*}$ . On the other hand, if we denote
the maximal ideals of $0^{\prime\gamma}$ lying over $\mathfrak{p}^{\prime}$ by $\mathfrak{p}_{1}^{\prime\prime},$ $\cdots$ , $\mathfrak{p}_{t^{\prime}}^{\gamma}$ , then $0_{s}^{\prime\prime*}=0_{\mathfrak{p}_{1^{J!^{*}}}}^{\prime\prime}\oplus\cdots\oplus 0_{\rho_{t^{J!^{*}}}}^{\prime\prime}$

\langle direct sum). Therefore we may assume that $\mathfrak{o}$ is a complete normal local
integral domain. We have only to show that $0\{f\}[X]/F(X)0\{f\}[X]$ has no
nilpotent element other than $0$ , on this assumption.

Let $K$ be the quotient field of $0$ . Then, since $0$ is normal, $f(x)$ is irre-
ducible in $K[x]$ , and hence $F(X)=f(X)-f(x)$ is also irreducible in $K\{f\}[X]$ .
But $K\{f\}$ is an unique factorization domain, and therefore the ideal
$F(X)K\{f\}[X]$ is prime. Hence $F(X)0\{f\}[X]=F(X)K\{f\}[X]\cap \mathfrak{o}\{f\}[X]$ is also
a prime ideal, and consequently $0\{f\}[X]/F(X)0\{f\}[X]$ is an integral domain.
This completes the proof.

From Propositions 1 and 2 we obtain the first main theorem.
THEOREM 1. Let $0$ be an analytically unramified local integral domain and

let $0^{\prime}$ be an affine ring over $0$ . If $0^{\prime}$ is separably generated over $0$, then, for any
prime ideal $\mathfrak{p}^{\prime}$ of $\mathfrak{o}^{\prime}$ , the quotient ring $0_{\mathfrak{p}}^{\prime}$ , is also analytically unramified.

PROOF. Let $x_{1},$
$\cdots$ , $x_{n}$ be the elements of $0^{\prime}$ such that $0^{\prime}=0[\chi_{1}\cdots , x_{n}]$ .

We may assume that the subset $\{x_{1}, \cdots, x_{\gamma}\}(r=dim_{0}\mathfrak{o}^{\prime})$ is a separating tran-
scendence base of $0^{\prime}$ over $\mathfrak{o}^{3)}$ . Then (if $r<n$) the remaining elements $x_{r+1},$ $\cdots,$ $x_{n}$

are separably algebraic over $0[x_{1}, \cdots, x_{r}]$ .
Now we will construct a finite sequence of local rings $\mathfrak{o}_{1},$

$\cdot r$ . , $0_{n}$ as follows:
first we set $0_{1}=\mathfrak{o}[x_{1}]_{\mathfrak{p}_{1}}$ where $\mathfrak{p}_{1}=\circ[x_{1}]\cap \mathfrak{p}^{\prime}0_{\mathfrak{p};}^{\prime}$ , and if $0_{i-1}(2\leqq i\leqq n)$ has been
already defined, then we set $0_{i}=0_{i-1}[x_{i}]_{\mathfrak{p}_{i}}$ where $\mathfrak{p}_{i}=0_{i-1}[x_{i}]\cap \mathfrak{p}^{\gamma}0_{\mathfrak{p}}^{\prime},$ . Then, by
induction on $i$, we see easily that each $0_{i}$ is analytically unramified, by Prop-
osition 2 (if $i\leqq r$) and by Proposition 1 (if $i>r$). Hence especially $0_{n}=0_{\mathfrak{p}}^{\prime}$,

is analytically unramified. This completes the proof.

\S 2

In this section, by a ground ring $I$ we shall mean a Noetherian normal
ring such that, whenever $\mathfrak{p}$ is a prime ideal of $I$, the quotient ring $I_{\mathfrak{p}}$ is

3) If $r=0$ , this set is empty.
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always analytically unramified.
From Theorem 1 and definitions above, we see easily the following:
THEOREM 2. Let $P$ be a spot over a ground ring I. If $P$ is separably

generated over $I$, then $P$ is analytically unramified, and the derived normal ring

of $P$ is a finite P-module.
Now we come to the second main theorem, which is a generalization of

M. Nagata’s result (cf. [2] Appendix 2, Proposition 4) and also a result of
Ratliff (cf. [5]).

THEOREM 3. Let $0$ be an affine ring over a ground ring I. If $0$ is separably
generated over $I$, then the derived normal ring of $0$ is a finite o-module.

The proof is similar to that of Theorem 1.3. in [1].

Let $0^{\prime}$ be the derived normal ring of $0$ . By the normalization theorem
(cf. M. Nagata [2] Chapter 3, Theorem 4), we can find a separating tran-
scendence base $y_{1},$ $\cdots$ , $y_{n}$ of $0$ over $I$, and an element $a(\neq 0)$ of $I$ such that $0[a^{-1}]$

is integral over $I[a^{-1}, y_{1}, \cdots , y_{n}]$ . Then $0^{\prime}[a^{-1}]$ is the integral closure of $I[a^{-1}$ ,

$y_{1}$ , $y_{n}$] in the quotient field $L$ of $0$ .
Since $L$ is separable over $I[a^{-1}, y_{1}, \cdot.. , y_{n}]$ which is normal, $0^{\prime}[a^{-1}]$ is a

finite $I[a^{-1}, y_{1}, \cdots , y_{n}]$ -module, and consequently it is a finite $0[a^{-1}]$ -module.
(Cf. M. Nagata [4] Corollary (10. 16).)

Therefore if $a^{-1}\in 0,0^{\prime}$ is a finite o-module. Hence we may assume that
$a^{-1}\not\in 0$ . Then there exist a finite number of elements $c_{1},$

$\cdots$ , $c_{\gamma}$ in $0^{\prime}$ such
that $0^{\prime}[a^{-1}]=0[a^{-1}, c_{1}, \cdots , c_{r}]$ . Set $0_{1}=0[c_{1}, \cdots , c_{r}]$ . Let $\mathfrak{p}_{1},$ $\cdots$ , $\mathfrak{p}_{s}$ be all the
prime divisors (not necessarily minimal) of $ao_{1}$ . Then, by Theorem 2, the
derived normal ring of (0) is a finite (0)-module and coincides with the
quotient ring $\mathfrak{o}_{s_{i}}^{\prime}$ of $\mathfrak{o}^{\prime}$ with respect to $S_{i}=0_{1}-\mathfrak{p}_{i}$ , for each $i(1\leqq i\leqq s)$ . Hence
we can find the elements c\’i, $c_{t^{\prime}}$ of $\mathfrak{o}^{\prime}$ such that (0) $[c_{1}^{\prime}, c_{t^{\prime}}]$ is a normal
ring for every $i$ . Set $\mathfrak{o}_{2}=\mathfrak{o}_{1}[c_{1}^{\prime}, \cdots , c_{t^{\prime}}]$ . Then we can prove the following
assertion as in [1].

For any ring $\mathfrak{S}$ such tnat $0_{2}\subseteqq \mathfrak{S}\subseteqq 0^{\prime}$ and for any prime ideal $\mathfrak{p}$ of height 1
in $\mathfrak{S}$ , the ring $\mathfrak{S}_{\mathfrak{p}}$ is a normal ring.

For, if $a\not\in \mathfrak{p}$ , the assertion is obvious. If $a\in \mathfrak{p}$ , the ideal $\mathfrak{p}^{\prime}=\mathfrak{p}\cap 0_{1}$ is a
prime divisor of $a\mathfrak{o}_{1}$ . (Cf. M. Nagata [3], Lemma 3.) Hence, (0) , $[c_{1^{\prime}}, c_{t^{\prime}}]$ is
normal and consequently $\mathfrak{S}\subseteqq 0^{\prime}\subseteqq \mathfrak{S}_{\mathfrak{p}}$ . Therefore $\mathfrak{S}_{\mathfrak{p}}$ is a normal ring.

Now our theorem follows from the above facts in exactly the same way
as the proof of Theorem 1.3. in [1].

If we define the notions of function fields over a ground ring $I$, models
of a function field and normal models in a similar way as in [1], we obtain
the following assertion directly from Theorem 3.

$CoROLLARY$ . Let ]$\psi$ be a model of a function field $L$ over a ground ring
I. If $L$ is separably generated over $I$, then there exisls the derived normal



The finiteness of the derived normal ring 365

model of $M$.
REMARK. A ground ring $I$ need not be normal if it is a semi-local ring.

More precisely, if I is an analytically unramified semi-local integral domain
and if we name it a ” ground ring”, then all the results in this section hold.
For, the validity of Theorem 2 is obvious and that of Theorem 3 is easily
seen from the facts that the derived normal ring $I^{\prime}$ of $I$ is a finite I-module
and $I^{\prime}$ is a ground ring in the sense of our definition at the beginning of
this section.

D\^oshisha High School
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