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Let $f(z)=z+\sum_{1}^{\infty}\frac{a_{k}}{z^{k}}$ be analytic and univalent for $|z|>1$ . Kung Sun [3;

p. 111] has demonstrated the existence of a constant $R_{0}$ such that each partial

sum $S_{n}(z)=z+\sum_{1}^{n}\frac{a_{k}}{z^{k}}$ , is univalent for $|z|>R_{0}$ ; he showed that $[\frac{4}{3}]^{\frac{1}{3}}\leqq R_{0}$

$<\frac{3}{2}$ .
In this note we offer a slight improvement of Kung Sun’s result in the

form of the following

THEOREM. If $f(z)=z+\sum_{1}^{\infty}\frac{a_{tc}}{z^{k}}$ is analytic and univalent for $|z|>1$ , then

lhere exists a constant $R_{0},$ $[\frac{3}{2}]^{\frac{1}{4}}\leqq R_{0}\leqq\sqrt{2}$ , such that each partial sum $S_{n}(z)$

$=z+\sum_{1}^{n}\frac{a_{k}}{z^{k}}$ , is univalent for $|z|>R_{0}$ .

PROOF: First we consider the analytic and univalent function $z(1+\frac{1}{z^{4}})^{\frac{1}{2}}$

$=z+\frac{1}{2z^{8}}+\cdots$ , which maps the domain where $|z|>1$ onto a domain whose

complement is “ star-shaped ‘’ with respect to the origin (in the image plane).

It is easy to see that the partial sum $\sigma_{1}(z)=z+\frac{1}{2z^{8}}$ has a derivative that

vanishes for $z=[\frac{3}{2}$] $\frac{1}{4}$

Hence Kung Sun’s constant $R_{0}$ must satisfy $R_{0}$

$\geqq[\frac{3}{2}]^{\frac{1}{4}}>[\frac{4}{3}]^{\frac{1}{8}}$ .

Now we consider a general univalent function $f(z)=z+\sum_{1}^{\infty}\frac{a_{k}}{z^{k}},$ $|z|>1$ . If
$z_{1}\neq z_{2},$ $|z_{1}|=|z_{2}|=R>1$ , then an obvious calculation yields

$|\frac{S_{n}(z_{2})-S_{n}(z_{1})}{z_{2}-z_{1}}|=|1-\sum_{k=1}^{n}a_{k}\sum_{m=0}^{k-1}\frac{z_{1}^{m}z_{2}^{k-m-1}}{z_{1}^{k}z_{2}^{k}}|$

(1)

$\geqq 1-\sum_{k=1}^{n}\frac{k|a_{k}|}{R^{k+1}}\geqq 1-\sum_{1}^{\infty}\frac{k|a_{k}|}{R^{k+1}}$ .

The Bieberbach “ area principle ‘’ [1; p. 73] gives us $\sum_{k=1}^{\infty}k|a_{k}|^{2}\leqq 1$ , while the
Cauchy-Schwarz inequality gives us
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$\sum_{1}^{\infty}\frac{k|}{R}k\frac{a_{k}|}{+1}\leqq[\sum_{1}^{\infty}k|a_{k}|^{2}]^{-}12^{-}[\sum_{1}^{\infty}\overline{R^{2}}k_{\overline{k+2}}]^{\frac{1}{2}}$

If we apply these last two inequalities to (1), we obtain

(2) $|\frac{S_{n}(z_{2})-S_{n}(z_{1})}{z_{2}-z_{1}}|>1-[\sum_{1}^{\infty}\overline{R^{2}}k_{\overline{k+2}}]^{1}2=1--\frac{1}{2-1}R$ .

From (2) we conclude that the derivative $S_{n}^{\prime}(z)$ does not vanish where $|z|>\sqrt{2}$ ,

and we conclude that each circle $|z|=R>\sqrt{2}$

simple closed curve. The theorem now follows.
We note that by using the finite partial sums in (1) and (2), we can obtain

slightly sharper results, at least for small values of $n$ . For example, if $n=1$ ,
we have

$|\frac{S_{1}(z_{2})-S_{1}(z_{1})}{z_{2}-z_{1}}|\geqq 1-\frac{1}{R^{2}}$ ,

so that $S_{1}(z)$ is univalent for $|z|>1$ . Again, for $n=2$ , we have

$|\frac{S_{2}(z_{2})-S_{2}(z_{1})}{z_{2}-z_{1}}|\geqq 1-[\frac{1}{R^{4}}+\frac{2}{R^{6}}]^{1}2$

from which we conclude that $S_{2}(z)$ is univalent (at least) for 2
$|>[3]^{\frac{\rceil}{4}}$

We can also refine Kung Sun’s method a bit to obtain slightly sharper
results as follows. Set $Q_{n}(z)=f(z)-S_{n}(z)$ , for fixed $n,$ $n\geqq 1$ . Then another
application of the “ area principle ‘’ and the Cauchy-Schwarz inequality yields,
for $z_{1}\neq z_{2},$ $|z_{1}|=|z_{2}|=R>1$ ,

$|\frac{Q_{n}(z_{2})-Q_{n}(z_{1})}{z_{2}-z_{1}}|\leqq\frac{[(n+1)R^{2}-n]1_{2}}{R^{n+1}(R^{2}-1)}$ .

But it is known [2; p. 127] that for $z_{1}\neq z_{2},$ $|z_{1}|=|z_{2}|=R>1$ , we have

$|\frac{f(z_{2})-f(z_{1})}{z_{2}-z_{1}}|\geqq 1-\frac{1}{R^{2}}$

Hence $S_{n}(z_{1})\neq S_{n}(z_{2})$ whenever

(3) $1-\frac{1}{R^{2}}>\frac{[(n+1)R^{2}-n]^{2}1}{R^{n+1}(R^{2}-1)}$ .

Elementary calculations show that (3) holds for $R>[3]^{\frac{1}{4}}$ , provided $n\geqq 7$ .
Hence we have shown that the partial sums $S_{n}(z)$ are univalent for $|z|>[3]^{\frac{1}{4}}$ ,
tor $n\geqq 7$.

We close with the remark that Kung Sun has shown, using (3) above,
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that $S_{n}(z)$ is univalent for $|z|>[1-\frac{1}{n}5\log n]^{-\frac{1}{2}}$ , provided $n\geqq 13$ .
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Added in proof: The crude result $R_{0}<\sqrt{2}$

a recent result due to Robertson (Notices, Amer. Math. Soc., 8 (1961), p. 516\rangle
and Pommerenke (Math. Z., 78 (1962), p. 274) to show that each partial sum
$S_{n}(z)$ of $f(z)$ yields a star-like mapping, $|z|>\sqrt{2}$. In addition, an examina-
tion of a certain extremal mapping due to Garabedian and Schiffer (Ann. of
Math., 61 (1955), p. 133) casts serious doubt on the lower bound $4\sqrt{3}/2$ given
above. Additional results of the same general nature, for other maps (star-

like, convex, etc.) were announced at the Conference on Analytic Functions
held in Cracow, Poland, 28 August–5 September 1962. The Proceedings of
this Conference will be published soon.
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