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Given a real differentiable hypersurface $S_{i},$ $i=1,2$ , of a complex manifold
$M_{i}$ , we say that a mapping $f$ of $S_{1}$ into $S_{2}$ is pseudo-conformal if $f$ extends
to a holomorphic mapping of a neighborhood of $S_{1}$ in $M_{1}$ into that of $S_{2}$ in
$M_{2}$ . $S_{1}$ is called pseudo-conformally equivalent to $S_{2}$ by $f$ if moreover $f$ is bijec-
tive and $f^{-1}$ is also pseudo-conformal. In this paper we shall consider pseudo-
conformal transformations of a compact hypersurface $S$, which is by definition
pseudo-conformally equivalent to itself by these transformations. The set of
all the pseudo-conformal transformations of $S$ forms a group, which becomes,

with the natural topology, a Lie transformation group under some hypothesis
(cf. Theorem 5 and Corollary in [12]), for instance, in the situation of Theo-
rem 1 below (of course, without the assumption for $G$ to be a Lie transfor-
mation group). Our aim is to classify all compact hypersurfaces admitting
transitive pseudo-conformal transformation groups. The obtained results are
shown in Theorems 1 and 2 (at the beginning of Section 2).

THEOREM 1. Let $S$ be a compact connected simply connected real analytic
hypersurface of $C^{n}$ , the n-dimensional complex cartesian space, $n\neq 3,7$ . If $S$

admits a connected Lie transformation group $G$ of pseudo-conformal transfor-
mations which is transitive, then $S$ is pseudo-conformally equivalent to the unit
sphere in $C^{n}$ .

This theorem was proved by E. Cartan [4] in the case $n=2$ . In case
$n=3$ or 7, we can only show that $S$ is equivalent to the unit sphere or else
to the hypersurface $H$ of the complex manifold $V_{n}=\{(z_{0}, z_{1}, \cdots , z_{n})\in C^{n+1}|$

$\sum_{k}(z_{k})^{2}=1\}_{f}H$ consisting of the points with $\sum_{k}$ $($the imaginary part of $z_{k})^{2}$

$=constant>0$ . ( $V_{3}$ is holomorphically equivalent to the group manifold
$SL(2, C).)$ If a neighborhood of any compact set of $V_{n},$ $n=3$ or 7, can be
imbedded into $C^{n}$ (as a domain), then Theorem 1 will be false for this $n$ , the
converse being also true.

In Section 1, we shall give two examples (Propositions 1 and 2). The
first shows that the converse of Theorem 1 is true. For the second, we shall
give a ” natural ” complex structure to the tangent bundle space ]$\psi$ of an
arbitrary compact simply connected Riemannian symmetric space $B$ of rank
1, namely the sphere, the complex, quaternionic or Cayley projective space
(or plane). By means of Matsushima-Morimoto’s theorem [9], we shall
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be able to prove that $M$ is then a Stein manifold with a compact holomorphic
(Lie) transformation group having a compact hypersurface $S$ as an orbit. $S$

is differentiably equivalent to the tangent sphere bundle of B. $S$ will thus
admit a compact, transitive, pseudo-conformal transformation group. This is
the second example. (If $B$ is the n-dimensional sphere, then the manifold
given in this example is holomorphically equivalent to $V_{n}$ mentioned above.\rangle
Section 2 will be devoted to the proof of Theorem 2, which, roughly speak-
ing, states that a compact simply connected real hypersurface $S$ in a Stein
manifold $M$ admitting a transitive pseudo-conformal transformation group $G$

is necessarily one of the spaces mentioned above provided that the transfor-
mations in $G$ extend to those of the whole space $M$. The demonstration of
Theorem 2 is based on a theorem concerning compact Lie transformation
groups [11] and a result about the homology groups of Stein manifolds. In
Section 3, we shall prove Theorem 1. The first step is to show that Theorem
2 can be applied; $S$ is contained in a bounded domain $D$ , which will turn out
to be a Stein manifold owing to the solution of Levi’s problem, and the
pseudo-conformal transformations of $S$ extend to holomorphic transformations
of $D$ . The second step is to find the condition for $D$ , which is differentiably
equivalent to the tangent bundle of the space $B$ mentioned above to be dif-
ferentiably imbedded in the euclidean space $R^{2n}$ of the same dimension, with
the use of algebraic topology, especially concerning the Pontrjagin classes,
and of the differential topology recently developped. We shall find that $D$ is
imbedded differentiably into $R^{2n}$ if and only if $B$ is the sphere of dimension
3 or 7.

Acknowledgements. We express our thanks to Professors A. Hattori,
I. Tamura and other colleagues who gave us helpful suggestions. We feel
grateful also to Professor Y. Akizuki and Mr. T. Taniguchi who organized
and sponsored a symposium on differential geometry in November 1961 at
Katada, in which the second-named author got a chance to be called attention
to the problems treated in this paper and to cooperate with the other author
in attacking them.

1. Examples

PROPOSITION 1. Let $S$ denote the hypersurface in $C^{n}$ which is the boundary

of the domain $D=$ $\{(z_{1}, \cdots , z_{n})\in C^{n}|\Sigma_{k}|z_{k}|^{2}<1\}$ . Then there exists an isomor-
phism from the pseudo-conformal transformation group $G$ of $S$ onto the holomor-
phic transformation group $A(D)$ of $D$ : in particular, $G$ is transitive.

PROOF. Given an element $f$ in $G,$ $f$ extends to a holomorphic mapping
$f$

‘ of a neighborhood of $\overline{D}=SUD$ into $C^{n}$ by the classical theorem of Hartogs
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and Osgood. Restricted to $\overline{D}$ , the extension $f^{\prime}$ is unique. The inverse $f^{-1}$

extends also uniquely to a holomorphic mapping $(f^{-1})^{\gamma}$ . We can see that
$f^{\prime}(D)\subset D$ . In fact, since the Jacobian $g$ of the transformation $f$ is a holomor-
phic function defined on a neighborhood $U$ of $S$ and $g$ does not vanish on a
neighborbood $V$ of $S$, the holomorphic functions $g$ and $1/g$ extend to holomor-
phic functions $\tilde{g}$ and $h$ on a neighborhood of $\overline{D}$ . Clearly one has $h\cdot\tilde{g}=1$ on
$V$ and so on $\overline{D}$ . Hence $\tilde{g}$ does not vanish on $\overline{D}$ . Since the Jacobian of $f^{\prime}$

coincides with $\tilde{g}$ on $\overline{D},$
$f^{\prime}$ is a local homeomorphism. If $f^{\prime}(D)$ cl: $D$, there would

exist a point $p\in D$ such that $f(p)$ is on the boundary of $f^{\prime}(D)$ , which contra-
dicts to the local homeomorphism of $f^{\prime}$ . Hence $f^{\prime}\circ(f^{-1})^{\prime}$ and $(f^{-1})^{\prime}\circ f^{\prime}$ are
defined on $D$ . It follows that $f^{\prime_{o}}(f^{-1})^{\prime}$ and $(f^{-1})^{\prime_{o}}f^{\prime}$ , which are extensions of
the identity $=f\circ f^{-1}=f^{-1}\circ f$, coincide with the identity mapping on a neigh-
borhood of $D$ , or in other words $(f^{-1})^{\prime}$ is the inverse of $f^{\prime}$ . Therefore $f^{\prime}$ is a
homeomorphism leaving $D$ invariant. We thus obtain an isomorphism $\alpha$ of
$G$ into $A(D)$ by assigning to $f$ the restriction of $f^{\prime}$ to $D$ . It remains to show
that a is surjective. The domain $D$ with the group $A(D)$ is a bounded sym-
metric domain. Hence $D$ is imbedded into the compact form, the complex
projective space, so that any element $F$ of $A(D)$ extends to a holomorphic
(projective) transformation of the complex projective space. This implies, in
particular, that $F$ extends to a holomorphic homeomorphism of a neighborhood
of $\overline{D}$ into another one leaving $S$ invariant. So $F$ belongs to the image $a(G)$.
and the proposition is proved.

To give another example, we consider a compact, simply connected, sym-
metric space, $B$, of rank 1. $B$ is a simply connected homogeneous manifold
$K/L$ of a compact connected Lie group $K$, characterized by the property that
the isotropy subgroup $L$ operates on the tangent space $T_{o}(B)$ to $B$ at the
point $0,$ $L(0)=0$ , s-irreducibly, where an orthogonal representation $\lambda:L\rightarrow O(m)$

of a group $L$ is called s-irreducible when $\lambda(L)$ is transitive on the unit sphere
in $R^{m}$ . We identify an arbitrary transformation of $B$ with its differential,
and we take $K$ as a transformation group of the tangent bundle $T(B)$ of $B$

in this way. Since $K$ is compact, $B$ admits a K-invariant Riemannian metric,

which is unique up to a constant multiplier. Let $S(B, c),$ $c\geqq 0$ , denote the
set of the tangent vectors to $B$ of constant length $c$ with respect to that
metric. $K$ operating on $T(B)$, each K-orbit is one of $S(B, c)$ for some $c$ . As
differentiable manifolds, $S(B, 0)$ is $B$ and $S(B, c),$ $c>0$ , is the tangent sphere
bundle of $B$ .

PROPOSITION 2. With the conventions given above, the tangent bundle
$M=T(B)$ of a compact simply connected symmetric space $B=K/L$ of rank 1
admits a complex structure $J$ which is invariant under $K$, with respect to which
$M$ is a Stein manifold, and $K$ is a transitive pseudo-conformal transformation
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group of the tangent sphere bundle $S(B, c),$ $c>0$ .
It will be convenient to investigate the special $B=SO(n+1)/SO(n)=the$

sphere, $n>1$ , before the proof. We identify $B$ with { $X\in R^{n+1}|$ the inner
product \langle X, $ X\rangle$ $=1$ } and $M=T(B)$ with $\{(X, Y)\in R^{n+1}\times R^{n+1}|\langle X, X\rangle=1$ ,
\langle X, $ Y\rangle$ $=0$ }. Let $V_{n}$ be the complex submanifold $\{(z_{1}, z_{n+1})\in C^{n+1}|\sum_{k}(z_{k})^{2}$

$=1\}=\{W+\sqrt{-1}Y|W, Y\in R^{n+1}, \langle W, W\rangle-\langle Y, Y\rangle=1, \langle W, Y\rangle=0\}$ of $C^{n+1}$ .
The complex orthogonal group $O(n+1, C)$ operating on $C^{n+1}$ has $V_{n}$ as an
orbit, and $V_{n}$ is a complex homogeneous manifold $O(n+1, C)/O(n, C)$ . $V_{n}$ is a
Stein manifold, since $V_{n}$ is a closed complex submanifold of $C^{n+1}$ . If $\delta$ denotes
the mapping of $M$ onto $V_{n}$ defined by $\delta(X, Y)=(1+\langle Y, Y\rangle)^{1/2}X+\sqrt{-1}Y$, then
$\delta$ is not only a diffeomorphism but also an equivariant mapping1) as regards
the transformation group $K=SO(n+1)$ , the maximal compact subgroup of
$O(n+1, C)$ ; i. e. by $\delta$ the operation of $K$ on $M$ is carried onto that of $K$ on
$V_{n}$ and $K$ becomes a subgroup of the transformation group of $V_{n}$ . Identify-
ing $M$ with $V_{n}$ by $\delta$ , we are lead to the conclusion: $K=SO(n+1)$ is a holo-
morphic transformation group of a Stein manifold $M$, having the hypersurface
$S(B, c),$ $c>0$ , as an orbit.

PROOF of PROPOSITION 2. First we will verify.
LEMMA 1. $K^{c}$ [resp. $L^{c}$] denoting the complex form of $K$ [resp. $L$], the

complex homogeneous manifold $M=K^{C}/L^{C}$ is diffeomorphic with $T(B),$ $B=K/L$

defined in Proposition 2, and the diffeomorphism is equivariant with respect to
the transformation group $K$.

$K$ is the maximal compact subgroup of the complex Lie group $K^{c}$ . Since
$L$ is the identity component of $L^{c}\cap K,$ $B$ is the universal covering manifold
of the K-orbit $B^{\prime}=K/(L^{c}\cap K)$ in $M$. Except in the already investigated case
$B=the$ sphere, $B^{\prime}$ is, however, known to be simply connected, on account of
the fact that the isotropy subgroup $L^{c}\cap K\supset L$ is s-irreducible on the tangent
space $\mathfrak{b}$ to $B^{\prime}$ at the point left fixed by it. Therefore $B^{\prime}$ is diffeomorphic
with $B$ , and we have $L^{c}\cap K=L$ ; we, identifying $B^{\prime}$ with $B$, consider $B$ as a
submanifold of M. $L$ is s-irreducible on $\mathfrak{b}$ and so on $J6$ , where $J$ is the given
(integrable) almost complex structure of $M$. Some neighborhood $U$ of $B$ in
the normal bundle $N(B)=K\times_{L}Jb$ is naturally imbedded in $M$ with a K-
invariant Riemannian metric in such a way that $U$ is K-invariant. The K-
orbits $\neq B$ in $U$ are hypersurfaces. (See [11] for the details.) Thus we can
apply the following Lemma to $U$ (hence $M$).

LEMMA 2. Assume that a compact connected Lie group $K$ is a Lie trans-
formation group of a connected paracompact non-compact manifold M. If there
exists a K-orbit which is a hypersurface, then there exists an equivariant diffeo-

1) That is to say, $\delta$ naturally gives rise to an isomorphism of the transformation
groups.
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morphism of $M$ onto the normal bundle $N(B)$ of some K-orbit $B=K/L$ , the
operation of $K$ on $N(B)$ being naturally defined on the homogeneous vector
bundle $N(B)$ ([11]).

In our case the K-invariant almost complex structure $J:T(M)\rightarrow T(M)$

gives rise to a K-equivariant bundle-isomorphism of $T(B)$ onto $N(B)$ . Lemma
1 is thereby proved.

$K^{C}/L^{C}$ is a Stein manifold by Matsushima’s theorem [9], on which $K$

operates as a holomorphic transformation group having compact simply-
connected hypersurfaces $S(B, c),$ $c>0$ , as orbits, in view of the above argu-
ments. The Proof of Proposition 2 is completed.

REMARK. To find the imbedding of $K/L$ into $K^{c}/L^{c}$ , we used the assump-
tion on $S$ to be simply connected. But this is not necessary by an unpublished
result of Iwahori and Sugiura, stating that any connected homogeneous space
$K/L,$ $K$ compact, is naturally imbedded in $K^{c}/L^{c}$ .

2. Hypersurfaces in Stein manifolds

THEOREM 2. Let $G$ be a connected Lie transformation group of holomorphic

transformations of a Stein manifold M. If $G$ leaves invariant a compact con-
nected simply connected hypersurface $S$ and $G$ is transitive on $S$, then $S$ is
pseudo-conformally equivalent either to the unit sphere in $C^{n}$ (see Proposition 1)

or to a tangent sphere bundle $S(B, c),$ $c>0$ , of a compact simply connected sym-
metric space $B$ of rank 1 (see Proposition 2). (In the latter case $M$ is differen-
tiably the tangent bundle of $B.$)

This section is devoted to the proof of this theorem. Since $S$ is simply
connected, the maximal compact subgroup $K$ of $G$ is transitive on $S$ by the
well known theorem of Montgomery. We can assume that $M$ is connected.
Since $M$ is a Stein manifold, $M$ is paracompact but not compact. Hence
Lemma 2 applies and gives that $M$ is differentiable and equivariantly hemeo-
morphic with the normal bundle $N(B)$ of some orbit $B=K/L,$ $K$ naturally
operating on $N(B)$ .

LEMMA 3. If the set $B$ reduces to a point, then $S$ is pseudo-conformally
equivalent to the unit sphere in $C^{n},$ $n=\dim_{c}M$.

PROOF. $N(B)$ is the tangent space to $M$ at the point $B$, and $K$ is an
orthogonal group on $N(B)$ , leaving the complex structure $J(B)$ of the vector
space $N(B)$ , where $J(B)$ is the value taken at $B$ of the almost complex struc-
ture $J$ of $M$. Thus $N(B)$ can be identified with $C^{n}$ on which $K$ operates as a
unitary group $\subset U(n)$ . And there exists a diffeomorphism $\alpha$ of $C^{n}$ onto $M$

which is equivariant with respect to $K$. Each element $k$ of $K$ is the differ-
ential of $\alpha k\alpha^{-1}$ restricted to the tangent sapce $N(B)=C^{n}$ at $B$ to $M$. We
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consider the Lie algebra $\mathfrak{k}$ of $K$ as a set of vector fields on $C^{n}$ in the usual
way. $\alpha$ induces an isomorphism $\alpha^{\prime}$ of $f$ onto the Lie algebra $\alpha^{\prime}(\mathfrak{k})$ consisting
of the infinitesimal transformations corresponding to $K$ as a transformation
group of $M$. We extend $\alpha^{\prime}$ to the linear mapping $\alpha^{\prime\prime}$ of $\mathfrak{k}^{c}=\{u+iv|u, v\in f\}$ ,
$i=\sqrt{-1}=J(B)$ , onto the vector space $\{\alpha^{\prime}(u)+J\alpha^{\prime}(v)|u, v\in f\}$ by setting $\alpha^{\prime\prime}(iv)$

$=Jv$ . $\alpha^{\prime f}(f^{c})$ consists of holomorphic vector fields on M. $\alpha^{\prime\prime}(\mathfrak{k}^{c})$ is moreover a
Lie algebra. $\alpha^{\prime\prime}$ is a homomorphism. $\alpha^{\prime/}$ is shown to be injective. In fact,
if $\alpha^{\prime}(u)+J\alpha^{\prime}(v)$ vanishes identically on $M$, then the infinitesimal transforma-
tions $-\alpha^{\prime}(u)$ and $J\alpha^{\prime}(v)$ (both of which vanish at $B$) induce the same infini-
tesimal linear transformations $-u$ and $iv$ on the tangent space $N(B)=C^{n}$ to $M$

at $B$ . But, since $K$ is compact, $u,$ $v$ are skew-hermitian matrices and this
would imply $-u=iv=0$ and that $\alpha^{\prime\prime}$ is injective. 1c generates a subgroup of
special linear group $SL(n, C)$ . The subgroup is transitive on $C^{n}-\alpha^{-1}(B)$ , and
$\alpha^{\prime\prime}(1^{c})$ is locally transitive on $M-B$ . For the proof of Lemma 3, we have to
show that, for any point $p\neq B$, the isotropy subalgebra $\alpha^{\prime\prime}(\mathfrak{k}^{c})_{p}(i$ . $e$ . the sub-
algebra formed by all the vector fields vanishing at p) of $\alpha^{\prime\prime}(\mathfrak{k}^{c})$

“ essentially “

coincides with the isotropy subalgebra $\mathfrak{k}_{q}^{c}$ at a point of the unit sphere on $C^{n}$ .
But we shall prove a stronger statement:
(2.0) Under the hypothesis of Lemma 3, there exists a holomorphic homeomor-
phism of $M$ into $C^{n}$ which carries $S$ onlo the unit sphere.

First we note that $K$ contains either the special unitary group $SU(n)$ or
the symplectic group $sp(m)$ (in case $n=2m$) among the known compact Lie
transformation groups transitive on the $(2n-1)$-dimensional sphere (see A.
Borel, C. R. Paris, 230 (1950), 1378-1380), simply due to the condition that the
elements of $K$ commute with $i=J(B))$ . For the proof of (2.0) (hence Lemma
3), we can assume that $K$ coincides with $SU(n)$ or $Sp(m)$ . $\alpha^{\gamma/}(\mathfrak{k}^{c})_{p},p\neq B$, is a
complex subalgebra of $\alpha^{\prime/}(f^{c}),$ $\alpha^{\prime\prime}(\mathfrak{k}^{c})_{p}$ contains the isotropy subalgebra $\alpha^{\prime\prime}(\mathfrak{k})_{p}$

$=\alpha^{\prime}(f)_{p}$ , and its complex dimension equals $\dim_{c}(\mathfrak{k}^{c})-n$ . In case $K=SU(n)$ or
$sp(m)$ , it is an elementary matter to see that the normalizer of $\alpha^{\prime\prime}(\mathfrak{k}^{c})_{p},p\neq B$ ,

in $\alpha^{\prime\prime}(\mathfrak{k}^{c})$ has complex dimension greater than $\alpha^{\prime\prime}(\mathfrak{k}^{c})_{p}$ by just one. Since $M$ is
simply connected, it follows2) that there exists a vector field $w(\neq 0)$ on $M$

which commutes with any element of $\alpha^{\prime\gamma}(\mathfrak{k}^{c})$ . By this property, $w$ is a holo-
morphic vector field, since $\alpha^{\prime\prime}(\mathfrak{k}^{c})$ is locally transitive on $M-B$. $\alpha^{\prime}(\mathfrak{k})$ and $w$

span a Lie algebra which is locally transitive on $M-B$ . To fix the notion.
we assume that the sense of $w$ is “ inward ‘’ at some point of $M-B$ . Since

2) In general, let $\mathfrak{g}$ be a locally transitive Lie algebra of vector fields on a simply
connected manifold M. The centralizer of $\mathfrak{g}$ in the lie algebra of all vector fields on
$M$ is isomorphic with $\mathfrak{n}(\mathfrak{g}_{0})/\mathfrak{g}_{0}$ where $\mathfrak{n}(\mathfrak{g}_{0})$ is the normalizer of $\mathfrak{g}_{0}$ in $\mathfrak{g}$ and $\mathfrak{g}_{0}$ denotes.
the totality of the vector fields in $\mathfrak{g}$ which vanish at a point $0$ of M. (compare $Pro-$

position 7.1 in T. Nagano, Sci. Papers Coll. Gen. Ed. Univ. Tokyo, 10 (1960), 17-27.)
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all the K-orbits $\neq B$ are compact connected two-sided hypersurfaces and $w$

carries K-orbits to K-orbits, this assumption implies that, given any point $p$

of $M,$ $(\exp tw)(p)$ is defined for any non-negative $t$ and converges to $B$ when
$t$ tends to the infinity. Now it is evident that, given a point $p$ of $S$ and a
point $q$ of the unit sphere in $C^{n}$ , there exists a holomorphic homeomorphism
$\beta$ of $M-B$ into $C^{n}-\alpha^{-1}(B)$ which is equivariant with respect to $K$ and to
the semi-group $\{\exp tw|t\geqq 0\}$ and satisfies $\beta(p)=q$ . $\beta$ extends to a holomor-
phic homeomorphism of $M$ into $C^{n}$ by the Hartogs-Osgood theorem. (2.0) is
thus proved.

To continue the demonstration of Theorem 2, we assume that $B$ does not
reduce to a point. $B$ is then a compact connected submanifold of dimension
$\geqq 1$ . Since $M$ is a Stein manifold, it follows that $B$ is not a complex sub-
manifold. Hence the tangent spaces are not invariant under $J$. Let $\mathfrak{b}$ be the
tangent space to $B=K/L$ at $0=L(0)$ . Then $\mathfrak{b}+J\mathfrak{b}\neq\{0\}$ is invariant under $L$

and $J=J(0)$ . The normal space $\mathfrak{n}$ to $B$ at $0$ (with respect to some K-invariant
Riemannian metric on $M$) therefore intersects $\mathfrak{b}+J\mathfrak{b}$ non-trivially;
(2.1) The space $(\mathfrak{b}+J\mathfrak{b})_{\cap}\mathfrak{n}\neq\{0\}$ is invariant under $L$ .

By Lemma 2, $B$ is a deformation retract of $M$. On the other hand the
integral homology group $H.(M)$ is trivial for $p>n=\dim_{c}M$ and $H_{n}(M)$ has
no torsion, because $M$ is a Stein manifold (see Andreotti-Frankel [1], for
instance). Therefore we have $H_{p}(B)=0$ for $p>n$ , and $H_{n}(B)$ has no torsion.
In particular we find

(2.2) $\dim B\leqq n$ .
Since $B$ is simply connected, $n$ is greater than 1. Hence $M$ is not homeo-

morphic with $R\times B,$ $R=the$ line, by (2.2). Hence the following lemma can
be used:

LEMMA 4. Under the hypotheses of Lemma 2, assume moreover that $K$ does
not operate on $M$ trivially in the sense that tlte isotropy subgroups are not all
conjugate to each other. Then the structure group $L$ of the vector bundle $ N(B\rangle$

is Lemma 2 is s-irreducible on the fiber, therefore real irreducible ([11]).
Together with (2.1), this lemma gives

(2.3) $(\mathfrak{b}+J\mathfrak{b})_{\cap}\mathfrak{n}=\mathfrak{n}$ .
The tangent space $T_{o}(M)$ to $M$ at $0\in B$ being the direct sum of $\mathfrak{b}$ and $n$ ,

it follows from (2.3) that we have 2 $\dim B=2\dim \mathfrak{b}=\dim b+\dim J\mathfrak{b}\geqq\dim(\mathfrak{b}+Jb\rangle$

$=\dim M=2n$ , and hence $\dim B\geqq n$ . By (2.2), we thus find that $\dim B=n$

and $f$) $\cap J\mathfrak{b}=0$ . From Lemma 4, we therefore conclude that
(2.4) The normal bundle $N(B)$ is equivalent to the tangent bundle $T(B)$ , and the
isotropy subgroup of $K$ operating on $B$ is s-irreducible on the fiber of $T(B)$ .

This implies that $B$ is a compact symmetric space of rank 1. By Lemma



296 A. MORIMOTO and T. NAGANO

4, the simply connected K-orbit $S$ is an $(n-1)$-sphere bundle over $B$ . Hence
$B$ is also simply connected. We consider the Lie algebra $\mathfrak{k}$ of $K$ as a space
of vector fields on M. $\{u+Jv|u, v\in \mathfrak{k}\}$ is the complexification $\mathfrak{k}^{c}$ of $\mathfrak{k}$ , as is
easily seen from the facts that $T_{o}(M)$ is the direct sum of $T_{o}(B)$ and $J(T_{o}(B))$

and that $K$ is effective and transitive on $B$ . Also one finds that the com-
plexification lc of the Lie algebra I of $L$ is the isotropy subalgebra of $\mathfrak{k}^{c}$ at $0$ .
It follows that a K-equivariant holomorphic imbedding $\beta_{r}$ of $\bigcup_{c<r}S(B, t),$

$r\geqq 0$,

into $M$ extends to a K-equivariant holomorphic imbedding of $\bigcup_{\iota<r+\epsilon}S(B, t)$ into
$M$ for some positive number $\epsilon$ , provided that $\beta_{r}$ is not surjective.

Let $R$ be the lowest upper bound of such $r’ s$ as $\beta_{r}’ s$ are defined. $\beta_{R}$ is
surjective. We have only to prove this when $R$ is the infinity. Suppose that
$\beta_{\infty}$ is defined but not surjective. Then $K^{c}/L^{c}$ would admit sufficiently many
non-constant bounded holomorphic functions, because $\beta_{\infty}(K^{c}/L^{c})$ is relatively
compact in a Stein manifold $M$. Thus $K^{c}/L^{c}$ would admit a K\"ahlerian metric
which is invariant under all holomorphic transformations, as is proved by
considering the kernel functions for the bounded domains. Thus the isotropy
subgroup $H$ of the group $A$ of all the holomorphic transformations of $M$ (at

the point left fixed by $L^{c}$) would be compact. On the other hand $H(\subset L^{c})$ is
irreducible on the tangent space at that point. Hence $H$ would be a maximal
compact subgroup of $A$ . Therefore $K^{c}/L^{c}$ must be homeomorphic with a
euclidean space, contrary to the fact that the compact manifold $B$ is a defor-
mation retract of $K^{c}/L^{c}$ . We have proved that $\beta_{R}$ is surjective. So $S$ is
$\beta_{R}(S(B, c))$ for some $c$ .

REMARK. It may be possible to verify the conclusion of Theorem 2 under
the hypothesis on $G$ that $G$ is merely a transitive pseudo-conformal transfor-
mation group of $S$, instead of the one supposed in the theorem that the ele-
ments of $G$ are holomorphic transformations of $M$. For that it will be neces-
sary to show that the theorem of Hartogs and Osgood used for the proof of
Theorem 1 (and Proposition 1) is valid for arbitrary Stein manifolds, not
only for $C^{n}$ .

3. The proof of Theorem 1

Let $S$ be a compact connected simply connected hypersurface of $C^{n}$ , on
which transitively operates a connected Lie transformation group $G$ of pseudo-
conformal transformations. By the Jordan-Brouwer theorem, $C^{n}-S$ has two
connected $CO_{-}Tlponents$ , one of which, $D$ , is relatively compact. We shall first
prove that
(3.1) $D$ is a Stein manifold.

Since $S$ is a compact hypersurface of a $euclid_{\sim}^{3}an$ space, there exists a
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point $p$ on $S$ in a neighborhood of which $S$ is convex. We define a Gauss-
mapping $\nu$ of $S$ into the unit sphere with center $0=(0, \cdots, 0)$ by assigning to
$x\in S$ the point $\nu(x)$ in such a way that the $vector\rightarrow 0\nu(x)$ is parallel to the
unit normal vector at $x$ and $\nu$ is differentiable. By Sard’s theorem the Jaco-
bian is different from zero at a point $s$ sufficiently near to $p$ . The second
fundamental form $S$ is definite at $s$ . Hence, at $s,$ $S$ satisfies the Levi-Krzoska
condition. Since a pseudo-conformal transformation group $K$ is transitive on
$S,$ $D$ is a Krzoska pseudo-convex domain. Hence $D$ is a domain of holomor-
phy, as was proved by Oka and others (see Grauert [7]), and finally a Stein
manifold.

As in the proof of Proposition 1, $G$ is isomorphic with a subgroup of the
holomorphic transformation group $A(D)$ of $D$ , which is a Lie transformation
group (H. Cartan [5]). The isomorphism is continuous with respect to the
modified compact-open topology (see Gleason-Palais [6], for instance), on
account of the maximal principle concerning holomorphic functions; in parti-
cular the image is a Lie subgroup of $A(D)$ by the Kuranishi-Yamabe theorem
[13]. Naturally $G$ is considered to be a topological transformation group of
the bounded manifold $\overline{D}=DU$ S. Since $S$ is simply connected, the maximal
compact subgroup $K$ of $G$ is transitive on $S$, and a K-orbit sufficiently near
to $S$ is homeomorphic with $S$ by a well known theorem on compact transfor-
mation groups (see Borel [2], for instance). For the moment we observe this
orbit, and denote it by the same S. Thus, by (3.1), Theorem 2 applies; we
see that $S$ is pseudo-conformally equivalent to the unit sphere in $C^{n}$ , or else
to a tangent sphere bundle of a compact symmetric space of rank 1. Since
$S$ is a compact hypersurface of a euclidean space, the Pontrjagin class $p(S)$

must be trivial. In this connection, we shall show:
PROPOSITION 3. The Pontrjagin class $p(S)$ is not trivial, if $S$ is the tangent

sphere bundle of a complex m-dimensional complex projeclive space, $P^{m}(C),$ $m>2$ ,

of a quaternionic projective space other than the projective line, or of the Cayley
projective plane. (The projective lines are homeomorphic with spheres.)

PROOF. Let $B=K/L$ be one of these symmetric spaces, and $D$ be the
tangent bundle of $B$, with the projection $\pi;D\rightarrow B$ . If $f:B\rightarrow D$ denotes the
inclusion mapping, then the bundle $\ell^{-1}(T(D))$ induced from $T(D)$ is equivalent
to the Whitney sum $T(B)+N(B)$ , where $T(X)$ is the tangent bundle of a
manifold $X$. On the other hand, $\kappa;S\rightarrow D$ denoting the inclusion mapping,
$\kappa^{-1}(T(D))$ is the Whitney sum of $T(S)$ and the trivial line bundle. Therefore
we obtain the relation between Pontrjagin classes:

(3.2) $p(S)=(\pi\circ\kappa)^{*}(p(B)^{2})$ .
$\pi 0$ rc is the projection of the sphere bundle $S$ onto the base space B. $p(B)$
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has been calculated by Borel and Hirzebruch [3]. Assume $B=P^{m}(C)$ , for
instance. Then $p(B)=(1+\beta^{2})^{m+1}$ , where $\beta$ is the generator of the integral
cohomology group $H^{2}(P^{m}(C))=Z$. The Gysin sequence applied to the $(2m-1)-$

sphere bundle $S$ over $B=P^{m}(C)$ :
. $\rightarrow H^{i-1-k}(B)\rightarrow H^{i}(B)\rightarrow H^{i}(S)\rightarrow H^{i-k}(B)\rightarrow\cdots$ , $k=2m-1$ ,

gives that the projection $\pi\circ\kappa;S\rightarrow B$ induces an isomorphism of $H^{4}(B)$ onto
$H^{4}(S)$ , if $m$ is greater than 2. It follows from (3.2) that the first Pontrjagin
class $(\pi\circ\kappa)^{*}’(2(m+1)\beta^{2})$ of $S$ does not vanish. This argument is valid for the
quaternionic projective space and the Cayley projective plane both different
from the line, and Proposition 3 is proved in the same way.

PROPOSITION 4. Let $B$ be an n-dimensional, compact, orientable, differentia-
ble manifold with the properties: 1) $H^{1}(B)=0$ , and 2) the Euler-Poincar\’e charac-
teristic $\chi(B)$ does not vanish. Then the tangent bundle $T(B)$ of $B$ cannot be
differentiably imbedded into the $2n$-dimensional euclidean space.

PROOF. Assume the contrary: $T(B)$ is differentiably imbedded into the
$2n$-dimensional sphere $S^{2n}$ . The imbedded tangent sphere bundle $S$ divides
$S^{2n}$ into two connected components $D$ and $D^{\prime}$ ; $S^{2n}=\overline{D}\cup\overline{D}^{\prime},$ $S=\overline{D}\cap\overline{D}^{\prime}$ . We
may assume that $D$ is homeomorphic with $T(B)$ . $S$ is a subcomplex of $S^{2n}$

with some triangulation. Due to the Mayer-Vietoris formula, we have

(3.3) $H^{i}(S)=H^{i}(\overline{D})+H^{i}(\overline{D}^{\prime})$ , $0<i<2n-1$ .
Since $B$ is a deformation retract of $\overline{D},$ $(3.3)$ shows

(3.4) $H^{n}(S)=H^{n}(B)+H^{n}(\overline{D}^{\prime})=Z+H^{n}(\overline{D}^{\prime})$ .
Applying Gysin’s formula to the sphere bundle $S$ over $B$ , we get the

exact sequence:
$ H^{0}(B)\rightarrow H^{n}(B)\rightarrow H^{n}(S)\rightarrow H^{1}(B)=0\lambda$ ,

where, with the identification $H^{0}(B)=H^{n}(B)=Z,$ $\lambda$ denotes the multiplication
by $\chi(B)$ . (Gysin’s sequence can actually be applied to $S$, because the struc-
ture group is connected.) Consequently we find $H^{n}(S)=Zmod \chi(B)$ , contrary
to (3.4).

As a corollary to Proposition 4 just proved, we have
(3.5) The tangent bundle of $B=P^{2}(C)$ cannot be differentiably imbedded into $C^{4}$ .

Finally consider the case where $B$ is a sphere, a space of the remaining
class of compact, simply connected, symmetric spaces of rank 1.

PROPOSITION 5. The tangent bundle $T(B)$ of an n-dimensional sphere $B$

can be differentiably imbedded into the $2n$-dimensional euclidean space, if and
only if $n=1,3$ , or 7.

PROOF. Assume that $T(B)$ is imbedded into the $2n$-dimensional euclidean
space. First we consider the case where $n>2$ . Haefliger’s theorem [8] gives
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that the differentiable imbedding of $B$ into the $2n$-dimensional euclidean space
is unique up to a differentiable isotopy; in particular, the differentiable nor-
mal bundle $D$ of the imbedded $B$ is trivial. Hence the tangent bundle $T(B)$ ,
equivalent to $D$ , is trivial. It follows from Milnor’s result [10] that $n$ equals
3 or 7. As regards the case $n=2$ (or, more generally, $n=even$), Proposition
5 is a corollary to Proposition 4. The converse is patent.

Hitherto $S$ has been an orbit near $S$ mentioned in Theorem 1. Hence the
demonstration of Theorem 1 is immediate from the above arguments, if the
following proposition is proved.

PROPOSITION 6. Let $S$ be a compact, connected, real analytic hypersurface

of $C^{n}$ and let $K$ be a compact connected Lie transformation group of pseudo-

conformal transformations of $S$, then there exists a bounded domain $D^{\gamma}$ of $C^{n}$

containing $S$ such that every element of $K$ extends to a holomorphic transforma-
tion of $D^{\prime}$ .

PROOF. Since $S$ is a real analytic hypersurface, every vector field (on S)

which belongs to the Lie algebra $f$ of $K$ extends to a holomorphic vector field
\langle ) $n$ a neighborhood of $S$, according to Tanaka [12] (Proposition 1, p. 404). $f$

being finite-dimensional, $f$ can thus be considered as the Lie algebra of vector
fields on a neighborhood of S. Given a neighborhood $U$ of $S$, there exist
neighborhoods $V$ of $S$ and $W$ of the identity of $K$ such that any element $f$

in $W$ extends to a holomorphic homeomorphism of $V$ into $U$, since $S$ is com-
pact. Using this fact repeatedly, one finds that, for any positive integer $m,$ $V$

and $W$ can be so chosen that any elementf in $W^{m}=\{f_{1}f_{2}\cdots f_{m}|f_{1}, \cdot.. f_{m}\in W\}$

extends to a holomorphic homeomorphism of $V$ into $U$. Since $K$ is compact
and connected, $K$ coincides with $W^{m}$ for sufficiently large $m$ . Here one may
assume $V$ is a domain. Let $D^{\prime}$ be the set $\bigcup_{f\in K}f(V)$ , for any element $g$ in $K$,

$g$ extends uniquely to a holomorphic homeomorphism $gf\circ f^{-1}$ of $f(V)$ into $D^{\prime}$ ,
and hence every element of $K$ extends to a holomorphic transformation of
$D^{\prime}$ . If the arbitrarily given neighborhood $U$ of the compact space $S$ is a
bounded domain, then so is $D^{\prime}$ and Proposition 6 is proved.
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