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Hecke’s Dirichlet series obtained from modular forms can be regarded as
zeta-functions attached to the general linear group $GL(2, Q)$ over the rational
number field $Q$ . In general, we may expect to obtain zeta-functions of this
kind for a fairly wide class of algebraic groups defined over $Q$ . In order to
realize this, it is necessary to develop, in the first place, the theory of ele-
mentary divisors for any algebraic group $G$ in question. This is actually done
in the case where $G$ is the multiplicative group of a semi-simple algebra. Fur-
ther, the case of the orthogonal group is investigated in detail by M. Eichler
[3]. In both cases, there are fundamental theorems, due to Eichler $[4, 5]$ and
M. Kneser [6], which may be called the approximation theorem in the group
$G$ , from which one can easily derive an important conclusion about the class-
number for $G$ . This approximation theorem plays an essential role also in the
theory of Hecke-rings attached to quaternion algebras $[8, 9]$ . In fact, by
means of the theorem, we can prove the isomorphism between the Hecke-ring
defined by the idele-group of a quaternion algebra $D$ and the Hecke-ring
defined by the unit-groups of maximal orders in $D$ (cf. [9, \S 2]).

The purpose of the present paper is to give an extension of the theory
of elementary divisors for the group of similitudes of a hermitian form over
a quaternion algebra, and to prove an approximation theorem for this group.
Let $F$ be the quotient field of a Dedekind domain $\mathfrak{g}$ and $\rightarrow 4$ a quaternion (not

necessarily division) algebra over $F$. Let $V$ be a left A-module which is iso-
morphic to the product of $n$ copies of $A$ . We consider an A-valued non-de-
generate hermitian form $f(x,y)$ on $V$ with respect to the canonical involution
of $A$ (cf. \S 2.2). Let $G$ be the group consisting of all A-automorphisms $\sigma$ of
$V$ such that $f(x\sigma, y\sigma)=N(\sigma)f(x,y)$ for $x\in V,$ $y\in V$ with $N(\sigma)\in F$. Take a
maximal oder $0$ in $A$ . Let $L$ be a g-lattice in $V$ such that $oL\subset L$ . We denote
by $N(L)$ the two-sided o-ideal generated by $f(x,y)$ for $x\in L,$ $y\in L$ , and call
it the norm of $L$ . We say that $L$ is maximal if $L$ is a maximal one among
the lattices with the same norm. As in [3], our theory is mostly concerned
with maximal lattices in $V$. If $A$ is the total matric algebra of degree 2
over $F$, then $G$ is isomorphic to the group of similitudes of an alternating
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form over 1’‘ with $2n$ variables. We treat this case in \S 1 and \S 2.5, and prove
fundamental propositions concerning the existence of canonical bases for maxi-
mal lattices and their elementary divisors. We give in \S 3 similar propositions
in case where $A$ is a division quaternion algebra over a $\mathfrak{p}$-adic field. These
propositions correspond to the results of the same kind obtained in the case
of orthogonal groups [Eicher, 3] and of quaternion anti-hermitian forms [Tsu-

kamoto, 10]. In \S 4, we consider the global theory, namely the case where $F$

is an algebraic number field. Our principal aim is to prove approximation-
theorems for $G$ (Theorems 1 and 2 of \S 4.6) in case where $A$ is indefinite. As
an application of the theorems, we can show that the classes of maximal
lattices in each genus are in one-to-one correspondence with the ideal-classes
modulo $l$ in $F$ for a suitable product $t$ of infinite prime spots of $F$ (Theorem
3). If we denote by $G^{0}$ the unitary group of $f$, i. e. the subgroup of $G$ com-
posed of the elements $\sigma$ such that $N(\sigma)=1$ , then each genus with respect to
$G^{0}$ consists of only one class (\S 4.9). Finally we give a result on global set of
elementary divisors of maximal lattices (Theorem 4). As explained in the
beginning, our theory can be considered as preliminaries for the theory of the
Hecke-ring of $G$ . In fact, by means of our propositions and theorems, we can
develop such a theory, which is a generalization of the theory in [9, \S 2].
As for this, we have only given Proposition 4.11. A further investigation of
the Hecke-ring of $G$ will be made in a subsequent paper.

NOTATION. We denote by $Z,$ $Q,$ $R,$ $C$ and $K$, respectively, the ring of
rational integers, the rational number field, the real number field, the complex
number field, and the division ring of real quaternions. For a ring $S$ with
an identity element, $j\psi_{m}(S)$ denotes the ring of matrices of degree $m$ with
entries in $S$ ; the identity matrix of degree $m$ is denoted by $1_{m}$ ; and the trans-
pose of a matrix $X$ is denoted by ${}^{t}X$. We mean by $\delta_{ij}$ the usual Kronecker’s
delta, namely $\delta_{ij}=0$ or 1 according as $i\neq j$ or $i=j$ .

\S 1. Arithmetic of alternating forms.

1.1. Alternating form and symplectic group. Let $F$ be an arbitrary field
and $W$ a vector space over $F$ of finite dimension. We denote by $E(W)$ the
ring of all F-linear mappings of $W$ into itself, and by $GL(W)$ the group of
regular elements of $E(W)$ . We write the operation of an element of $E(W)$

on the right; so we have $(ax)\sigma=a(x\sigma)$ for $a\in F,$ $x\in W,$ $\sigma\in E(W)$ . Let $g(x, y)$

be a non-degenerate alternating form on $W$. We denote by $G(W, g)$ the sub-
group of $GL(W)$ consisting of the elements $\sigma$ of $GL(W)$ for which there exists
a number $N(\sigma)$ of $F$ such that $g(x\sigma, y\sigma)=N(\sigma)g(x, y)$ for every $x,$ $y\in W$, and
denote by $G^{0}(W, g)$ the symplectic group associated to $g$, namely, the subgroup
of $G(W, g)$ consisting of the elements $\sigma$ such that $N(\sigma)=1$ .
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1.2. Lattices in a vector space. Let $\mathfrak{g}$ be a Dedekind domain and $F$ the
quotient field of $\mathfrak{g}$ . Let $W$ be a vector space over $F$. By a $\mathfrak{g}$ -lattice in $W$, we
understand a finitely generated g-submodule $L$ of $W$ such that $FL=W$. Let
$\mathfrak{p}$ be a prime ideal of $\mathfrak{g}$ . We denote by $F_{\mathfrak{p}}$ and $\mathfrak{g}_{\mathfrak{p}}$ the $\downarrow$)-completions of $F$ and $\mathfrak{g}$ ,

respectively. Put $W_{\mathfrak{p}}=W\bigotimes_{F}F_{\mathfrak{p}}$ . For every q-lattice $L$ in $W$, put $L_{\mathfrak{p}}=\mathfrak{g}_{\mathfrak{p}}L$ ;

then $L_{\mathfrak{p}}$ is a $\mathfrak{g}_{\mathfrak{p}}$ -lattice in $W_{\mathfrak{p}}$ . The following lemma is well-known.
LEMMA 1.1. Let $L$ be a g-lattice in W. Take, for each prime ideal 1) of $[J$ ,

$a\mathfrak{g}_{\mathfrak{p}}$ -lattice $j\psi^{\mathfrak{p}}$ in $W_{\mathfrak{p}}$ . Then there exists a g-lattice $M$ in $W$ such that $j\psi_{\mathfrak{p}}=1\psi^{\mathfrak{p}}$

for every }$j$ if and only if $M^{\mathfrak{p}}=L_{\mathfrak{p}}$ for all except a finite number of $\mathfrak{p}$ . If such
a lattice $1\psi$ exists, we have $j\psi=\bigcap_{\mathfrak{p}}(j\psi_{\mathfrak{p}\cap}W)$ .

LEMMA 1.2. Let $L_{\mathfrak{p}}$ be a $\mathfrak{g}_{\mathfrak{p}}$ -lattice in $W_{\mathfrak{p}}$ ; let $\sigma$ and $\tau$ be elements of $GL(W_{P})$ .
Suppose that $ L_{\mathfrak{p}}(\sigma-\tau)\subset \mathfrak{p}L_{\mathfrak{p}}\sigma$ . Then we have $ L_{\mathfrak{p}}\sigma=L_{\mathfrak{p}}\tau$ .

PROOF. Let $x_{1}$ , $\cdot$ .. , $x_{m}$ be generators of $L_{0}$ over $\mathfrak{g}_{\mathfrak{p}}$ . Put $M=L_{\mathfrak{p}}\sigma,$ $ K=L_{\mathfrak{p}}\tau$ .
Then we have $ x_{i}\sigma-x_{i}\tau\in \mathfrak{p}j\psi\subset 1\psi$ for every $i$ . As ]$\psi$ and $K$ are respectively
generated by the $ x_{i}\sigma$ and the $X_{?}T$ , we get $K\subset M$. Further we have $M\subset K+\mathfrak{p}M$.
From this we obtain inductively $1M\subset K+t)^{e}M$ for every positive integer $e$ .
This implies $l\psi\subset K$, so that $M=K$.

1.3. Canonical base of a lattice with respect to an alternating form. We
first prove a generalization of a well-known theorem of Frobenius.

PROPOSITION 1.3. Let $\mathfrak{g}$ be a Dedekind domain and $F$ the quotient field of
$\mathfrak{g}$ . Let $W$ be a vector space of dimension $2n$ over $F$ and $g(x, y)$ a non-degenerate
alternating form on W. Let $M$ be a g-lattice in W. Then there exist a base
$\{y_{1}$ , $\cdot$ . , $y_{n},$ $z_{1}$ , $\cdot$ .. , $z_{n}\}$ of $W$ over $F$ and (fractional) g-ideals $0_{1}$ , , $0_{n}$ such that

$g(y_{i},y_{j})=g(z_{i}, z_{j})=0$ , $g(y_{i}, z_{j})=\delta_{ij}$ ,

$M=\mathfrak{g}y_{1}+\mathfrak{g}y_{2}+\cdots+\mathfrak{g}y_{n}+\mathfrak{a}_{1}z_{i}+\mathfrak{a}_{2}z_{2}+\cdots+\mathfrak{a}_{n}z_{n}$ ,

$\mathfrak{a}_{1}\supset \mathfrak{a}_{2}\supset\ldots\supset \mathfrak{a}_{n}$ .
The ideals $t1_{i}$ are uniquely determined by $M$ and $g$.

PROOF. We prove this by induction on n. $Foreveryx\in M,$ $put\mathfrak{a}_{x}=g(x, M)$ .
Obviously, $\mathfrak{a}_{x}$ is a g-ideal. As $M$ is a g-lattice, there exists a maximal one
among the $t\ddagger_{x}$ , say $\mathfrak{a}_{1}$ ; and take an element $y_{1}$ of Mso that $\mathfrak{a}_{1}=g(y_{1},1\psi)$ . As
we have $\mathfrak{g}=g(y_{1}, \mathfrak{a}_{1}^{-1}M)$ , there exists an element $z_{1}$ of $\mathfrak{a}_{1}^{-1}1\psi$ such that $g(y_{1}, z_{1})$

$=1$ . Put $t$) $=g(M, z_{1})$ . As $t$) $\ni g(y_{1}, z_{1})=1$ , we have $r_{j}\supset \mathfrak{g}$ , so that $\mathfrak{a}_{1}\mathfrak{b}=\mathfrak{a}_{1}g(M, z_{1})$

$=\mathfrak{a}_{1}$ . Assume that $\mathfrak{b}\neq \mathfrak{g}$ . Then $\mathfrak{a}_{1}g(1\psi, z_{1})\neq \mathfrak{a}_{1}$ , and hence there exist an
element $u$ of $1\psi$ and an element $\alpha$ of $\mathfrak{a}_{1}$ such that $g(u, \alpha z_{1})\not\in \mathfrak{a}_{1}$ . Put $\beta$

$=-g(u, \alpha z_{1}),$ $\gamma=g(y_{1}, u)$ . $Wehavetheng(y_{1}+\alpha z_{1}, u-\gamma z_{1})=\beta$ . Since $\gamma\in tI_{1}$ and
($\iota_{1}z_{1}\subset 1\psi$, the element $u-\gamma z_{1}$ is contained in $ j\psi$. We note that $g(y_{1}+\alpha z_{1}, \mathfrak{a}_{1}z_{1})$

$=(1_{1}$ . Therefore, we have
$g(y_{1}+\alpha z_{1},1M)\supset 1\ddagger_{1}+\mathfrak{g}\beta\supset \mathfrak{a}_{1}$ , $(\ddagger_{1}+\mathfrak{g}\beta\neq \mathfrak{a}_{1}$ .
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This contradicts the maximality of $\mathfrak{a}_{1}$ . Hence we must have $g(M, z_{1})=\mathfrak{g}_{-}$

Now define a submodule $M^{\prime}$ of $M$ by $M^{\prime}=\{v\in M|g(y_{1}, v)=g(z_{1}, v)=0\}$ . For
every $w\in M$, put $\xi=g(y_{1}, w),$ $\eta=g(z_{1}, w),$ $w_{0}=w+\eta y_{1}-\xi z_{1}$ . Then $\xi\in(t_{1},$ $\eta\in \mathfrak{g}$,

and we have $g(y_{1}, w_{0})=g(z_{1}, w_{0})=0$ , so that $w_{0}\in M^{\prime}$ . This shows that $M$

$=\mathfrak{g}y_{1}+\mathfrak{a}_{1}z_{1}+M^{\prime}$ . Applying our induction to $M^{\prime}$ , we get an expression $M^{\prime}$

$=\mathfrak{g}y_{2}+\cdots+\mathfrak{g}y_{n}+\mathfrak{a}_{2}z_{2}+\cdots+\mathfrak{a}_{n}z_{n}$ with the properties $\mathfrak{a}_{2}\supset\cdots\supset \mathfrak{a}_{n},$ $g(y_{i},y_{j})=g(z_{i}, z_{j})|$

$=0,$ $g(y_{i}, z_{j})=\delta_{ij}$ for $2\leqq i\leqq n,$ $2\leqq j\leqq n$ . Therefore, the first assertion is proved
if we show $\mathfrak{a}_{1}\supset \mathfrak{a}_{2}$ . Let $u$ and $v$ be elements of $M^{\prime}$ . We have $g(y_{1}+u, M)$

$\supset g(y_{1}+u, \mathfrak{a}_{1}z_{1}+\mathfrak{g}v)\supset \mathfrak{a}_{1}+\mathfrak{g}g(u, v)\supset \mathfrak{a}_{1}$ . By the maximality of $\mathfrak{a}_{1}$ , we must have
$g(u, v)\in \mathfrak{a}_{1}$ , namely $g(M^{\prime}, M^{\prime})\subset \mathfrak{a}_{1}$ . This implies $\mathfrak{a}_{1}\supset \mathfrak{a}_{2}$ and completes the proof
of the first assertion. The invariance of the ideals $\mathfrak{a}_{i}$ is easily shown by
” localization ”. Namely, for every prime ideal $p$ of $\mathfrak{g}$ , consider $W_{\mathfrak{p}}=W\bigotimes_{F}F_{\triangleright}$

and a $\mathfrak{g}_{\mathfrak{p}}$ -lattice $M_{\mathfrak{p}}=\mathfrak{g}_{\mathfrak{p}}M$ in $W_{\mathfrak{p}}$ . Then the invariance is an immediate con-
sequence of the theory of elementary divisors over a principal ideal domain
(cf. [2, \S 5.1, Theorem 1]). We can also prove the invariance more directly
with no use of localization.

We call the ideals $\mathfrak{a}_{i}$ of Proposition 1.3 the invariant factors of $M$ (with
respect to $g$), and call $\{y_{1}, \cdots , y_{n}, z_{1}, \cdots , z_{n}\}$ a canonical base of $M$ (with respect
to $g$).

1.4. Maximal lattices. Let $F,$ $\mathfrak{g},$ $W,$ $g$ be the same as in Proposition 1.3.
For every g-lattice $M$ in $W$, we see that the first member $\mathfrak{a}_{1}$ of the invariant
factors of $M$ is the g-ideal generated by $g(x, y)$ for $x,y\in M$ We put $N_{g}(M)$

$=\mathfrak{a}_{1}$ and call $N_{g}(M)$ the norm of $M$ with respect to $g$. For simplicity, we fix
$g$ and write $N(M)=N_{g}(M)$ . We say that $M$ is maximal (with respect to g)
if $M$ is a maximal one among the g-lattices in $W$ with the same norm (with
respect to $g$ ). It is clear that $N(M\sigma)=N(M)N(\sigma)$ for every $\sigma\in G(W, g)$ . If
$M$ is maximal, $ M\sigma$ is maximal for every $\sigma\in G(W, g)$ . By Proposition 1.3, we
see easily that $M$ is maximal if and only if the invariant factors of $M$ are
all equal to $N(M)$ . Furthermore, if $M$ is a g-lattice in $W$ and $\mathfrak{a}$ is a g-ideal
such that $\mathfrak{a}\supset N(M)$ , we can find a maximal lattice $L$ in $W$ such that $L\supset M,$.
$N(L)=\mathfrak{a}$ .

PROPOSITION 1.4. Let $M_{1}$ and $M_{2}$ be maximal lattices in W. Then we have
$M_{1}\sigma=M_{2}$ for an element $\sigma$ of $G(W,g)$ , if and only if $N(M_{1})^{-1}N(M_{2})$ is a princi-
pal ideal.

PROOF. If $M_{1}\sigma=M_{2}$ for an element $\sigma\in G(W, g)$ , we have $N(M_{2})=N(M_{1}\sigma)$,

$=N(M_{1})N(\sigma)$ ; this proves the ‘ only if ‘ part. Conversely, put $\mathfrak{a}_{i}=N(M_{t})$ and
$\mathfrak{a}_{t^{1}}\mathfrak{a}_{2}=\mathfrak{g}\alpha$ with $\alpha\in F$. Let $\{y_{1}, \cdots , y_{n}, z_{1}, \cdots , z_{n}\}$ and $\{u_{1}, \cdots , u_{n}, v_{1}, \cdots , v_{n}\}$ be
respectively canonical bases of $M_{1}$ and $M_{2}$ . Define an element $\sigma$ of $E(W)$ by
$y_{i}\sigma=u_{i},$ $z_{i}\sigma=\alpha v_{i}$ for $1\leqq i\leqq n$ . Then we see easily $\sigma\in G(W, g),$ $N(\sigma)=\alpha,$ $ M_{1}\sigma$

$=M_{2}$ . This proves the ’ if ’ part.
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We say that maximal lattices $M_{1}$ and $M_{2}$ in $W$ are equivalent if $ M_{1}=M_{2}\sigma$

for an element $\sigma$ of $G(W, g)$ , and call a maximal set of mutually equivalent
maximal lattices a class of maximal lattices. By Proposition 1.4, we observe
that the mapping $M\rightarrow N(M)$ gives $a$ one-to-one correspondence between the classes
of maximal lattices in $W$ and the ideal-classes of $F$.

1.5. Invariant factors of elements of $G(W, g)$ . Notation being as in \S \S 1.3
$-4$ , suppose that $\mathfrak{g}$ is a principal ideal domain.

PROPOSITION 1.5. Let $L$ and $M$ be maximal lattices in W. Let $\alpha$ be an
element of $F$ such that $N(M)=\alpha N(L)$ . Put $N(L)=\mathfrak{a}$ . Then there exist a ca-
.nonical base $\{y_{1}, y_{n}, z_{1}, z_{n}\}ofL$ and elements $a_{1}$ , $a_{n},$ $b_{1}$ , , $b_{n}$ ofF such
that

$L=\mathfrak{g}y_{1}+\cdots+\mathfrak{g}y_{n}+\mathfrak{a}z_{1}+\cdots+\mathfrak{a}z_{n}$ ,

$M=ga_{1}y_{1}+\cdots+\mathfrak{g}a_{n}y_{n}+\mathfrak{a}b_{1}z_{1}+\cdots+\mathfrak{a}b_{n}z_{n}$ ,

$\alpha=a_{1}b_{1}=\ldots=a_{n}b_{n}$ ,

$\mathfrak{g}a_{1}\supset\cdots\supset \mathfrak{g}a_{n}\supset \mathfrak{g}b_{n}\supset$ $\supset \mathfrak{g}b_{1}$ .
PROOF. We proceed by induction on $n$ . Put $c=\{c\in F|cM\subset L\}$ . It is

easy to see that $c$ is a g-ideal. As $\mathfrak{g}$ is a principal ideal domain, we have
$c=gc_{0}$ for an element $c_{0}$ of $F$. Put $M^{\prime}=c_{0}M$ Then $M^{\prime}$ is a maximal lattice,
and $N(M^{\prime})=c_{0}^{2}\alpha \mathfrak{a},$ $\mathfrak{g}=\{c\in F|cM^{\prime}\subset L\}$ . If we prove our proposition for $M^{\prime}$

and $ c_{0}^{2}\alpha$ , we get easily the assertion for $M$ and $\alpha$ . Therefore, we may as-
sume that $M=M^{\prime}$ , namely, $\mathfrak{g}=\{c\in F|cM\subset L\}$ . The last relation implies that
$L\supset M$ and $M$ contains an element $y_{1}\neq 0$ such that $L/gy_{1}$ is a free g-module.
Put $M_{1}=M+\alpha L$ . Then $M_{1}$ is a g-lattice in $W$. As $L\supset M$ and $N(M)=\alpha N(L)$,

we must have $\alpha\in \mathfrak{g}$ ; hence we see easily $N(M_{1})=\alpha N(L)=N(M)$ . As $M$ is
maximal, we must have $M=M_{1}$ , so that $M\supset\alpha L$ . Now taking a canonical
base of $L$ , and expressing $y_{1}$ in a linear form of the base, we find that $g(y_{1}, L)$

$=\mathfrak{a}$ . By the proof of Proposition 1.3, we can find an element $z_{1}$ of $\mathfrak{a}^{-1}L$ such
that $g(y_{1}, z_{1})=1$ ; and if we put $U=\{x.\in W|g(y_{1}, x)=g(z_{1}, x)=0\},$ $L_{0}=L\cap U$,

we get $L=\mathfrak{g}y_{1}+\mathfrak{a}z_{1}+L_{0}$ . We see easily that $L_{0}$ is a maximal lattice in $U$ and
$N(L_{0})=\mathfrak{a}$ . As $\alpha L\subset M$, we have $\alpha \mathfrak{a}z_{1}\subset M$ For every $x\in M$, we have $g(y_{1}, x)$

$\in N(M)=\alpha \mathfrak{a},$ $g(z_{1}, x)\in \mathfrak{a}^{-1}N(L)=\mathfrak{g}$ . Hence if we put $g(y_{1}, x)=\xi\alpha,$ $ g(z_{1}, x)=\eta$ ,

then $\xi\in \mathfrak{a},$ $\eta\in \mathfrak{g}$ . Put $x_{0}=x+\eta y_{1}-\xi\alpha z_{1}$ . We have then $x_{0}\in M$ and $g(y_{1}, x_{0})$

$=g(z_{1}, x_{0})=0$ , so that $x_{0}\in U_{\cap}M$ This proves that $M=\mathfrak{g}y_{1}+\mathfrak{a}\alpha z_{1}+M_{0}$ , if we
put $M_{0}=U_{\cap}M$. As $M$ is maximal, $M_{0}$ must be a maximal lattice in $U$ such
that $ N(M_{0})=\mathfrak{a}\alpha$ . Applying our induction assumption to $L_{0}$ and $M_{0}$ , we find
a canonical base $\{y_{2}, y_{n}, z_{2}, \cdot. z_{n}\}$ of $L_{0}$ and elements $a_{2}$ , $\cdot$ .. $a_{n},$ $b_{2}$ , $\cdot$ $b_{n}$ of
$F$ such that
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$L_{0}=\mathfrak{g}y_{2}+\cdots+\mathfrak{g}y_{n}+\mathfrak{a}z_{2}+\cdots+\mathfrak{a}z_{n}$ ,

$M_{0}=\mathfrak{g}a_{2}y_{2}+\cdots+\mathfrak{g}a_{n}y_{n}+\mathfrak{a}b_{2}z_{2}+\cdots+\mathfrak{a}b_{n}z_{n}$ ,

$\alpha=a_{2}b_{2}=\ldots=a_{n}b_{n}$ ,

$\mathfrak{g}a_{2}\supset$ $\supset \mathfrak{g}a_{n}\supset \mathfrak{g}b_{n}\supset\ldots\supset \mathfrak{g}b_{2}$ .
As $L_{0}\supset M_{0}$ , we have $\mathfrak{g}\supset \mathfrak{g}a_{2}$ , so that $\mathfrak{g}b_{2}\supset \mathfrak{g}\alpha$ . Putting $a_{1}=1$ and $ b_{1}=\alpha$ , we
obtain our assertion for $L$ and $M$

PROPOSITION 1.6. Let $L$ be a maximal lattice in W. Let $\{u_{1}, \cdots , u_{n}, v_{1}, \cdots , v_{n}\}$

be a canonical base of L. Denote by $\Gamma^{0}$ the subgroup of $G^{0}(W, g)$ consisting of
elements $\gamma$ of $G^{0}(W, g)$ such that $L\gamma=L$ , and by $\Delta$ the set of elements $\sigma$ of $G(W, g)$

such that $u_{i}\sigma=a_{t}u_{i},$ $v_{i}\sigma=b_{i}v_{\dot{t}}$ for $1\leqq i\leqq n$ with elements $a_{i},$ $b_{i}$ of $F$ and $\mathfrak{g}a_{1}\supset\ldots$

$\supset \mathfrak{g}a_{n}\supset \mathfrak{g}b_{n}\supset\ldots\supset \mathfrak{g}b_{1}$ . Then we have $G(W, g)=\Gamma^{0}\cdot\Delta\cdot\Gamma^{0}$ .
PROOF. Let $\sigma$ be an element of $G(W, g)$ . Put $M=L\sigma,$ $\alpha=N(\sigma)$ , and apply

Proposition 1.5 to this $\{L, M, \alpha\}$ . Then we get a canonical base $\{y_{i}, z_{i}\}$ of $L$

and elements $a_{i},$ $b_{i}$ of $F$ with the properties of that proposition. Define two
elements $\gamma$ and $\tau$ of $E(W)$ by $u_{i}\gamma=y_{i},$ $v_{i}\gamma=z_{i},$ $u_{i}\tau=a_{i}u_{i},$ $v_{i}\tau=b_{i}v_{i}$ . We see
easily that $\gamma\in\Gamma^{0}$ and $\tau\in\Delta,$ $ N(\tau)=\alpha$ . Further we have $ L\tau\gamma=L\sigma$ . Hence if
we put $\epsilon\tau\gamma=\sigma$ , we have $Le=L,$ $\epsilon\in G(W, g),$ $N(\epsilon)=1$ , so that $\epsilon\in\Gamma^{0}$ . It follows
$t$ hat $\sigma=\epsilon\tau\gamma\in\Gamma^{0}\cdot\Delta\cdot\Gamma^{0}$ . Our proposition is thereby proved.

\S 2. Hermitian forms over a quaternion algebra.

2.1. Quaternion algebras. By a quaternion algebra over a field $F$, we
understand a central simple algebra $A$ over $F$ such that $[A:F]=4$ . Every
quaternion algebra $A$ over $F$ has an involution $a\rightarrow a^{\prime}$ , which is uniquely de-
termined by the property that $(X-a)(X-a^{\prime})$ is the principal polynomial of $a$

over $F$. We call it the canonical involution of $A$ and always denote it by $a\rightarrow a^{\prime}$ .
For every $a\in A$ , we put

$N(a)=aa^{\prime}$ , Tr $(a)=a+a^{\prime}$

If $A$ is not a division algebra, $A$ is isomorphic to $M_{2}(F)$ ; and for every
$a\in M_{2}(F),$ $N(a)$ is just the determinant of $a$ and Tr $(a)$ is the trace of $a$ . Here-
after we assume that the characteristic of $F$ is different from 2. Then, for
an element $a$ of $A$ , we have $a=a^{\prime}$ if and only if $a\in F$.

If $F$ is the quotient field of a Dedekind domain $\mathfrak{g}$ , we can develop ideal-
theory in $A$ . Here we recall only the definition of different and norm of
ideals. Let $0$ be a maximal order in $A$ . The different ES) $=\mathfrak{D}(0/\mathfrak{g})$ of $0$ with
respect to $\mathfrak{g}$ is the integral two-sided o-ideal defined by

$\mathfrak{D}^{-1}=$ { $x\in A|$ Tr $(xo)\subset \mathfrak{g}$ }.

Let $\mathfrak{a}$ be a right (resp. left) o-ideal. We denote by $N(\mathfrak{a})$ the g-ideal generated
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by the elements $N(a)$ for $a\in \mathfrak{a}$ . If we put $\mathfrak{a}^{\prime}=\{x^{\prime}|x\in \mathfrak{a}\}$ , then $\mathfrak{a}^{\prime}\mathfrak{a}=N(\mathfrak{a})0$,

(resp. $\mathfrak{a}\mathfrak{a}^{\prime}=N(\mathfrak{a})0$).

2.2. Q-hermitian forms. Let $A$ be a quaternion algebra over a field $F$.
By an A-space of dimension $n$ , we understand a left A-module $V$ isomorphic
to the product of $n$ copies of $A$ ; and we put $n=\dim_{A}V$. We call a set of
elements $\{x_{1}, \cdots , x_{n}\}$ of $V$ a base of $V$ over $A$ if $V=Ax_{1}+\cdots+Ax_{n}$ .

Let $V$ be an A-space of dimension $n$ . We understand by a Q-hermitian

form on $V$ an F-bilinear mapping $f$ of $V\times V$ into $A$ satisfying

$f(ax,y)=af(x,y)$ , $f(x,y)^{\prime}=f(y, x)$

for $a\in A,$ $x\in V,$ $y\in V$. We call $f$ non-degenerale if $f(x, V)=\{0\}$ implies $x=0$ .
PROPOSITION 2.1. Let $A$ be a quaternion algebra over a field $F$ and $V$ be

an A-space of dimension $n$ . For every Q-hermitian form $f(x,y)$ on $V$, there exists
a base $\{x_{1}, \cdots , x_{n}\}$ of $V$ over $A$ such that $f(x_{i}, x_{j})=\alpha_{i}\delta_{if}$ for $1\leqq i\leqq n,$ $1\leqq i\leqq n$

with $\alpha_{i}\in F.$ Moreover, suppose that $f$ is non-degenerate and $A$ satisfies the
following condition:

(D) For every $a\in F$, there exists an element $a$ of $A$ such that $ N(a)=\alpha$ .
Then there exists a base $\{y_{1}, \cdots , y_{n}\}$ of $V$ over $A$ such that $f(y_{i},y_{j})=\delta_{ij}$ .

This is well-known and in fact easily proved. If $A=M_{2}(F)$ , the condi-
tion (D) is clearly satisfied.

Let $V$ be an A-space. We denote by $E(V, A)$ the ring of all F-linear
mappings $\sigma$ of $V$ into itself satisfying $(ax)\sigma=a(x\sigma)$ for every $a\in A,$ $x\in V,$ .

and by $GL(V, A)$ the group of regular elements of $E(V, A)$ . Let $f$ be a non-
degenerate Q-hermitian form on $V$. We denote by $G(V,f)$ the subgroup of
$GL(V, A)$ consisting of the elements $\sigma$ for which there exists a number $N(\sigma)$

of $F$ such that $f(x\sigma,y\sigma)=N(\sigma)f(x,y)$ for every $x\in V,$ $y\in V$ ; and put $G^{0}(V,f)$

$=\{\sigma\in G(V,f)|N(\sigma)=1\}$ . $G^{0}(V,f)$ is clearly a normal subgroup of $G(V,f)$ . If
$\xi$ is a non-zero element of $F$, we have $f(\xi x, \xi y)=\xi^{2}f(x, y)$ ; so we often con-
sider $\xi$ as an element of $G(V,f)$ . If $\dim_{A}V=1,$ $E(V, A)$ is isomorphic to $A$ , and
$G(V,f)$ is isomorphic to the group of regular elements of $A$ ; for every $\sigma$

$\in G(V,f),$ $N(\sigma)$ coincides with $N(\sigma)$ of $\sigma$ considered as an element of $A$ .
Fix a base $\{x_{1}, x_{n}\}$ of $V$ over $A$ . Every element $\sigma$ of $E(V, A)$ is re-

presented by a matrix $(s_{ij})$ of $M_{n}(A)$ with respect to $\{x_{i}\}$ :

(1) $x_{i}\sigma=\sum_{j=1}^{n}s_{ij}x_{j}$ $(1 \leqq i\leqq n)$ .
For every element $S=(s_{ij})$ of $M_{n}(A)$ , we put $S^{\prime}=(t_{ij})$ with $t_{ij}=s_{ji^{\prime}}$ . Then
$S\rightarrow S^{\prime}$ is an involution of $M.(A)$ . Let $f(x,y)$ be a Q-hermitian form on $V$.
Define an element $H=(h_{ij})$ of $M_{n}(A)$ by $h_{ij}=f(x_{i}, x_{j})$ . Then we have $H^{\prime}=H$.
An element $\sigma$ of $GL(V, A)$ belongs to $G(V,f)$ if and only if we have $SHS^{\prime}=\alpha H$

with $\alpha\in F$ for the matrix $S$ corresponding to $\sigma$ ; and then we have $ N(\sigma)=\alpha$ .
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2.3. Elementary theory of maximal lattices. Let $g$ be a Dedekind domain
and $F$ the quotient field of $\mathfrak{g}$ . Let $A$ be a quaternion algebra over $F$ and $V$ an
A-space of dimension $n$ . Take a non-degenerate Q-hermitian form $f$ on $V$.
Let $L$ be a g-lattice in $V$. Put $0=\{a\in A|aL\subset L\}$ . Then $0$ is an order in $A$ .
We call $0$ the order of $L$ and say that $L$ is normal if $0$ is a maximal order in
$A$ . Assume that $L$ is normal. We denote by $N_{f}(L)$ the two-sided o-ideal gen-
erated by the elements $f(x, y)$ for $x\in L,$ $y\in L$ , and call $N_{f}(L)$ the norm of $L$

with respect to $f$. We denote $N_{f}(L)$ simply by $N(L)$ when we fix $f$ and there
is no fear of confusion.

Now, for every prime ideal $\mathfrak{p}$ of $\mathfrak{g}$ , consider the $\mathfrak{p}$ -completion $F_{\mathfrak{p}}$ and $g_{\mathfrak{p}}$ of
$F$ and $\mathfrak{g}$ . Put $A_{\mathfrak{p}}=A\bigotimes_{F}F_{\mathfrak{p}},$ $V_{\mathfrak{p}}=V\bigotimes_{F}F_{\mathfrak{p}}$ . Then $V_{\mathfrak{p}}$ can be considered as an $A_{\mathfrak{p}^{-}}$

space of dimension $n$ in a natural manner. Further $f$ is uniquely extended
to a non-degenerate Q-hermitian form on $V\mathfrak{p}$ , which we denote again by $f$.
The following proposition is an easy consequence of our definition.

PROPOSITION 2.2. Let $L$ be a g-lattice in V. If $0$ is the order of $L$ , then
Op $(=g_{\mathfrak{p}}o)$ is the order of $L_{\mathfrak{p}}(=\mathfrak{g}_{\mathfrak{p}}L)$ . $L$ is normal if and only if $L_{\mathfrak{p}}$ is normal
for every prime ideal $\mathfrak{p}$ of $\mathfrak{g}$ . If $L$ is normal, we have $N(L)_{\mathfrak{p}}=N(L_{\mathfrak{p}})$ .

Let $L$ be a normal lattice in $V$ and $0$ the order of $L$ . We call $L$ maximal
(with respect to f) if $L$ is a maximal one among the normal lattices with the
same order $\mathfrak{o}$ and the same norm $N(L)$ .

PROPOSITION 2.3. Let $L$ be a g-lattice in $V$ and $\sigma$ an element of $G(V,f)$ .
Then $ L\sigma$ is a g-lattice in $V$ with the same order as L. If $L$ is normal, so is $ L\sigma$ ;
and we have $N(L\sigma)=N(L)N(\sigma)$ . Moreover, if $L$ is maximal, so is $ L\sigma$ .

This is also an easy consequence of definition. Further, by Lemma 1.1
and Proposition 2.2, we obtain

PROPOSITION 2.4. A normal g-lattice in $V$ is maximal if and only if $L_{\mathfrak{p}}$ is
maximal for every prime ideal $\mathfrak{p}$ of $\mathfrak{g}$ .

Hereafter, we call a normal maximal g-lattice in $V$ simply a maximal lat-
tice in $V$.

PROPOSITION 2.5. Let $L$ be a normal g-lattice in $V$ with the order $0$ . Let a
be a right $0$-ideal and $0_{1}$ the left order of $\mathfrak{a}$ . Then $\mathfrak{a}L$ is a normal g-lattice in $V$

with the order $0_{1}$ , and $N(aL)=aN(L)\mathfrak{a}^{-1}\cdot N(\mathfrak{a})$ . Moreover, if $L$ is maximal, $so$

is $\mathfrak{a}L$ .
PROOF. The first assertion is clear. Let $x=\sum_{i}a_{i}x_{i}$ and $y=\sum_{j}b_{j}y_{j}$ be ele-

ments of $\mathfrak{a}L$ where $a_{i},$ $b_{j}\in \mathfrak{a}$ and $x_{i},$ $y_{j}\in L$ . Then we have $f(x, y)=\sum_{i,j}a_{i}f(x_{i},y_{j})b_{j}^{\prime}$

$\in \mathfrak{a}N(L)\mathfrak{a}^{\prime}$ . As $\mathfrak{a}\mathfrak{a}^{\prime}=0_{1}N(\mathfrak{a})$ , we get $\mathfrak{a}N(L)\mathfrak{a}^{\prime}=aN(L)\mathfrak{a}^{-1}\cdot N(\mathfrak{a})$ . Therefore we
’obtain $N(\mathfrak{a}L)\subset \mathfrak{a}N(L)_{(}\iota^{-1}\cdot N(\mathfrak{a})$ . Substituting $\mathfrak{a}^{-1}$ and $\mathfrak{a}L$ for $\mathfrak{a}$ and $L$ , we get
the inverse inclusion, so that the equality $N(\mathfrak{a}L)=(\ddagger N(L)\mathfrak{a}^{-1}N(\mathfrak{a})$ holds. The
last assertion follows easily from this relation.

PROPOSITION 2.6. Let $\{x_{1}, \cdots , x_{n}\}$ be a base of $V$ over $A$ such that $f(x_{i}, x_{j})$
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$=\alpha_{i}\delta_{ij}$ with $\alpha_{i}\in F$. Let $\mathfrak{o}$ be a maximal order in $A$ and $\mathfrak{b}_{1},$ $\cdots$ , $\mathfrak{b}_{n}$ be left o-ideals
such that $\alpha_{1}N(\mathfrak{b}_{1})=\ldots=\alpha_{n}N(\mathfrak{b}_{n})$ . Then $L=\mathfrak{b}_{1}x_{1}+\cdots+\mathfrak{b}_{n}x_{n}$ is a maximal lattice
with the order $0$ and $N(L)=\alpha_{1}N(\mathfrak{b}_{1})0$ .

PROOF. It is clear that $L$ is a g-lattice in $V$ with the order $\mathfrak{o}$ , and $N(L)$

$=\alpha_{i}N(\mathfrak{b}_{i})\mathfrak{o}$ . Let $M$ be a g-lattice with the order $\mathfrak{o}$ such that $M\supset L$ and $N(M)$

$=N(L)_{\mathfrak{b}_{i}}Lety=\sum_{=}^{n}bx_{i}bean_{ii}elemento_{i}fM_{i}.withb_{i}\in A.Wehave=f(y,x_{i})\subset N(M)^{i=1}N^{i}(L))^{\prime}hence^{i}b_{i}\alpha_{i}\mathfrak{h}^{\prime}$

$M=L$ . Therefore $L$ is maximal.
PROPOSITION 2.7. Let $L$ and $M$ be maximal lattices in $V$ with the same order.

Let $a$ be a g-ideal. If $L\supset M$ and $N(M)\supset \mathfrak{a}N(L)$ , then $M\supset \mathfrak{a}L$ .
PROOF. As $\mathfrak{a}N(L)\subset N(M)\subset N(L),$ $\mathfrak{a}$ is an integral ideal. Put $K=M+\mathfrak{a}L$ .

Then $K$ is a g-lattice in $V$ with the same order as $L$ . We have $f(K, K)$

$\subset f(M, M)+\mathfrak{a}f(M, L)+\mathfrak{a}f(L, M)+\mathfrak{a}^{2}f(L, L)\subset N(M)$ , so that $N(K)=N(M)$ . By
the maximality of $M$, we must have $K=M$, and hence $\mathfrak{a}L\subset M$

PROPOSITION 2.8. Let $M$ be a normal g-lattice in V. Then there exists a
maximal lattice $L$ , with the same order as $M$, such that $N(L)=N(M)$ and $L\supset M$

PROOF. Let $0$ be the order of $M$ Take a base $\{x_{1}$ , $\cdot$
., $x_{n}\}$ of $V$ over $A$

such that $x_{i}\in M$ for every $i$ . Put $K=$ {$y|f(y,$ $x_{i})\in N(M)$ for every $i$ }. It is
easy to see that $K$ is a g-lattice in Vwith order $0$ . Now, let $L$ be a g-lattice
in $V$ with order $0$ such that $L\supset M$ and $N(L)=N(M)$ . If $y\in L$ , we have $f(y, x_{i})$

$\in N(L)=N(M)$ , so that $y\in K$ Hence $L$ is contained in $K$ As $K$ is a g-lattice,
the ascending chain condition holds for the g-lattices contained in $K$ There-
fore, we can find a maximal one among the lattices containing $M$, with order
$0$ and with norm $N(M)$ . This proves our proposition.

2.4. The relation between alternating form and Q-hermitian form. We
now consider the case $A=M_{2}(F)$ for an arbitrary field $F$. Let $e_{ij}(i=1,2$ ;
$j=1,2)$ be the matrix units of $A$ . We note that $e_{1^{\prime}1}=e_{22},$ $e_{1^{\prime}2}=-e_{12},$ $e_{2^{\prime}1}=-e_{21}$ .
Let $V$ be an A-space of dimension $n$ and $f$ a Q-hermitian form on $V$. Put
$W_{i}=e_{ii}V$ for $i=1,2$ . Then $W_{i}$ is a vector space over $F$ of dimension $n$ for
$i=1,2$ ; and $V$ is the direct sum of $W_{1}$ and $W_{2}$ . If $x,y\in W_{1}$ , we have $f(x,y)$

$=f(e_{11}x, e_{11}y)=e_{11}f(x, y)e_{22}\in Fe_{12}$ . Hence we can define an F-bilinear mapping
$g$ of $W_{1}\times W_{1}$ into $F$ by
\langle 2) $f(x,y)=g(x, y)e_{12}$ .
As $e_{1^{\prime}2}=-e_{12}$ , we have $g(y, x)e_{12}=f(y, x)=f(x,y)^{\prime}=-g(x,y)e_{12}$ , so that $g$ is an
alternating form on $W_{1}$ . If $\sigma\in E(V, A)$ , we have $W_{1}\sigma\subset W_{1}$ ; so the restriction
of $\sigma$ to $W_{1}$ gives rise to an element of $E(W_{1})$, which we denote by $\sigma_{1}$ .

PROPOSITION 2.9. Notation being as above, the mapping $\sigma\rightarrow\sigma_{1}$ gives an iso-
morphism of $E(V, A)$ and $GL(V, A)$ onto $E(W_{1})$ and $GL(W_{1})$ , respectively. More-
over, suppose that $f$ is non-degenerate. Then $g$ is non-degenerate; and $\sigma\rightarrow\sigma_{1}$
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gives an isomorphism of $G(V,f)$ and $G^{0}(V,f)$ onto $G(W_{1}, g)$ and $G^{0}(W_{1},g),$ re-
spectively; and further we have $N(\sigma)=N(\sigma_{1})$ for $\sigma\in G(V,f)$ .

This can be proved in an almost straightforward way. By Proposition
2.1, there exists a base $\{x_{1}, \cdots , x_{n}\}$ of $V$ over $A$ such that $f(x_{i}, x_{j})=\delta_{ij}$ . Using
matricial representation with respect to this base, the mapping $\sigma\rightarrow\sigma_{1}$ is given
explicitly as follows. First note that $\{e_{11}x_{i}, e_{12}x_{i}(1\leqq i\leqq n)\}$ is a base of $W_{\iota}$

over $F$. Let $\sigma$ be an element of $E(V, A)$ and $S=(s_{ij})$ the element of $ M_{n}(A\rangle$

determined by (1) of \S 2.2. Put $e_{11}x_{i}=y_{i},$ $e_{12}x_{i}=z_{i}$ and $s_{ij}=\left(\begin{array}{ll}a_{ij} & b_{ij}\\c_{ij} & d_{ij}\end{array}\right)$ with

$a_{ij},$
$b_{\dot{t}j},$ $c_{ij},$

$d_{ij}$ in $F$. Then we have $y_{i}\sigma=\sum_{j=1}^{n}a_{ij}y_{j}+\sum_{j-1}^{n}b_{ij}z_{j},$ $z_{i}\sigma=\sum_{j=J}^{n}c_{ij}y_{j}+\sum_{j=1}^{n}d_{ij}z_{j}$ ,

Now define an isomorphism $\ell$ of $M_{n}(A)$ onto $M_{2n}(F)$ by $f(s_{ij})=((c^{ij})(a_{ij})$ $(d_{ij}^{ij})(b))$ .
Then $\sigma_{1}$ is represented by $c(S)$ with respect to the base $\{y_{i}, z_{i}\}$ . As $f(x_{i},$ $ x_{j}\rangle$

$=\delta_{ij}$ , we get g $(y_{i},y_{j})=g(z_{i}, z_{j})=0,$ $g(y_{i}, z_{j})=-\delta_{ij}$ . $PutJ=\left(\begin{array}{ll}0 & 1_{n}\\-1_{n} & 0\end{array}\right)$ . Then

we have $t(S^{\prime})=(-{}^{t}(c)t(d_{i^{i}j^{j}})$ $-(b){}^{t^{t}}(a_{ij}^{ij}))c$ . Therefore, if $SS^{\prime}=\alpha 1_{n}$ with
$\alpha\in F$, we have $f(S)J\cdot t_{\ell(S)=\alpha J}$ This will give a ’ non-intrinsic’ proof of
Proposition 2.8.

2.5. Paraphrase of the result of \S 1. The notation $A=M_{2}(F),$ $V,$ $f,$ $W_{i}$ ,
$g$ being as in \S 2.4, suppose that $F$ is the quotient field of a Dedekind domain

$g$ . For every g-ideal $c$ , put $o(c)=\mathfrak{g}e_{11}+ce_{12}+c^{-1}e_{21}+\mathfrak{g}e_{22}=\left(\begin{array}{ll}\mathfrak{g} & c\\c^{-1} & \mathfrak{g}\end{array}\right)$ . Then, $o(c)$

is a maximal order in $A$ ; and for every maximal order $0$ in $A$ , there exist
an element $a$ of $A$ and a $\mathfrak{g}$ -ideal $c$ such that $a\mathfrak{o}a^{-1}=o(c)$ . Fix a $\mathfrak{g}$-ideal $c$ and
put $0=o(c)$ . Let $L$ be a g-lattice in $V$ with the order $0$ . Put $e_{ii}L=M_{i}$ . Then
we have $M_{i}=L\cap W_{i},$ $L=M_{1}+M_{2}$ ; and $M_{i}$ is a g-lattice in $W_{i}$ . Further we
have $M_{1}=ce_{12}M_{2},$ $M_{2}=c^{-1}e_{21}M_{1}$ . Now, by Proposition 1.3, there exist g-ideals
$\mathfrak{a}_{1},$

$\cdots$ , $\mathfrak{a}_{n}$ and a base $\{y_{i}, z_{i}\}$ of $W_{1}$ over $F$ with the properties of that proposi-
tion for $M=M_{1}$ . Then we have

$M_{2}=c^{-1}e_{21}y_{1}+\cdots+c^{-1}e_{21}y_{n}+c^{-1}\mathfrak{a}_{1}e_{21}z_{1}+\cdots+c^{-1}\mathfrak{a}_{n}e_{21}z_{n}$ .

Put $x_{i}=y_{i}-e_{21}z_{i},$ $\mathfrak{b}_{i}=\mathfrak{g}e_{11}+c\mathfrak{a}_{i}e_{12}+c^{-1}e_{21}+a_{i}e_{22}=\left(\begin{array}{ll}\mathfrak{g} & \mathfrak{a}_{i}\\c^{-1} & \mathbb{C}^{-1}t\ddagger_{i}\end{array}\right)$ for $1\leqq i\leqq n$ . Then

the $\mathfrak{y}_{i}$ are left o-ideals; and we see easily $L=\mathfrak{b}_{1}x_{1}+\cdots+f_{J_{n}}x_{n},$ $\mathfrak{b}_{1}\supset\ldots\supset \mathfrak{b}_{n}$ ,
$f(x_{i}, x_{j})=\delta_{ij}$ . Further we have $N(L)=N(b_{1})0,$ $N(\mathfrak{b}_{1})=c^{-1}\mathfrak{a}_{1}=c^{-1}N_{g}(M_{1})$ . There-
fore, if $L$ is maximal, we must have $\mathfrak{b}_{1}=\ldots=\mathfrak{b}_{n}$ , and hence $\mathfrak{a}_{1}=\ldots=\mathfrak{a}_{n}$ , so
that $M_{1}$ is maximal with respect to $g$. Thus we obtain

PROPOSITION 2.10. Let $F$ be the quotient field of a Dedekind domain $\mathfrak{g}$, and
$A=M_{2}(F)$ . Let $V$ be an A-space of dimension $n$ and $f$ be a non-degenerate Q-
hermitian form on V. Let $L$ be a normal lattice in $V$ and $0$ the order of $L$ .
Then there exist left o-ideals $b_{1},$ $\cdots$ , $\mathfrak{b}_{n}$ and a base $\{x_{1}, \cdots , x_{n}\}$ of $V$ over $A$ such
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that
$L=\mathfrak{b}_{1}x_{1}+\cdots+\mathfrak{b}_{n}x_{n}$ , $\mathfrak{b}_{1}\supset\cdots\supset \mathfrak{b}_{n}$ ,

$f(x_{i}, x_{j})=\delta_{ij}$ ;

and we have $N(L)=N(\mathfrak{b}_{1})0$ . Moreover, if $L$ is maximal, $\mathfrak{b}_{1}=\ldots=b_{n}$ .
PROPOSITION 2.11. Notation being as in Proposition 2.10, let $L_{1}$ and $L_{2}$ be

maximal lattices in $V$ with the same order $0$ . If $L_{1}\sigma=L_{2}$ for an element $\sigma$ of
$G(V,f),$ $then\alpha N(L_{1})=N(L_{2})foranelement\alpha ofF$. $Conversely,$ $ if\alpha N(L_{1})=N(L_{2}\rangle$

with $a\in F$, we can find an element $\sigma$ of $G(V,f)$ such that $L_{1}\sigma=L_{2},$ $ N(\sigma)=\alpha$ .
PROOF. The first assertion is obvious. Now suppose that $N(L_{2})=\alpha N(L_{1})$

with a $\in F$. We may assume that $0=o(c)$ for a g-ideal $c$ . Put $M_{i}^{1}=e_{ii}L_{1},$ $M_{\overline{\iota}}^{2}$

$=e_{ii}L_{2}$ for $i=1,2$ . By the above consideration, $M_{1}^{1}$ and $M_{1}^{2}$ are maximal lat-
tices in $W_{1}$ , and $N_{g}(M_{1}^{1})\alpha=N_{g}(M_{1}^{2})$ . By Proposition 1.4 and its proof, there
exists an element $\sigma_{1}$ of $G(W_{1}, g)$ such that $M_{1}^{1}\sigma_{1}=M_{1}^{2},$ $ N(\sigma_{1})=\alpha$ . Let $\sigma$ be an
element of $G(V,f)$ corresponding to $\sigma_{1}$ by the mapping of Proposition 2.9. We
get then $N(\sigma)=a$ , and $L_{1}\sigma=L_{2}$ , since $L_{1}=oM_{1}^{1},$ $L_{2}=oM_{1}^{2}$ . This completes our
proof. We can also derive our proposition more directly from Proposition 2.10.

PROPOSITION 2.12. Notation being as in Proposition 2.10, suppose that $\mathfrak{g}$ is
a principal ideal domain. Put $0=M_{2}(\mathfrak{g})$ . Let $L$ and $M$ be maximal lattices in
$V$ with the order $0$ . Let $\eta$ and $\alpha$ be elements of Fsuch that $N(L)=\eta \mathfrak{o}$ and $N(M)$

$=\alpha N(L)$ . Then there exist a base $\{x_{1}, \cdots , x_{n}\}$ of $V$ over $A$ and elements $a_{1},$
$\cdots$ , $a_{n}$ ,

$b_{1},$
$\cdots,$

$b_{n}$ of $F$ such that
$f(x_{i}, x_{j})=\eta\delta_{ij}$ ,

$L=ox_{1}+\cdots+ox_{n}$ ,

$M=oe_{1}x_{1}+\cdots+oe_{n}x_{n}$ , $e_{i}=\left(\begin{array}{ll}a_{i} & 0\\0 & b_{i}\end{array}\right)$ $(0\leqq i\leqq n)$ ,

$\mathfrak{g}a_{1}\supset$ $\supset \mathfrak{g}a_{n}\supset gb_{n}\supset$ $\supset \mathfrak{g}b_{1}$ ,

$\alpha=a_{1}b_{1}=\ldots=a_{n}b_{n}$ .
PROOF. Put $L_{1}=e_{11}L,$ $M_{1}=e_{11}M$ Then $L_{1}$ and $M_{1}$ are maximal lattices

in $W_{1}$ with respect to $g$, and $N(L_{1})=g\eta,$ $ N(M_{1})=\mathfrak{g}\alpha\eta$ . Applying Proposition
1.5 to this $\{L_{1}, M_{1}, \alpha\}$ , we obtain $\{y_{i}, z_{i}\}$ and $\{a_{i}, b_{i}\}$ with the properties of that
proposition for $L_{1}$ and $M_{1}$ . Put $x_{i}=y_{i}-e_{21}\eta z_{i}$ . Then we can easily verify that
$f(x_{i}, x_{j})=\eta\delta_{ij},$ $L=ox_{1}+\cdots+ox_{n},$ $M=0e_{1}x_{1}+\cdots+oe_{n}x_{n}$ with $e_{i}=\left(\begin{array}{ll}a_{i} & 0\\0 & b_{i}\end{array}\right)$ . This
proves our proposition.

Notation being as in Proposition 2.12, we call $\{\mathfrak{g}a_{1}, \cdots , \mathfrak{g}a_{n}, \mathfrak{g}b_{1}, \cdots , gb_{n}\}$ the
set of elementary divisors of Mrelative to $L$ and denote it by $\{L:M\}$ . We get
an assertion for {V, $f$ } which is a paraphrase of Proposition 1.6. Instead of
stating it, we give the following proposition.

PROPOSITION 2.13. Notation and assumption being as in Proposition 2.12,
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let $L,$ $M,$ $K$ be maximal lattices in $V$ with the order $0$ . Then there exists an
element $\sigma$ of $G^{0}(V,f)$ such that $L\sigma=L$ and $M\sigma=K$, if and only if $\{L:M\}$

$=\{L:K\}$ .
PROOF. The ’only if’ part is clear. Put $N(L)=0\eta,$ $N(M)=0\alpha\eta,$ $N(K)$

$=0\beta\eta$ with $\alpha,$ $\beta,$ $\eta\in F$. By Proposition 2.12, we get a base $\{x_{i}\}$ of $V$ over $A$

and a set of elements $\{a_{i}, b_{i}\}$ of $F$ for $M$ with the properties of that proposi-
tion, and a base $\{u_{i}\}$ of $V$ over $A$ and a set of elements $\{c_{i}, d_{i}\}$ of $F$ with
the corresponding properties for $K$. If $\{L:M\}=\{L:K\}$ , we have $\mathfrak{g}a_{i}=\mathfrak{g}c_{i}$ ,
$gb_{i}=\mathfrak{g}d_{i}$ , so that ga $=\mathfrak{g}\beta$ . Hence we may put $\alpha=\beta$ . We have then $a_{i}b_{i}=c_{i}d_{i}$ .
Let $e_{i}$ , for each $i$ , be a unit of $\mathfrak{g}$ such that $\epsilon_{i}a_{i}=c_{i}$ ; then we have $\epsilon_{i}^{-1}b_{i}=d_{i}$ .
Define an element $\sigma$ of $E(V, A)$ by $x_{i}\sigma=\left(\begin{array}{ll}\epsilon_{i} & 0\\0 & \epsilon_{\dot{t}}^{-1}\end{array}\right)u_{i}$ . Then we see easily $\sigma$

$\in G^{0}(V,f),$ $L\sigma=L,$ $M\sigma=K$ This proves the ‘if’ part.
REMARK. Notation being as in Proposition 2.13, suppose that $L\supset M$,

$L\supset K$ Then the following three conditions are equivalent to each other.
i) $\{L:M\}=\{L:K\}$ .

ii) $L/M$ and $L/K$ are isomorphic as g-modules.
iii) $L/M$ and $L/K$ are isomorphic as o-modules.

\S 3. Local theory of $Q$-hermitian forms.

3.1. Quaternion algebras over local fields. By a $\mathfrak{p}$ -adic number field, we
understand a finite extension of the $p$-adic number field, for any prime number
$p$ . In this \S 3, $F_{\mathfrak{p}},$

$g_{\mathfrak{p}},$ $\mathfrak{p}$ denote respectively a $\mathfrak{p}$ -adic number field, the ring of
$\mathfrak{p}$ -integers in $F_{\mathfrak{p}}$ , the maximal ideal of $\mathfrak{g}_{\mathfrak{p}}$ . It is well-known that there exist, up
to isomorphism, only two quaternion algebras over $F_{\mathfrak{p}}$ , the matric algebra $M_{2}(F_{\mathfrak{p}})$

and a division algebra. The latter is written as $(B, S, \pi)=B+Bu$ in the usual
notation of cyclic algebra, where $B$ is the unique unramified quadratic exten-
sion of $F_{\mathfrak{p}},$ $S$ is the Frobenius automorphism of $B$ over $F_{\mathfrak{p}},$ $\pi$ is a prime
element of $F_{\mathfrak{p}}$ , and $u\beta u^{-1}=\beta^{s}$ for $\beta\in B,$ $ u^{2}=\pi$ . We denote this division qua-
ternion algebra over $F_{\mathfrak{p}}$ by $D_{\mathfrak{p}}$ .

For every maximal order Op in $M_{2}(F_{\mathfrak{p}})$ , there exists an element $w$ such that
$wo_{\mathfrak{p}}w^{-1}=M_{2}(\mathfrak{g}_{\mathfrak{p}})$ . Every one-sided $0\mathfrak{p}$ -ideal is principal. Every two-sided $0_{P^{-}}idea1$

$\Phi \mathfrak{p}$ is written in the form $\mathfrak{a}_{\mathfrak{p}}=\mathfrak{p}^{\nu}0_{\mathfrak{p}}$ with $\nu\in Z$, and conversely. Further $\mathfrak{D}(0_{\mathfrak{p}}/\mathfrak{g}_{\mathfrak{p}})$

$=0_{p}$ . As for $D_{\mathfrak{p}}$ , it has only one maximal order Op $=\{x\in D_{\mathfrak{p}}|N(x)\in \mathfrak{g}_{\mathfrak{p}}\}$ ; and
every one-sided $0\mathfrak{p}$ -ideal is principal and equal to a power of the maximal
ideal $\mathfrak{P}$ , so that it is a two-sided $0_{P^{-}}idea1$ . We have $\mathfrak{P}^{2}=\mathfrak{p}0_{\mathfrak{p}},$ $\mathfrak{P}=\mathfrak{D}(0_{\mathfrak{p}}/\mathfrak{g}_{\mathfrak{p}})$ .

PROPOSITION 3.1. Let $A_{\mathfrak{p}}$ be a quaternion algebra over $F_{\mathfrak{p}}$ and Op a maximal
order in $A_{\mathfrak{p}}$ . For every two-sided $0\mathfrak{p}$ -ideal $\mathfrak{a}_{\mathfrak{p}}$ , we have $Tr(\mathfrak{a}_{\mathfrak{p}})=a_{\mathfrak{p}}\cap F_{\mathfrak{p}}$ .

PROOF. This is clear if $A_{\mathfrak{p}}=M_{2}(F_{\mathfrak{p}})$ . Therefore suppose that $A_{\mathfrak{p}}=D_{\mathfrak{p}}$ .
Then every $0\mathfrak{p}$ -ideal $a_{\mathfrak{p}}$ is written in the form $\mathfrak{a}_{\mathfrak{p}}=\mathfrak{P}^{e}\cdot(a_{\mathfrak{p}}\cap F_{\mathfrak{p}})$ with $e=0$ or
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$-1$ . We have $Tr(\mathfrak{a}_{\mathfrak{p}})=Tr(\mathfrak{P}^{e})\cdot(\mathfrak{a}_{\mathfrak{p}}\cap F_{\mathfrak{p}})$ and $Tr(0_{\mathfrak{p}})\subset Tr(\mathfrak{P}^{e})\subset Tr(\mathfrak{P}^{-1})\subset \mathfrak{g}_{\mathfrak{p}}$ .
Therefore, it is sufficient to prove $Tr(0_{\mathfrak{p}})=g_{\mathfrak{p}}$ . As $Tr(0_{\mathfrak{p}})$ is an integral $\mathfrak{g}_{\mathfrak{p}}$ -ideal,
there exists an integer $\nu\geqq 0$ such that $Tr(0_{\mathfrak{p}})=\mathfrak{p}^{\nu}\mathfrak{g}\mathfrak{p}$ . We get then $Tr(\mathfrak{p}^{-\nu}0_{\mathfrak{p}})\subset \mathfrak{g}_{\mathfrak{p},}$

so that $\mathfrak{p}^{-\nu}0_{\mathfrak{p}}\subset \mathfrak{D}(\mathfrak{o}_{\mathfrak{p}}/\mathfrak{g}_{\mathfrak{p}})^{-1}=\mathfrak{P}^{-1}$ , which implies $\nu=0$ , since $\mathfrak{P}^{2}=\mathfrak{p}0_{\mathfrak{p}}$ . This com-
pletes our proof.

PROPOSITION 3.2. $A_{\mathfrak{p}}$ and Op being as in Proposition 3.1, let $\beta$ be a non-zero
element of $\mathfrak{g}_{\mathfrak{p}}$ and $a$ an element of $0\mathfrak{p}$ such that $\beta^{-1}N(a)\equiv 1mod \mathfrak{p}^{\lambda}$ where $\lambda$ is a
positive integer. Then there exists an element $b$ of $0\mathfrak{p}$ such that $ N(b)=\beta$,
$b\equiv amod \mathfrak{p}^{\lambda}0_{\mathfrak{p}}$ .

PROOF. We first consider the case $A_{\mathfrak{p}}=M_{2}(F_{\mathfrak{p}})$ . We may then put Op

$=M_{2}(\mathfrak{g}_{\mathfrak{p}})$ . Let $\pi$ be a prime element of $F$. We can find elements $x,$ $y$ of Op such

that $N(x)=N(y)=1,$ $xay=\left(\begin{array}{ll}\pi^{\gamma z}\epsilon & 0\\0 & \pi^{\nu}\eta\end{array}\right)$ where $ 0\leqq\mu\leqq\nu$ , and $\epsilon,$ $\eta$ are units of $\mathfrak{g}_{\mathfrak{p}-}$

As $\beta^{-1}N(a)\equiv 1mod \mathfrak{p}\lambda$ we have $\beta=\pi^{1^{t}+\nu}\delta$ with a unit $\delta$ of $\mathfrak{g}_{\mathfrak{p}}$ , and $\delta\equiv\epsilon\eta mod \mathfrak{p}^{\lambda_{-}}$

Put $b=x^{-1}\left(\begin{array}{ll}\pi^{/z_{\xi}} & 0\\0 & \pi^{\nu}\epsilon^{-1}\delta\end{array}\right)y^{-1}$ . As $\epsilon^{-1}\delta\equiv\eta mod \mathfrak{p}^{\lambda}$ , and as $x^{-1},$ $y^{-1}\in 0\mathfrak{p}$ , we have
$b\equiv amod \mathfrak{p}^{\lambda}$ , and clearly $ N(b)=\pi^{\mu+\nu}\delta=\beta$ . This proves our assertion for $A_{\mathfrak{p}}$

$=M_{2}(F_{\mathfrak{p}})$ . Now put $A_{P}=D_{P}$ . Let $\Pi$ be a prime element in Op; put $ N(\Pi)=\pi$ ;
then $\pi$ is a prime element in $\mathfrak{g}_{\mathfrak{p}}$ . Put $a=\Pi^{\nu}e$ with a unit $e$ of $0\mathfrak{p}$ As $\beta^{-1}N(a)|$

$\equiv 1mod \mathfrak{p}^{\lambda}$ , we have $\beta=\pi^{\nu}\epsilon$ with a unit $\epsilon$ of $g_{p}$ , and $ N(e)\equiv\epsilon mod \mathfrak{p}\lambda$ . Now we
construct inductively a sequence $\{e_{0}, e_{1}, \cdots , e_{n}, \cdots\}$ of units of $0\mathfrak{p}$ such that $e_{0^{}}$

$=e,$ $N(e_{n})\equiv\epsilon mod \mathfrak{p}^{\lambda+n},$ $e_{n+1}\equiv e_{n}mod \mathfrak{p}^{\lambda+n}0_{\mathfrak{p}}$ . Assume that $e_{n}$ is already defined.
Put $\epsilon-N(e_{n})=\pi^{\lambda+n}\cdot\gamma$ with $\gamma\in \mathfrak{g}_{0}$ . By Proposition 3.1, we have $Tr(e_{n}^{\prime}o_{0})=Tr(\mathfrak{o}_{\mathfrak{p}})$

$=\mathfrak{g}_{\mathfrak{p}}$ , so that there exists an element $d$ of Op such that $Tr(e_{n}^{\prime}d)=\gamma$ . Put
$e_{n+1}=e_{n}+\pi^{\lambda+n}d$. Then we have $N(e_{n+1})=N(e_{n})+\pi^{\lambda+n}Tr(e_{n}^{\prime}d)+\pi^{2(\lambda+n)}N(d)\equiv\xi^{-}$

$mod \mathfrak{p}^{\lambda+n+1}$ . We get thus a sequence $\{e_{n}\}$ with the required property. As
$e_{n+1}\equiv e_{n}mod \mathfrak{p}^{\lambda+n}0\mathfrak{p}$ , this converges to a unit $h$ of Op, for which we have $N(h))$

$=e,$ $h\equiv emod \mathfrak{p}^{\lambda}0_{\mathfrak{p}}$ . Put $b=\Pi^{\nu}h$ . Then we have $N(b)=\beta,$ $b\equiv amod \mathfrak{p}\lambda 0_{\mathfrak{p}}$ . This
completes our proof.

PROPOSITION 3.3. $A_{\mathfrak{p}}$ and Op being as in Proposition 3.1, let $\xi$ be an element
of $\mathfrak{g}_{\mathfrak{p}}$ . Then there exists an element $x$ of Op such that $ N(x)=\xi$ . In particular,
$A_{\mathfrak{p}}$ satisfies the condition (D) of Proposition 2.1.

PROOF. If $A_{\mathfrak{p}}=M_{2}(F_{\mathfrak{p}})$ , we may put Op $=M_{2}(\mathfrak{g}_{\mathfrak{p}})$ , so that our assertion is
obvious. If $A_{\mathfrak{p}}=D_{\mathfrak{p}}$ , it is well-known that any quadratic extension of $F_{\mathfrak{p}}$ is
isomorphic to a subfield of $D_{\phi}$ , over $F_{\mathfrak{p}}$ . Hence, for every $\xi\in F_{\mathfrak{p}}$ , there exists
an element $x$ of $D_{\mathfrak{p}}$ such that $ N(x)=\xi$ . If $\xi\in \mathfrak{g}_{\mathfrak{p}}$ , we have $x\in 0\mathfrak{p}$ automatically.
This completes our proof.

3.2. Canonical bases of maximal lattices. Let $A_{\mathfrak{p}}$ be a quaternion algebra
over $F_{\mathfrak{p}}$ , and $V_{\mathfrak{p}}$ be an $A_{\mathfrak{p}}$ -space of dimension $n$ . Take a non-degenerate Q-

hermitian form $f$ on $V_{\mathfrak{p}}$ . By Proposition 3.3 and Proposition 2.1, we see that.
for every regular element $H=(h_{ij})$ of $M.(A_{P})$ such that $H^{\prime}=H$, there exists
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a base $\{x_{1}, x_{n}\}$ of $V_{\mathfrak{p}}$ over $A_{\mathfrak{p}}$ for which $f(x_{i}, x_{j})=h_{ij}$ . In particular we get
PROPOSITION 3.4. $V_{\mathfrak{p}}$ has a base $\{x_{1}, \cdots , x_{m},y_{1}, \cdots , y_{m}, z\}$ over $A_{\mathfrak{p}}$ such that

$f(x_{i}, x_{j})=f(y_{i},y_{j})=f(x_{i}, z)=f(y_{i}, z)=0$ ,

$f(x_{i}, y_{j})=a\delta_{ij}$ , $ f(z, z)=\beta$ $(1 \leqq i\leqq m, 1\leqq j\leqq m)$ ,

where $a$ is a regular element of $A_{\mathfrak{p}},$ $\beta$ is a non-zero element of $F_{\mathfrak{p}}$ , the last mem-
$berz$ (and hence $\beta$) occurring only in the case where $n$ is odd.

We call a base $\{x_{1}, \cdot.. x_{m}, y_{1}, y_{m}, z\}$ of $V_{\mathfrak{p}}$ over $A_{\mathfrak{p}}$ with the property of
the above proposition a canonical base of $V_{\mathfrak{p}}$ . Proposition 3.4 implies that, if
$n>1,$ $V_{\mathfrak{p}}$ contains an element $x$ such that $f(x, x)=0,$ $A_{\mathfrak{p}}x\cong A_{\mathfrak{p}}$ .

Now we want to study the arithmetic of maximal lattices in $V_{\mathfrak{p}}$ . If $A_{\mathfrak{p}}$

$=M_{2}(F_{\mathfrak{p}})$ , we can apply the theory of \S 2.5 and \S 1 to the present case, since $\mathfrak{g}_{\mathfrak{p}}$

is a principal ideal domain; and this is sufficient for our later use. Therefore,
we have only to consider the case $A_{\mathfrak{p}}=D_{\mathfrak{p}}$ . From now on, until the end of
this \S 3.2, $V_{\mathfrak{p}}$ is a $D_{\mathfrak{p}}$ -space of dimension $n$ , and Op denotes the unique maximal
order in $D_{\mathfrak{p}}$ .

PROPOSITION 3.5. Let $L$ be a maximal lattice in $V_{\mathfrak{p}}$ . Let $a$ be an element
of $D_{\mathfrak{p}}$ such that $N(L)=0_{\mathfrak{p}}a$ , and $\beta$ be an element of $F_{\mathfrak{p}}$ such that $ N(L)\cap F_{\mathfrak{p}}=\mathfrak{g}_{\mathfrak{p}}\beta$ .
Then there exists a canonical base $\{x_{1}, \cdots , x_{m}, y_{1}, \cdots , y_{m}, z\}$ of $V_{\mathfrak{p}}$ such that

(3) $L=0_{\mathfrak{p}}x_{1}+0_{0}y_{1}+\cdots+\mathfrak{o}_{\mathfrak{p}}x_{m}+\mathfrak{o}_{\mathfrak{p}}y_{m}+0\mathfrak{p}z$ ,

\langle 4) $f(x_{i},y_{j})=a\delta_{ij}$ , $ f(z, z)=\beta$ ,

where the term $o_{\mathfrak{p}}z$ and $\beta$ occur only when $n$ is odd. Conversely, let $a$ be a ptegular

element of $D_{\mathfrak{p}}$ and $\beta$ an element of $F_{\mathfrak{p}}$ such that $(o_{\mathfrak{p}}a)\cap F_{\mathfrak{p}}=\mathfrak{g}_{\mathfrak{p}}\beta$ . Let $\{x_{i}, y_{i}, z\}$

be a canonical base of $V_{\mathfrak{p}}$ satisfying (4). Then the lattice $L$ defined by (3) is
normal, maximal and $N(L)=0_{\mathfrak{p}}a$ or Op $\beta$ according as $n>1$ or $n=1$ .

PROPOSITION 3.6. Let $L$ be a $\mathfrak{g}_{\mathfrak{p}}$ -lattice in $V_{\mathfrak{p}}$ . Let $\mathfrak{b}$ be an $0\mathfrak{p}$ -ideal such lhat
$N(L)\subset \mathfrak{b}$ . Then there exists a maximal lattice $M$ such that $M\supset L,$ $N(M)=\mathfrak{b}$ or
$N(M)=0_{\mathfrak{p}}\cdot(\mathfrak{b}\cap F_{\mathfrak{p}})$ according as $n>1$ or $n=1$ .

We first show that, if Proposition 3.5 is true for $n$ , then Proposition 3.6
is true for $n$ . Let the notation be as in Proposition 3.6. By Proposition 2.8,
we may assume thatL is maximal. $PutN(L)=0_{\mathfrak{p}}a,$ $N(L)\cap F_{\mathfrak{p}}=\mathfrak{g}_{\mathfrak{p}}\beta witha\in D_{\mathfrak{p}}$ ,
$\beta\in F_{\mathfrak{p}}$ . If $n=1$ , we put $ a=\beta$ . By Proposition 3.5, there exists a canonical
base $\{x_{i}, y_{i}, z\}$ of $V_{\mathfrak{p}}$ satisfying (3) and (4). Put $\ddagger$) $=0_{\mathfrak{p}}b,$ $\mathfrak{b}\cap F_{\mathfrak{p}}=\mathfrak{g}_{\mathfrak{p}}\gamma,$ $a=cb$ ,
$\beta=e\gamma$ . Then $c\in 0\mathfrak{p},$ $\epsilon\in g_{\mathfrak{p}}$ . By Proposition 3.3, we can find an element $e$ of

Op such that $ N(e)=\epsilon$ . Put $M=\sum_{i=1}^{m}0_{\mathfrak{p}}c^{-1}x_{i}+\sum_{i1}^{7n}0_{\mathfrak{p}}y_{i}+0_{\mathfrak{p}}e^{-1}z$ . As $f(c^{-1}x_{i},y_{j})=b\delta_{ij}$

and $ f(e^{-1}z, e^{-1}z)=\gamma$ , we see, from Proposition 3.5, that $M$ is a maximal lattice
and $N(M)=\mathfrak{b}$ or $0\mathfrak{p}\cdot(b\cap F_{\mathfrak{p}})$ according as $n>1$ or $n=1$ . By our construction
of $M$, we have $M\supset L$ . This proves Proposition 3.6.

Now we want to prove the converse part of Proposition 3.5. Define $L$ as
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in Proposition 3.5. It is clear that $L$ has $0_{\mathfrak{p}}$ as its order and $N(L)=0_{\mathfrak{p}}a$ or $ 0\mathfrak{p}\beta$

according as $n>1$ or $n=1$ . Let $M$ be a lattice with order Op such that $M\supset L$ ,

$N(M)=N(L)$ . Let $u=\sum_{i-1}^{m}(c_{i}x_{i}+d_{i}y_{i})+ez$ , with $c_{i},$
$d_{i},$ $e\in D_{\mathfrak{p}}$ , be an element of $M$,

the term $ez$ occurring only when $n$ is odd. As the $x_{i}$ and $y_{i}$ are contained in
$M$, we have

$d_{i}a^{\prime}=f(u, x_{i})\in N(M)=\mathfrak{o}_{\mathfrak{p}}a$ , $ac_{i}=f(u, y_{i})\in N(M)=0_{0}a$ .

This implies $d_{i}\in 0\mathfrak{p},$ $c_{i}\in 0\mathfrak{p}$ . It follows that $ez=u-\sum_{i=1}^{m}(c_{i}x_{i}+d_{i}y_{i})\in M$ Hence

we have $ N(e)\beta=f(ez, ez)\in N(M)\cap F_{\mathfrak{p}}=\mathfrak{g}_{\mathfrak{p}}\beta$ , so that $N(e)\in \mathfrak{g}_{\mathfrak{p}}$ , and hence $e\in \mathfrak{o}_{\mathfrak{p}}$ .
Therefore $u$ must be contained in $L$ ; so we have $M=L$ ; this proves the
maximality of $L$ .

Let us prove the direct part of Proposition 3.5 by induction on $n$ . If $n=1$ ,

take a base $x$ of $V_{\mathfrak{p}}$ over $D_{\mathfrak{p}}$ . Then $L$ is written in the form $L=\mathfrak{a}x$ with an
$\omega_{\mathfrak{p}}$ -ideal $\mathfrak{a}$ . We have $N(L)=0_{\mathfrak{p}}N(\mathfrak{a})f(x, x)$ , so that $ N(\mathfrak{a})f(x, x)=\mathfrak{g}_{\mathfrak{p}}\beta$ . By Proposi-
tion 3.3, there exists an element $b$ of $D_{\mathfrak{p}}$ such that $N(b)=\beta f(x, x)^{-1}$ . Put $z=bx$.
Then $f(z, z)=\beta,$ $N(b)\mathfrak{g}_{\mathfrak{p}}=N(\mathfrak{a})$ and hence $0_{\mathfrak{p}}b=\mathfrak{a}$ . We have therefore $L=0_{\mathfrak{p}}z$ .
This proves the case $n=1$ . Now suppose that $n>1$ . By the remark after
Proposition 3.4, $V_{\mathfrak{p}}$ contains an element $x\neq 0$ such that $f(x, x)=0$ . Put
$c=\{c\in D_{\mathfrak{p}}|cx\in L\}$ . Obviously, $c$ is an $0\mathfrak{p}$ -ideal, so it is written in the form
$c=0_{p}c_{0}$ . Put $c_{0}x=x_{1}$ . Then we see that

(5) $0_{\mathfrak{p}}=\{c\in D_{\mathfrak{p}}|cx_{1}\in L\}$

and $f(x_{1}, x_{1})=0$ . Put $\mathfrak{b}=f(x_{1}, L)$ . It is clear that 6 is an $0_{\mathfrak{p}}$ -ideal. If $b\in N(L)\mathfrak{b}^{-1}$

and $u\in L$ , we have $f(bx_{1}, u)=bf(x_{1}, u)\in \mathfrak{b}N(L)\mathfrak{b}^{-1}=N(L)$ . Therefore, if $b,$ $c$

$\in N(L)b^{-1}$ and $u,$ $v\in L$ , we have

$’(6)$ $f(bx_{1}+u, cx_{1}+v)=f(bx_{1}, v)+f(u, cx_{1})+f(u, v)\in N(L)$ .
Put $M=N(L)b^{-1}x_{1}+L$ . The relation (6) shows that $N(M)=N(L)$ . As $L$ is
maximal, we must have $L=M$, so that $N(L)\mathfrak{b}^{-1}x_{1}\subset L$ . By (5), we have
$N(L)\mathfrak{b}^{-1}\subset \mathfrak{o}_{\mathfrak{p}}$ , so that $N(L)\subset \mathfrak{b}$ . As $\mathfrak{b}=f(x_{1}, L)\subset N(L)$, we must have $\mathfrak{b}=N(L)$

$=0_{\mathfrak{p}}a$ . Hence there exists an element $y$ of $L$ such that $f(x_{1}, y)=a$ . By Prop-
osition 3.1, we have $Tr(o_{0}a)=N(L)\cap F_{0}\ni-f(y, y)$ . Therefore we can find an
element $t$ of Op such that Tr(ta) $=-f(y, y)$ . Put $y_{1}=tx_{1}+y$ . Then $y_{1}\in L$ ,

and we have $f(x_{1}, y)=a,$ $f(y_{1}, y_{1})=0$ . Put

$U=\{u\in V_{\mathfrak{p}}|f(x_{1}, u)=f(y_{1}, u)=0\}$ ,

$K=U_{\cap}L$ .

For every $w\in V$, if we put $a^{-1}f(x_{1}, w)=d$ and $f(w, y_{1})a^{-1}=c$ , we see easily
$w-cx_{1}-d^{\prime}y_{1}\in U$. This implies $V_{\mathfrak{p}}=D_{\mathfrak{p}}x_{1}+D_{\mathfrak{p}}y_{1}+U$. If $w\in L$ , then $f(x_{1}, w)$

and $f(w, y_{1})$ are contained in $N(L)=0_{p}a$ , so that $c$ and $d$ are contained in Op.
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We have therefore, $L=0_{\mathfrak{p}}x_{1}+0_{\mathfrak{p}}y_{1}+K$ Obviously, $K$ is a lattice in $U$ with the
order Op, and $N(K)\subset N(L)$ . As $L$ is maximal, $K$ must be maximal ; so we
can apply our induction to $K$ By the assumption of induction, Proposition
3.6 is true for $n-2$ . Therefore, if $n>3$ , we must have $N(K)=N(L)=0_{\mathfrak{p}}a$ ,

while if $n=3,$ $ N(K)=\mathfrak{v}_{\mathfrak{p}}\beta$ . This completes our proof.
We call the base $\{x_{i}, y_{i}, z\}$ in the above proposition a canonical base of $L$ .
PROPOSITION 3.7. Let $L$ and $M$ be maximal lattices in $V_{\mathfrak{p}}$ . If $L\sigma=M$ for

an element $\sigma$ of $G(V_{P},f)$ , then $N(L)^{-1}N(M)$ is an even power of the maximal
ideal of $0_{\mathfrak{p}}$ , namely $ N(L)^{-1}N(M)=0\mathfrak{p}\alpha$ for an element $\alpha$ of $F_{\mathfrak{p}}$ . Conversely, if
$\alpha N(L)=N(M)$ with $a\in F$, there exists an element $\sigma$ of $G(V_{P},f)$ such that $ L\sigma$

$=M,$ $ N(\sigma)=\alpha$ .
PROOF. If $L\sigma=M$ for some $\sigma\in G(V\mathfrak{p},f)$ , we have $N(L)N(\sigma)=N(M)$ , so

that $N(L)^{-1}N(M)=N(\sigma)0\mathfrak{p}$ . This proves the first assertion. Conversely, sup-
pose that $\alpha N(L)=N(M)$ with $\alpha\in F_{\mathfrak{p}}$ . Put $N(L)=0_{\mathfrak{p}}a,$ $ N(L)\cap F_{\mathfrak{p}}=\mathfrak{g}_{1)}\beta$ with
$a\in D_{\mathfrak{p}},$ $\beta\in F_{\mathfrak{p}}$ . Then we have $N(M)=0\mathfrak{p}\alpha a,$ $ N(M)_{\cap}F_{\mathfrak{p}}=\mathfrak{g}_{\mathfrak{p}}\alpha\beta$ . By Proposi-
tion 3.5, there exists a canonical base $\{x_{i}, y_{i}, z\}$ of $L$ such that $f(x_{i}, y_{j})=a\delta_{ij}$,
$ f(z, z)=\beta$ , and a canonical base $\{u_{i}, v_{i}, w\}$ of $M$ such that $f(u_{i}, v_{j})=\alpha a\delta_{ij}$ ,
$ f(w, w)=\alpha\beta$ . Define an element $\sigma$ of $E(V_{\mathfrak{p}}, D_{\mathfrak{p}})$ by $x_{i}\sigma=u_{i},$ $y_{i}\sigma=v_{i},$ $z\sigma=w$ .
Then we see easily that $\sigma\in G(V_{\mathfrak{p}},f),$ $L\sigma=M$ and $ N(\sigma)=\alpha$ . This completes
our proof.

PROPOSITION 3.8. Let $L$ be a maximal lattice in $V_{\mathfrak{p}}$ . If $n>1$ , there exists
a base $\{u_{1}, \cdots , u_{n}\}$ of $V\mathfrak{p}$ over $D_{\mathfrak{p}}$ such that $L=\mathfrak{o}_{1)}u_{1}+\cdots+0_{\mathfrak{p}}u_{n},$ $f(u_{i}, u_{i})=0$ for
$1\leqq i\leqq n$ .

PROOF. Take a canonical base $\{x_{i},y_{i}, z\}$ of $L$ . If $n$ is even, our asser-
tion is a consequence of the relation $f(x_{i}, x_{i})=f(y_{i},y_{i})=0$ . Suppose that $n$ is
odd. The elements $a$ and $\beta$ being as in Proposition 3.5, we get, by Proposi-
tion 3.1, $\beta\in F_{\mathfrak{p}}\cap 0_{\mathfrak{p}}a=Tr(o_{p}a)$ . Hence there exists an element $b$ of Op such
that $Tr(ba)=\beta$ . Put $w=z+bx_{1}-y_{1}$ . Then we have $f(w, w)=0$ and $L=0_{\mathfrak{p}}x_{\iota}$

$+\mathfrak{o}_{\mathfrak{p}}y_{1}+$ – $+\mathfrak{o}_{\mathfrak{p}}x_{m}+0_{\mathfrak{p}}y_{m}+0_{\mathfrak{p}}w$ . This proves our proposition.
PROPOSITION 3.9. Let $L$ and $Mbe$ maximal lattices in $V\mathfrak{p}$ . Put $N(L)=ho_{\mathfrak{p}}$ ,

$N(L)\cap F_{\mathfrak{p}}=\eta \mathfrak{g}_{\mathfrak{p}}$ with $h\in D_{\mathfrak{p}},$ $\eta\in F_{\mathfrak{p}}$ , and suppose that $N(M)=\alpha N(L)$ for an ele-
ment $\alpha$ of $F_{\mathfrak{p}}$ . Then there exist a canonical base $\{x_{i},y_{i}, z\}$ of $V\mathfrak{p}$ and elernents
$a_{i},$ $b_{i},$ $c$ of $D_{\mathfrak{p}}$ such that

$L=0\mathfrak{p}X_{1}+0\mathfrak{p}y_{1}+\cdots+0_{\mathfrak{p}}x_{m}+\mathfrak{o}_{\mathfrak{p}}y_{m}+0_{\mathfrak{p}Z}$ ,

$M=0_{\mathfrak{p}}a_{1}x_{1}+0_{\mathfrak{p}}b_{1}y_{1}+$ $+\mathfrak{o}_{\mathfrak{p}}a_{m}x_{m}+0_{\mathfrak{p}}b_{m}y_{m}+0_{\mathfrak{p}}cz$ ,

$f(x_{i\prime}y_{j})=h\delta_{ij}$ , $ f(z, z)=\eta$ ,

$a_{1}hb_{1}^{\prime}=\cdots=a_{m}hb_{m}^{\prime}=\alpha h$ , $ cc^{\prime}=\alpha$ ,

$0_{\mathfrak{p}}a_{1}\supset$ $\supset 0_{\mathfrak{p}}a_{m}\supset 0_{\mathfrak{p}}c\supset 0\iota b_{m}\supset$ $\supset 0_{\mathfrak{p}}b_{1}$ ,

where $z$ and $c$ occur only when $n$ is odd.
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PROOF. We proceed by induction on $n$ . If $n=1$ , this is obvious. Sup-
pose that $n>1$ . Put $\mathfrak{e}=\{e\in D_{\mathfrak{p}}|eM\subset L\}$ . As $\mathfrak{e}$ is an $o_{P^{-}}idea1$ , we have $e=0_{P}e_{0}$

for an element $e_{0}\in 0\mathfrak{p}$ . Put $e_{0}M=M_{1}$ ; then $N(M_{1})=N(e_{0})N(L)$ . If we prove
our proposition for $M_{1}$ , we get easily the assertion for $M$ In fact, suppose that
we get a canonical base $\{x_{i}, y_{i}, z\}$ of $V\mathfrak{p}$ and elements $r_{i},$ $s_{i},$

$t$ of $D_{\mathfrak{p}}$ such that

$L=\sum_{i=1}^{m}(0_{0}x_{i}+0\mathfrak{p}y_{i})+0\mathfrak{p}Z$ , $M_{1}=\sum_{i=1}^{m}(o_{\mathfrak{p}}r_{i}x_{i}+0_{\mathfrak{p}}s_{i}y_{i})+0_{\mathfrak{p}}tz,$ $f(x_{i},y_{i})=h,$ $f(z, z)=\eta,$ $r_{i}hs_{i}^{\prime}$.

$=N(e_{0})ah,$ $tt^{\prime}=N(e_{0})\alpha,$ $ 0_{\mathfrak{p}}r_{1}\supset\cdots\supset 0\mathfrak{p}^{\gamma_{m}}\supset 0_{\mathfrak{p}}t\supset 0_{\mathfrak{p}}s_{m}\supset$ $\supset 0_{\mathfrak{p}}s_{1}$ . Put $a_{i}=e_{0}^{-1}r_{i},$ $b_{i}$

$=h^{-1}e_{0}^{-1}hs_{i},$ $c=e_{0}^{-1}t$ . Then we can easily verify that $\{x_{i},y_{i}, z\}$ and $\{a_{i}, b_{i}, c\}$ have
the properties of our proposition for $M$ and $L$ . Therefore we may assume
that $M=M_{1}$ , namely Op $=\{e\in D_{\mathfrak{p}}|eM\subset L\}$ . Let $\Pi$ be a prime element of Op.

By Proposition 3.8, $M$ contains an element $x_{1}$ such that $f(x_{1}, x_{1})=0,$ $\Pi^{-1}\chi_{1}\not\in L$ .
Namely, the relation (5) holds for this $\{x_{1}, L\}$ . Hence, applying the proof of
Proposition 3.5 to the present case, we get an element $y_{1}$ of $L$ such that
$f(x_{1},y_{1})=h,$ $f(y_{1}, y_{1})=0$ . By Proposition 2.7, we have $\alpha L\subset M$, so that $\alpha y_{1}\in M$.
Put $U=\{u\in V_{0}|f(x_{1}, u)=f(y_{1}, u)=0\},$ $L_{0}=U_{\cap}L,$ $M_{0}=U_{\cap}M$. Then, as in
the proof of Proposition 3.5, we obtain

$V\mathfrak{p}=D_{\mathfrak{p}}x_{1}+D_{\mathfrak{p}}y_{1}+U$ , $L=0_{\mathfrak{p}}x_{1}+0_{\mathfrak{p}}y_{1}+L_{0}$ ;

and $L_{0}$ is a maximal lattice in $U$ such that $N(L_{0})=h\mathfrak{o}_{\mathfrak{p}}$ or $\eta 0_{\mathfrak{p}}$ according as
$n>1$ or $n=1$ . Let $w=dx_{1}+ey_{1}+w_{0}$ , with $d\in 0\mathfrak{p},$ $e\in 0_{\mathfrak{p}},$ $w_{0}\in L_{0}$ , be an element
of $M$ Then we have $e=f(w, x_{1})\in N(M)=0_{\mathfrak{p}}\alpha h$ , so that $e\in 0_{0}\alpha,$ $ey_{1}\in 0_{\mathfrak{p}}\alpha y_{1}\subset M$,

and hence $w_{0}=w-dx_{1}-ey_{1}\in M\cap U=M_{0}$ . This implies $M=0_{\mathfrak{p}}x_{1}+0_{\mathfrak{p}}\alpha y_{1}+M_{0}$ .
We observe that $M_{0}$ is a maximal lattice in $U$ such that $N(M_{0})=\alpha N(L_{0})$.
Therefore we can apply our induction to $L_{0}$ and $M_{0}$ . Then we obtain a ca-
nonical base $\{x_{2}, \cdot.. x_{m}, y_{2}, \cdot.. y_{m}, z\}$ of $U$ and elements $a_{2}$ , $\cdot$ .. $a_{m},$ $b_{2}$ , $b_{m},$ $c$ of
$D_{\mathfrak{p}}$ such that $L_{0}=\sum_{i=2}^{m}(0\mathfrak{p}X_{i}+0_{\mathfrak{p}}y_{i})+0_{\mathfrak{p}}z,$ $M_{0}=\sum_{i=2}^{m}(o_{\mathfrak{p}}a_{i}x_{i}+0_{\mathfrak{p}}b_{\theta)+0\mathfrak{p}CZ}i,$ $f(x_{i},y_{i})=h$ for
$2\leqq i\leqq m,$ $f(z, z)=\eta,$ $a_{2}hb_{2}^{\prime}=$ $=a_{m}hb_{m}^{\prime}=\alpha h,$ $cc^{\prime}=\alpha,$ $0_{\mathfrak{p}}a_{2}\supset\cdots\supset 0\mathfrak{p}a_{m}\supset 0\mathfrak{p}C\supset 0_{\mathfrak{p}}b_{m}$

$\supset\ldots\supset 0\mathfrak{p}b_{2}$ . As $L_{0}\supset M_{0}$ , we have $0\mathfrak{p}\ni a_{2}$ , so that $0_{\mathfrak{p}}b_{2}\supset 0_{\mathfrak{p}}\alpha$ . Putting $a_{1}=1$

and $b_{1}=a$ , we obtain our assertion for $L$ and $M$ This completes the proof.
PROPOSITION 3.10. Let $L$ be a maximal lattice in $V_{P}$ . Put $N(L)=h\mathfrak{o}_{\mathfrak{p}}$ ,

$N(L)\cap F_{\mathfrak{p}}=\eta \mathfrak{g}_{\mathfrak{p}}$ with $h\in D_{\mathfrak{p}},$ $\eta\in F_{0}$ . Let $\{u_{i}, v_{i}, w\}$ be a canonical base of $L$ such
that $f(u_{i}, v_{j})=h\delta_{ij},$ $ f(w, w)=\eta$ . Denote by $\Gamma^{0}$ the subgroup of $G^{0}(V_{\mathfrak{p}},f)$ consist-
ing of the elements $\gamma\in G^{0}(V\mathfrak{p},f)$ such that $L\gamma=L$, and by $\Delta$ the set of elements
$\sigma$ of $G(V_{\mathfrak{p}},f)$ such that $u_{i}\sigma=a_{i}u_{i},$ $v_{i}\sigma=b_{i}v_{i},$ $w\sigma=cw$ with elements $a_{i},$

$b_{i},$ $c$ of
$D_{\mathfrak{p}}$ satisfying the relation

$ 0_{\mathfrak{p}}a_{1}\supset\cdots\supset 0\mathfrak{p}a_{m}\supset 0_{\mathfrak{p}}c\supset 0_{\mathfrak{p}}b_{m}\supset$ $\supset 0_{\mathfrak{p}}b_{1}$ .
Then we have $G(V_{\mathfrak{p}},f)=\Gamma^{0}\cdot\Delta\cdot\Gamma^{0}$ .

PROOF. Let $\tau$ be an element of $G(V_{P},f)$ . Put $M=L\tau,$ $\alpha=N(\tau)$ , and apply
Proposition 3.9 to this $\{L, M, \alpha\}$ . Then we get a canonical base $\{x_{i},y_{i}, z\}$ of
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$L$ and elements $a_{i},$
$b_{i},$ $c$ of $D_{\mathfrak{p}}$ with the properties of that proposition. Define

two elements $\gamma$ and $\sigma$ of $E(V_{\mathfrak{p}}, A_{\mathfrak{p}})$ by $u_{i}\gamma=x_{i},$ $v_{i}\gamma=y_{i},$ $w\gamma=z,$ $u_{i}\sigma=a_{i}u_{i},$ $ v_{i}\sigma$

$=b_{i}v_{i},$ $w\sigma=cw$ . We see easily that $\gamma\in\Gamma^{0}$ and $\sigma\in\Delta,$ $ N(\sigma)=\alpha$ . Further we
have $ L\sigma\gamma=L\tau$ . Hence if we put $\epsilon\sigma\gamma=\tau$ , we have $L\epsilon=L,$ $\epsilon\in G(V_{\mathfrak{p}},f),$ $N(\epsilon)$

$=1$ , so that $e\in\Gamma^{0}$ . It follows that $\tau=\epsilon\sigma\gamma\in\Gamma^{0}\cdot\Delta\cdot\Gamma^{0}$ . Our proposition is
thereby proved.

Notation being as in Proposition 3.9, we call $\{\mathfrak{o}_{\mathfrak{p}}a_{1}, \cdots , 0_{\mathfrak{p}}a_{m}, \mathfrak{o}_{\mathfrak{p}}c, \mathfrak{o}_{\mathfrak{p}}b_{1}, \cdots , o_{\mathfrak{p}}b_{m}\}$

the set of elementary divisors of $M$ relative to $L$ and denote it by
)

$\{L:M\}$ .
PROPOSITION 3.11. Let $L,$ $M,$ $K$ be maximal lattices in $V_{\mathfrak{p}}$ such that $N(M)$

$=\alpha N(L),$ $N(K)=\beta N(L)$ with $\alpha,$ $\beta\in F_{\mathfrak{p}}$ . Then, there exists an element $\sigma$ of
$G^{0}(V_{P},f)$ such that $L\sigma=L$ and $M\sigma=K$, if and only if $\{L:M\}=\{L:K\}$ .

By virtue of Proposition 3.9, this can be proved by the same argument
as in the proof of Proposition 2.13. When $L\supset M$ and $L\supset K$, the equality
$\{L:M\}=\{L:K\}$ holds if and only if $L/M$ and $L/K$ are isomorphic as $0_{\mathfrak{p}^{-}}$

modules.

3.3. Local approximation theorem. Let $A_{\mathfrak{p}}$ be a quaternion algebra over
$F_{\mathfrak{p}}$ , which may be or may not be a division algebra. Let Op be a maximal
order in $A_{\mathfrak{p}}$ .

PROPOSITION 3.12. Let $V_{\mathfrak{p}}$ be an $A_{\mathfrak{p}}$ -space of dimension $n$ and $f$ be a non-
degenerate Q-hermitian form on $V_{p}$ . Let $L$ be a maximal lattice in $V_{\mathfrak{p}}$ such
that $N(L)=0_{P}$ . Then there exists a base $\{x_{1}, \cdots , x_{n}\}$ of $V_{\mathfrak{p}}$ over $A_{p}$ such that
$f(x_{i}, x_{j})=\delta_{ij}$ and $L=0_{\mathfrak{p}}x_{1}+\cdots+0_{\mathfrak{p}}x_{n}$ .

PROOF. By Proposition 2.1 and Proposition 3.3, $V_{\mathfrak{p}}$ has a base $\{y_{1}, \cdots , y_{n}\}$

over $A_{\mathfrak{p}}$ such that $f(y_{i},y_{j})=\delta_{ij}$ . Put $M=0_{\mathfrak{p}}y_{1}+\cdots+0_{\mathfrak{p}}y_{n}$ . By Proposition 2.6,
$M$ is a maximal lattice in $V_{\mathfrak{p}}$ and $N(M)=0_{P}$ . By Proposition 2.11 (if $A_{\mathfrak{p}}=M_{2}(F_{\mathfrak{p}})$)

and by Proposition 3.7 (if $A_{\mathfrak{p}}=D_{\mathfrak{p}}$), there exists an element $\sigma$ of $G^{0}(V_{\mathfrak{p}},f)$ such
that $ L=M\sigma$ . Putting $ x_{i}=y_{i}\sigma$ for $1\leqq i\leqq n$ , we get the desired result.

PROPOSITION 3.13. Let $V_{\mathfrak{p}}$ and Up be $A_{\mathfrak{p}}$ -spaces of the same dimension; let
$f$ and $h$ be non-degenerate Q-hermitian forms on $V_{\mathfrak{p}}$ and on Up, respectively. Let
$L$ and $M$ be maximal lattices in $V_{\mathfrak{p}}$ and in Up, respectively, such that $N_{f}(L)$

$=N_{h}(M)=0_{0}$ . Let $\tau$ be an $A_{k}$-linear mapping of $V\mathfrak{p}$ into Up such that $L\tau\subset M$,
$f(x,y)\equiv h(x\tau, y\tau)mod \mathfrak{p}\lambda 0_{\mathfrak{p}}$ for every $x,$ $y\in L$ , where $\lambda$ is an integer $\geqq 0$ . Then
there exists an $A_{\mathfrak{p}}$ -isomorphism $\sigma$ of $V_{\mathfrak{p}}$ onto Up such that $L\sigma=M,$ $f(x,y)=h(x\sigma, y\sigma)$

for every $x,$ $y\in V_{\mathfrak{p}}$ and $L(\sigma-\tau)\subset \mathfrak{p}\lambda M$.
PROOF. Our proposition is clear if $\lambda=0$ ; so we assume $\lambda\geqq 1$ . Let $n$ be

the common dimension of $V_{P}$ and Up. We proceed by induction on $n$ . By
Proposition 3.12, there exists a base $\{u_{1}, , u_{n}\}$ of Up over $A_{\mathfrak{p}}$ such that $M$

$=0\mathfrak{p}u_{1}+\cdots+0_{\mathfrak{p}}u_{n},$ $h(u_{i}, u_{j})=\delta_{ij}$ ; and $L$ contains an element $v$ such that $f(v, v)=1$ .
Put $v\tau=\sum_{i\Rightarrow 1}^{n}a_{i}u_{i}$ with $a_{i}\in 0\mathfrak{p}$ . Then $1=f(v, v)\equiv h(v\tau, v\tau)=\sum_{i=1}^{n}N(a_{i})mod \mathfrak{p}^{\lambda}\mathfrak{o}_{\mathfrak{p}}$ .
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Therefore $N(a_{i})$ is a unit of $\mathfrak{g}_{\mathfrak{p}}$ for some $i$, say 1. Put $\beta=1-\sum_{i=2}^{n}N(a_{i})$ . Then
$N(a_{1})\equiv\beta mod \mathfrak{p}^{\gamma}0_{\mathfrak{p}}$ , and hence $\beta$ is a unit of $\mathfrak{g}_{\mathfrak{p}}$ . By Proposition 3.2, there
exists an element $b$ of $0_{p}$ such that $b\equiv a_{1}$ mod $p^{\lambda}o_{p}$ and $ N(b)=\beta$ . Put $w$

$=bu_{1}+\sum_{i--2}^{n}a_{i}u_{i}$ . Then $h(w, w)=1,$ $w\equiv v\tau mod 0^{\lambda}M$, and $w\in M$. Put

$V^{0}=\{x\in V_{\mathfrak{p}}|f(x, v)=0\}$ , $U^{0}=\{x\in U_{\mathfrak{p}}|h(x, w)=0\}$ ,

$L^{0}=L\cap V^{0}$ , $M^{0}=M\cap U^{0}$ .
As $f(v, v)=h(w, w)=1$ , we obtain

$V_{\mathfrak{p}}=A_{\mathfrak{p}}v+V^{0}$ , $Up=A_{\mathfrak{p}}w+V^{0}$ ,

$L=0_{P}v+L^{0}$ , $M=0_{\mathfrak{p}}w+M^{0}$ .

It can be easily seen that $L$ and $M$ are respectively maximal lattices in $V^{0}$

and $U^{0}$ ; and $N_{f}(L^{0})=N_{h}(M^{0})=0\mathfrak{p}$ . Now define an $A_{\mathfrak{p}}$ -linear mapping $\rho$ of $V^{0}$

into $U^{0}$ by $ x\tau=tw+x\rho$ for $x\in V^{0}$ , where $t\in A_{\mathfrak{p}}$ . We see easily $L^{0}\rho\subset M^{0}$ . If
$x\in L^{0}$ and $ x\tau=tw+x\rho$ , we have $0=f(v, x)\equiv h(v\tau, x\tau)\equiv h(w, tw+x\rho)=tmod \mathfrak{p}^{\lambda}0_{\mathfrak{p}}$ .
This shows $x\tau\equiv x\rho mod \mathfrak{p}\lambda M$ for $x\in L^{0}$ . If further $y\in L^{0}$ , we have $f(x,y)$

$\equiv h(x\tau, y\tau)\equiv h(x\rho,y\rho)mod \mathfrak{p}\lambda_{0\mathfrak{p}}$ . Therefore we can apply induction to $L^{0},$ $M^{0},$ $\rho$ .
Namely there exists an $A_{\mathfrak{p}}$ -isomorphism $\sigma^{0}$ of $V^{0}$ onto $U^{0}$ such that $L^{0}\sigma^{0}=M^{0}$ ,
$f(x, y)=h(x\sigma^{0},y\sigma^{0})$ for every $x,$ $y\in V^{0}$ , and $L^{0}(\sigma^{0}-\rho)\subset \mathfrak{p}^{\lambda}M^{0}$ . Now define an
$A_{0}$ -isomorphism $\sigma$ of $V\mathfrak{p}$ onto Up by $v\sigma=w$ and $x\sigma=x\sigma^{0}$ for every $x\in V^{0}$ .
Then we have clearly $L\sigma=M,$ $f(x, y)=h(x\sigma,y\sigma)$ for every $x,$ $y\in V_{\mathfrak{p}}$ . Further-
more, $v\sigma=w\equiv v\tau mod \mathfrak{p}^{\lambda}M$ ; and if $x\in L^{0},$ $x\sigma=x\sigma^{0}\equiv x\rho\equiv x\tau mod \mathfrak{p}^{\lambda}M$ There-
fore $L(\sigma-\tau)\subset \mathfrak{p}^{\lambda}M$. This completes our proof.

\S 4. Global theory of $Q$-hermitian forms.

In this section, we always mean by $F$ an algebraic number field of finite
degree, and by $\mathfrak{g}$ the ring of integers in $F$. For every prime ideal $\mathfrak{p}$ of $F,$ $F_{\mathfrak{p}}$

and $\mathfrak{g}_{\mathfrak{p}}$ denote respectively the $\mathfrak{p}$ -completions of $F$ and $\mathfrak{g}$ . We denote by $\mathfrak{p}$ ..
for $1\leqq\kappa\leqq v$ the infinite prime spots of $F$ and by F. the completion of $F$ with
respect to $\mathfrak{p}_{\infty\kappa}$ .

4.1. Quaternion algebras over an algebraic number field. Let $A$ be a
quaternion algebra over $F$. For each prime ideal $\mathfrak{p}$ of $F$, and for each infinite
prime spot $\mathfrak{p}_{\infty\kappa}$ of $F$, we put

$A_{\mathfrak{p}}=A\bigotimes_{F}F_{\mathfrak{p}}$ , $A.=A\bigotimes_{F}$ F. .

$A$ finite or infinite prime spot of $F$ is called ramified in $A/F$ if the corre-
sponding completion $A_{\mathfrak{p}}$ or A. is a division algebra. Let $0$ be a maximal order
in $A$ . Let $\mathfrak{D}=\mathfrak{D}(0/\mathfrak{g})$ be the different of $0$ with respect to $\mathfrak{g}$ . Then we have
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$\mathfrak{D}=\prod_{i\Leftarrow 1}^{s}\mathfrak{Q}_{i},$ $\mathfrak{Q}_{i}^{2}=q_{i}$ , where the $q_{i}$ are all the prime ideals of $F$ which are rami-

fied in $A/F$, and $\mathfrak{Q}_{i}$ is a prime o-ideal. Every two-sided o-ideal $t\ddagger$ is written
in the form $\mathfrak{a}=\Pi \mathfrak{Q}_{i}^{e_{i}}\cdot \mathfrak{a}_{0}$ , where $e_{i}=0$ or 1, and $\mathfrak{a}_{0}$ is a g-ideal.

PROPOSITION 4.1. Let $\mathfrak{p}_{\infty_{1}},$

$\cdots,$
$\mathfrak{p}_{\infty u}$ be the infinite prime spots of $F$ ramified

in $A/F$, and $\xi$ be a non-zero element of F. Then there exists an element $x$ of
$A$ such that $ N(x)=\xi$ , if and only if $\xi\equiv 1mod \mathfrak{p}_{\infty 1}\cdots \mathfrak{p}_{\infty u}$ .

PROOF. Consider $N(x)=xx^{\prime}$ as a quadratic form on $A$ over $F$. By Hasse’s
theorem, the equation $ xx^{\prime}=\xi$ has a solution if and only if it is solvable in
every local fields. Our proposition is therefore an immediate consequence of
Proposition 3.3.

We call A definite (or totally definite) if all the infinite prime spots of $F$

are ramified in $A/F$, and call $A$ indefinite otherwise. If $A$ is definite, then $F$

must be totally real and $A.=K$ for every infinite prime spot $\mathfrak{p}_{\infty\kappa}$ of $F$. Now
the following two fundamental lemmas are due to Eichler; they are origi-
nally given in a more general case (cf. [5, Satz 5]).

LEMMA 4.2. Suppose that $A$ is indefinite. Let $\mathfrak{v}$ be a maximal order in $A$

and let $\mathfrak{p}_{\infty_{1}}$ , $\cdot$ .. , $\mathfrak{p}_{\infty u}$ be the infinite prime spots ramified in $A/F$. Let $\mathfrak{b}$ and $c$ be
left o-ideals. Then there exists an element $x$ of $A$ such that $b=cx$, if and only

if $N(\mathfrak{b})$ and $N(c)$ belong to the same ideal-class modulo $\mathfrak{p}_{\infty_{1}}\cdots \mathfrak{p}_{\infty u}$ of $F$.
LEMMA 4.3. Notation and assumption being as in Lemma 4.2, let $a$ be an

integral two-sided o-ideal. Let $\beta$ be an element of $\mathfrak{g}$ and $b$ an element of $0$ such
that $\beta\equiv 1mod \mathfrak{p}_{\infty 1}\cdots \mathfrak{p}_{\infty u},$ $ N(b)\equiv\beta$ mod* $(\mathfrak{a}\cap F)$ . Then there exists an element
$b_{0}$ of $0$ such that $b\equiv b_{0}mod \mathfrak{a},$ $ N(b_{0})=\beta$ .

Here mod * means the multiplicative congruence. Lemma 4.2 is easily
derived from Lemma 4.3 (cf. [5, p. 239]). Our later discussion will prove this
fact as a particular case.

4.2. Hasse principle for Q-hermitian forms. In view of Proposition 3.3,
there exists, among the quaternion algebras over local fields $F_{\mathfrak{p}}$ and $F_{\kappa}$ , only
one which does not satisfy the condition (D) of Proposition 2,1; it is the di-
vision ring $K$ of real quaternions. Let $V$ be a K-space of dimension $n$ and
$f$ a non-degenerate Q-hermitian form on $V$. Then there exists a base $\{x_{1}, \cdots , x_{n}\}$

of $V$ over $K$ such that $f(x_{i}, x_{j})=e_{i}\delta_{ij}$ for $1\leqq i\leqq n,$ $1\leqq j\leqq n$ and $\epsilon_{i}=1$ for
$1\leqq i\leqq\nu,$ $e_{i}=-1$ for $\nu<i\leqq n$ . The integer $\nu$ is uniquely determined by $f$.
We put $\nu=\nu(f)$ .

Let $A$ be a quaternion algebra over $F$ and let $\mathfrak{p}_{\infty_{1}},$ $\cdots$ , $\mathfrak{p}_{\infty u}$ be all the in-
finite prime spots of $F$ ramified in $A/F$. Consider an A-space $V$ and a non-
degenerate Q-hermitian form $f$ on $V$. Put $V_{\kappa}=V\otimes_{F}F_{\kappa}$ for $1\leqq\kappa\leqq u$ . Then
$V_{\kappa}$ can be considered as an $A_{\kappa}$-space in a natural manner; and $f$ is uniquely
extended to a non-degenerate Q-hermitian form $f_{\kappa}$ on $V_{\kappa}$ . As A. is isomorphic
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to $K$, we can define $\nu(f_{\kappa})$ . We put $\nu_{\kappa}(f)=\nu(f_{\kappa})$ . Now, by Ramanathan [7],

the structure of {V, $f$} is completely determined by the $\nu_{\kappa}(f)$ . We state this
result in the following form.

LEMMA 4.4. Let $f$ and $g$ be non-degenerate Q-hermitian forms on an A-space
V. There exists an element $\sigma$ of $GL(V, A)$ such that $f(x\sigma,y\sigma)=g(x,y)$ for every

$x,$ $y$ of $V$, if and only if $\nu_{\kappa}(f)=\nu_{\kappa}(g)$ for every infinite prime spot $\mathfrak{p}_{\infty\kappa}$ of $F$

ramified in $A/F$.
This can be proved easily by means of Proposition 4.1 and the approxima-

tion theorem in the number field $F$.

4.3. Adele-group of $G(V, f)$ . Let $A$ be a quaternion algebra over $F$ and
$V$ an A-space of dimension $n$ . For each prime ideal $\mathfrak{p}$ of $F$ and for each in-
finite prime spot $\mathfrak{p}_{\infty\kappa}$ of $F$, we put

$V_{\mathfrak{p}}=V\bigotimes_{F}F_{\mathfrak{p}}$ , $V_{\kappa}=V\bigotimes_{F}F_{h},$ .

Then $V_{\mathfrak{p}}$ (resp. $V_{\kappa}$) can be considered as an $A_{\mathfrak{p}}$ -space (resp. $A_{\kappa}$-space) in a
natural manner. Let $f$ be a non-degenerate Q-hermitian form on $V$. We ex-
tend $f$ to non-degenerate Q-hermitian forms on $V_{\mathfrak{p}}$ and on $V_{\kappa}$ , and denote them
again by $f$. Put now $G=G(V,f),$ $G_{\mathfrak{p}}=G(V_{\mathfrak{p}},f)$ , $G.=G(V_{\kappa},f)$ . Then $G_{\mathfrak{p}},$ $G_{\kappa}$

are locally compact topological groups with usual topology. Let $L$ be a $\mathfrak{g}-$

lattice in $V$. For each $\mathfrak{p}$ , denote by Up the set of elements $\tau$ of $G_{\mathfrak{p}}$ such that
$L_{\mathfrak{p}T}=L_{\mathfrak{p}}$ . Then Up is a compact subgroup of $G_{P}$ . Put

$\mathfrak{U}_{L}=\prod_{\mathfrak{p}}\mathfrak{U}_{\mathfrak{p}}\times\prod_{\kappa}G_{\kappa}$ .

By the product topology, $\mathfrak{U}_{L}$ is a locally compact group. Now we define the
adele-group $\mathfrak{G}$ of $G(V,f)$ as the set of elements $(\sigma_{\mathfrak{p}}, \sigma_{\kappa})$ of $\prod_{\mathfrak{p}}G_{\mathfrak{p}}\times\prod_{\kappa}G_{\kappa}$ such
that $\sigma_{\mathfrak{p}}\in \mathfrak{U}_{\mathfrak{p}}$ for all except a finite number of $\mathfrak{p}$ . Define a topology of $\mathfrak{G}$ so
that $\mathfrak{U}_{L}$ is an open subgroup of G. Then $\mathfrak{G}$ becomes a locally compact group.
The topological group $\mathfrak{G}$ is determined independently of the choice of $L$ . By
the injection $\sigma\rightarrow_{\backslash }\cdots$ , $\sigma,$ $\sigma,$

$\cdots$ ), $G$ can be considered as a discrete subgroup of G.
By a general theorem of Borel [1], $\mathfrak{G}$ is the union of a finite number of double
cosets $\mathfrak{U}_{L}\xi G$ with $\xi\in \mathfrak{G}$ (cf. also Weil [11, 12]).

4.4. Classes and Genera of maximal lattices. Notation being as in \S 4.3,

let $0$ be a maximal order in $A$ , and Op $=\mathfrak{g}_{\mathfrak{p}}0$ . We denote by $\mathfrak{L}(0)$ the set of all
maximal lattices in $V$ with the order $0$ . Let $L$ and $M$ be two members of
$\mathfrak{L}(0)$ . We say that $L$ and $M$ belong to the same genus, if there exists, for each
prime ideal $\mathfrak{p}$ of $F$, an element $0\mathfrak{p}$ of $G(V_{\mathfrak{p}},f)$ such that $L_{\mathfrak{p}}\sigma_{\mathfrak{p}}=M_{\mathfrak{p}}$ . Further
we say that $L$ and $M$ belong to the same class, if there exists an element $\sigma$

of $G(V,f)$ such that $L\sigma=M$

PROPOSITION 4.5. If $n>1$ , for every two-sided o-ideal $t\ddagger$ , lhere exists a mem-
$berL$ of $\mathfrak{L}(\mathfrak{o})$ such that $N(L)=\mathfrak{a}$ .
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PROOF. Take an arbitrary maximal lattice $M$ in $V$ with the order $0$ .
There exist only a finite number of $\mathfrak{p}$ such that $N(M_{\mathfrak{p}})\neq \mathfrak{a}_{\mathfrak{p}}$ . For each one of
such $\mathfrak{p}$ , take a maximal lattice $L^{\mathfrak{p}}$ in $V_{\mathfrak{p}}$ with the order Op, such that $N(L^{\mathfrak{p}})=a_{\mathfrak{p}}$ .
This is possible by Propositions 2.6 and 3.5. Put $L^{\mathfrak{p}}=M_{\mathfrak{p}}$ for every $\mathfrak{p}$ such
that $N(M_{\mathfrak{p}})=\mathfrak{a}_{\mathfrak{p}}$ . Then, by Lemma 1, there exists a g-lattice $L$ in $V$ such that
$L_{\mathfrak{p}}=L^{\mathfrak{p}}$ for any $\mathfrak{p}$ . It is clear that $L$ is a member of $\mathfrak{L}(0)$ and $N(L)=\mathfrak{a}$ .

PROPOSITION 4.6. Let $0$ be a maximal order in A. If $n=1,$ $\mathfrak{L}(0)$ consists of
only one genus, $\mathfrak{L}(0)$ itself. If $n>1$ , there are exactly $2^{s}$ genera in $\mathfrak{L}(0)$ , where $s$

is the number of prime ideals ramified in $A/F$.
PROOF. The $\mathfrak{Q}_{i}$ being as in \S 4.1, we have $N(L)=\mathfrak{Q}_{1}^{e_{1}}\cdots \mathfrak{Q}_{s^{s}}^{e}\cdot \mathfrak{a}$ for every

$L\in \mathfrak{L}(0)$ , where $e_{i}=0$ or 1, and $\mathfrak{a}$ is a g-ideal. By Proposition 2.11 and Proposi-
tion 3.7, the genus of $L$ is determined only by $\{e_{1}, \cdots , e_{s}\}$ . This together with
Proposition 4.5 proves our proposition.

We denote, for any set of integers $\{e_{1}, , e_{s}\}$ such that $e_{i}=0$ or 1, by

$\mathfrak{L}(0;\{e_{i}\})$ the genus of $L$ such that $N(L)=1^{s}I\mathfrak{Q}_{i}^{e_{i}}i\approx 1$ $\mathfrak{a}$ with an ideal $a$ of $F$. We

call especially $\mathfrak{L}(0;\{0, \cdots , 0\})$ the principal genus with the order $0$ and denote it
by $\mathfrak{L}_{0}(0)$ .

Fix a member $L$ of $\mathfrak{L}(0)$ and define $\mathfrak{U}_{L}$ as in \S 4.3. For every element $\xi$

$=(\xi_{\mathfrak{p}}, \xi_{\kappa})$ of the adele-group $\mathfrak{G}$ , put $L\xi=\bigcap_{\mathfrak{p}}(L_{\mathfrak{p}}\xi_{\mathfrak{p}}\cap V)$ . By Lemma 1.1, $ L\xi$ is

a g-lattice in $V$ ; and $(L\xi)_{\mathfrak{p}}=L_{\mathfrak{p}}\xi_{\mathfrak{p}}$ . By Propositions 2.2, 2.3, 2.4, we see that
$ L\xi$ is a member of $\mathfrak{L}(0)$ . Further, by our definition, $ L\xi$ belongs to the same
genus as $L$ . Conversely, if $M$ is a maximal lattice belonging to the same genus
as $L$ , we can find an element $\xi$ of $\mathfrak{G}$ such that $L\xi=M$. If $\xi\in G$ , the nota-
tion $ L\xi$ is just the same as the transform of $L$ by $\xi$ ; so there is no fear of
confusion. We have $ L\xi=L\eta$ if and only if $\mathfrak{U}_{L}\xi=\mathfrak{U}_{L}\eta$ . Therefore, the map-
ping $\xi\rightarrow L\xi$ gives a one-to-one mapping of $\mathfrak{U}_{L}\backslash \mathfrak{G}$ onto the genus of $L$ . More-
over, we note that this gives a one-to-one correspondence between $\mathfrak{U}_{L}\backslash \mathfrak{G}/G$ and
the classes in the genus. By the fact remarked at the end of \S 4.3, this im-
plies that each genus consists of a finite number of classes. Further, by
Proposition 2.5, we observe that the number of classes in $\mathfrak{L}(0;\{e_{i}\})$ depends
only on $\{e_{i}\}$ and is independent of the choice of $0$ .

4.5. An existence theorem in the case $n=2$ . Let $A$ be a quaternion
algebra over $F$. We denote by $q_{1},$

$\cdots$ , $q_{s}$ all the prime ideals of $F$ which are
ramified in $A/F$, and by $\mathfrak{p}_{\infty_{1}}$ , , , $\mathfrak{p}_{\infty u}$ all the infinite prime spots of $F$ which
are ramified in $A$ . We put

$\mathfrak{d}=\prod_{h=1}^{s}q_{h}$ , $\mathfrak{u}=\prod_{\kappa=1}^{u}\mathfrak{p}_{\infty\kappa}$ .

Let $V$ be an A-space of dimension $n$ and $f$ a non-degenerate Q-hermitian form
on $V$. Fix a maximal order $0$ in $A$ ; and for each $q_{h}$, let $\mathfrak{Q}_{h}$ be the prime
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o-ideal such that $\mathfrak{Q}_{h}^{2}=q_{h}$ . We put $\mathfrak{g}_{\mathfrak{p}}\mathfrak{p}=\mathfrak{p}$ for every prime ideal $\mathfrak{p}$ of $F$, and
$0_{q_{h}}\mathfrak{Q}_{h}=\mathfrak{Q}_{h}$ for every $h$, when there is no fear of confusion.

LEMMA 4.7. Let $\mathfrak{p}$ be a prime ideal of $F$ which is unramified in $A/F$. Let
Op be a maximal order in $A_{\mathfrak{p}}$ . Let $a$ be a regular element of $A_{\mathfrak{p}}$ and $\delta$ be an
element of $g_{p}$ . Then there exists an element $d$ of $0\mathfrak{p}\cap ao_{\mathfrak{p}}a^{-1}$ such that $ N(d)=\delta$.

PROOF. We may assume that $A_{\mathfrak{p}}=M_{2}(F_{\mathfrak{p}})$ and Op $=M_{2}(\mathfrak{g}_{\mathfrak{p}})$ . Then we can
find units $\epsilon,$ $\eta$ of Op such that $\epsilon a\eta=\left(\begin{array}{ll}\alpha & 0\\0 & \beta\end{array}\right)$ with $\alpha,$ $\beta\in F_{\mathfrak{p}}$ . Putd $=\epsilon^{-1}\left(\begin{array}{ll}1 & 0\\0 & \delta\end{array}\right)\epsilon$ .
Then we have $ N(d)=\delta$ and $d\in 0\mathfrak{p}$ . Further we get

$a^{-1}da=a^{-1}e^{-1}\left(\begin{array}{ll}1 & 0\\0 & \delta\end{array}\right)ea=\eta\left(\begin{array}{ll}\alpha & 0\\0 & \beta\end{array}\right)\left(\begin{array}{ll}1 & 0\\0 & \delta\end{array}\right)\left(\begin{array}{ll}\alpha & 0\\0 & \beta\end{array}\right)\eta^{-1}=\eta\left(\begin{array}{ll}1 & 0\\0 & \delta\end{array}\right)\eta^{-1}\in 0_{\mathfrak{p}}$ ,

so that $d\in ao_{\mathfrak{p}}a^{-1}$ , which completes the proof.
PROPOSITION 4.8. Suppose that $A$ is indefinite and $n=2$ . Let $L$ be a g-lattice

in $V$ written in the form $L=ox+c^{-1}y$, where $c$ is an integral right o-ideal, $f(x,$ $ x\rangle$

$=1,$ $f(x, y)=0,$ $f(y, y)=\gamma,$ $N(c)=\gamma \mathfrak{g}$ with an element $\gamma$ of $\mathfrak{g}$ . Suppose that $\gamma$ is
prime to $\mathfrak{d}$ . Let $\mathfrak{p}_{1},$

$\cdots$ , $\mathfrak{p}_{r}$ be distinct prime ideals which are prime to $\mathfrak{d}$ , and let
$\alpha$ be a non-zero element of $g$ such that $\alpha\equiv 1mod \mathfrak{p}_{x_{\mathcal{K}}}$ whenever $\gamma\equiv 1mod \mathfrak{p}_{\infty\kappa}$

for $1\leqq\kappa\leqq u$ . Put $\mathfrak{g}_{\mathfrak{p}_{i}}\alpha=\mathfrak{p}_{i}^{\mu_{i}}$ for $1\leqq i\leqq r$ and $\mathfrak{g}_{q_{h}}\alpha=q_{h^{h}}^{\lambda}$ for $1\leqq h\leqq s$ . Let $\xi_{i},$
$\eta_{i}$ ,

for $1\leqq i\leqq r$, and $\nu_{h}$ , for $1\leqq h\leqq s$ , be integers such that

$0\leqq\xi_{i}\leqq\eta_{i}\leqq\mu_{i}-\eta_{i}\leqq\mu_{i}-\xi_{i}\leqq\mu_{i}$ , $0\leqq\nu_{h}\leqq\lambda_{h}$ .
Then there exists an element $\sigma$ of $G(V,f)$ such that $L\sigma\subset L,$ $ N(\sigma)=\alpha$ ,

$\{L_{\mathfrak{p}_{i}} : L_{\mathfrak{p}_{i}}\sigma\}=\{\mathfrak{p}_{i}^{\xi_{i}}, \mathfrak{p}_{i}^{\eta_{i}}, \mathfrak{p}_{i}^{l_{i}-\xi_{i}}, \mathfrak{p}_{i}^{\mu_{i}-\eta_{i}}\}$ for $1\leqq i\leqq r$ ,

$\{L_{\mathfrak{q}_{h}} : L_{q_{h}}\sigma\}=\{\mathfrak{Q}_{h}^{\nu_{h}}, \mathfrak{Q}_{h}^{2\lambda_{h}-\nu_{h}}\}$ for $1\leqq h\leqq s$ .
PROOF. For simplicity, we denote the indices $\mathfrak{p}_{i}$ and $q_{h}$ respectively by $i$

and $h$ ; for example, $L_{i}$ means $L_{\mathfrak{p}_{i}}$ and $g_{h}$ means $g_{\mathfrak{q}_{h}}$ . By Proposition 2.6, $L$

is maximal and $N(L)=0$ . Now, for each $\mathfrak{p}_{i}$ , we identify $0_{i}$ with $M_{2}(\mathfrak{g}_{i})$, and fix
an element $\pi_{i}$ of $\mathfrak{g}$ such that $\mathfrak{p}_{i}=\mathfrak{g}_{i}\pi_{i}$ . Put $\mathfrak{g}_{i}\gamma=\mathfrak{p}_{i}^{e_{i}}$ . Without any loss of gener-

ality, we may assume that $c_{i}^{-1}$ is written in the form $c_{i}^{-1}=\left(\begin{array}{ll}\mathfrak{p}_{i}^{-c_{i}} & \mathfrak{p}_{i}^{-a_{i}}\\\mathfrak{p}_{i}^{-c_{i}} & \mathfrak{p}_{i}^{-a_{i}}\end{array}\right)$ , where
$c_{i}$ and $d_{i}$ are integers such that $c_{i}\geqq d_{i}\geqq 0$ and $c_{i}+d_{i}=e_{i}$ . Consider the ideal-
class modulo $t1$ containing the inverse of the ideal

$\prod_{i\Rightarrow 1}^{r}\mathfrak{p}_{i}^{2\mu_{i}+2+-a_{i+\eta_{i}-\xi_{i}}}c_{i}\prod_{h=1}^{s}q_{h^{h}}^{\nu}$ .

We can find an integral ideal $\mathfrak{a}$ in that class which is prime to $\gamma\alpha\prod_{i=1}^{r}\mathfrak{p}_{i}\cdot \mathfrak{d}$ .
We get then

$\mathfrak{a}\cdot\prod_{i--i}^{f}\mathfrak{p}_{i}^{2lr+2+c-d+\eta-\xi}iiiii\prod_{h=I}^{s}q_{\hslash}^{\nu_{h}}=(\beta)$ , $\beta\equiv 1mod \mathfrak{u}$

for an element $\beta$ of $\mathfrak{g}$ . By Lemma 4.3, there exists an element $a_{1}$ of $0$ such
that $ N(a_{1})=\beta$ and
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(11) $a_{1}\equiv\left(\begin{array}{lll}\pi_{i}^{\mu_{i+1}} & 0 & \\0 & \beta\pi_{i}^{-\beta_{i}} & 1\end{array}\right)$ $mod \beta \mathfrak{p}_{i}^{\mu_{i+e_{i+1}}}0_{i}$ $(1 \leqq i\leqq r)$ .

Let $e$ be a unit of $F$ such that $\alpha(1-\epsilon^{2})\equiv 1mod n$ . Such an $\epsilon$ really exists,
because $\mathfrak{u}$ is not the product of all the infinite prime spots of $F$. Then, by
our assumption on $\alpha$ , we have

$\alpha-\epsilon^{2m}N(a_{1})\gamma\equiv 1$ $mod n$

for a suitably large integer $m$ . Fix such an $m$ . By Lemma 4.3, there exists
an element $b_{1}$ of $0$ such that $ N(b_{1})=\alpha-\epsilon^{2m}N(a_{1})\gamma$ . By our choice of $\beta$ , we
observe that $\mathfrak{g}_{i}N(b_{1})=\mathfrak{p}_{i}^{lx_{i}}$ for $1\leqq i\leqq r$. Put $a=e^{m}a_{1}$ . For every prime ideal

$\mathfrak{r}$ of $F$, let $\overline{0}_{\mathfrak{r}}$ denote the right order of $(c^{-1}a^{-1})_{r}$ . Let $\{\mathfrak{r}\}$ be the set of prime

ideals $\mathfrak{r}$ such that $(\mathfrak{r}, \mathfrak{d}\cdot\prod_{i=\perp}^{r}\mathfrak{p}_{i})=1,\overline{\mathfrak{o}}_{\mathfrak{r}}\neq \mathfrak{o}_{\tau}$ . Obviously $\{\mathfrak{r}\}$ is a finite set. For

each $\iota$ , take an element $b_{\mathfrak{r}}$ of $\overline{0}_{\mathfrak{r}}\cap \mathfrak{o}_{\mathfrak{r}}$ such that $N(b_{\mathfrak{r}})=N(b_{1})$ . This is possible
by virtue of Lemma 4.7. Now by Lemma 4.3, we can find an element $b$ of $0$

such that $N(b)=N(b_{1}),$ $b\equiv b_{\mathfrak{r}}mod (\overline{0}_{\mathfrak{r}}\cap \mathfrak{o}_{\mathfrak{r}})$ for $\mathfrak{r}\in\{\mathfrak{r}\}$ , and

\langle 12) $b\equiv(-N(b_{1})\pi_{i}^{-\xi_{i}}0^{\xi_{i}}0\pi_{i})$ $mod \beta \mathfrak{p}_{i}^{\mu_{i+e_{i+1}}}0_{i}$ $(1 \leqq i\leqq r)$ .

Then we have $ N(b)+\gamma N(a)=\alpha$ , and by (11) and (12),

$a^{-1}ba=a_{1}^{-1}ba_{1}=\beta^{-1}a_{1}^{\prime}ba_{1}\equiv\left(\begin{array}{ll}0 & \beta\pi_{i}^{\xi_{i}-2\mu_{i}-2}\\-N(b)\beta^{-1}\pi_{i}^{-\xi_{i+2}\mu_{i+2}} & 0\end{array}\right)$ $mod \mathfrak{p}_{i}^{\mu_{i+e_{i}+1}}0_{i}$ ,

so that

(13) $a^{-1}b^{\prime}a\equiv\left(\begin{array}{ll}0 & \theta\pi_{i}^{\eta_{i}+c_{i}-a_{i}}\\\psi\pi_{i}^{\mu_{i}-\eta_{i}-- c_{i}+a_{i}} & 0\end{array}\right)$ $mod \mathfrak{p}_{i}^{\mu_{i+e_{i+1}}}0_{i}$

with units $\theta$ and $\psi$ of $\mathfrak{g}_{i}$ . It follows that

(14) $c_{i}^{-1}(a^{-1}b^{\prime}a)=\left(\begin{array}{ll}\mathfrak{p}_{i}^{\mu_{i}-\eta_{i}-c_{i}} & \mathfrak{p}_{i}^{\eta_{i}-a_{i}}\\\mathfrak{p}_{i}^{u_{\grave{i}}-\eta_{i}-c_{i}}\prime & \mathfrak{p}_{i}^{\eta_{i}-a_{i}}\end{array}\right)$ .

Hence we have $c_{i}^{-1}(a^{-1}b^{\prime}a)\subset c_{i}^{-1}$ . By our choice of $b_{\mathfrak{r}}$ , we have $b^{\prime}\in\overline{0}_{r}$ for every
$\mathfrak{r}$ such that $(\mathfrak{r}, \mathfrak{d}\cdot\prod_{i=1}^{r}\mathfrak{p}_{i})=1$ , and hence $c_{\mathfrak{r}}^{-1}(a^{-1}b^{\prime}a)\subset ci$ for any such $\iota$ . Further

it is obvious that $c_{h}^{-l}(a^{-1}b^{\prime}a)\subset c_{h}^{-1}$ . Therefore, we have

(15) $c^{-1}(a^{-1}b^{\prime}a)\subset c^{-1}$ .
As $a\in 0\subset c^{-1}$ and $N(c)=\gamma \mathfrak{g}$ , we have

(15) $c^{-1}\gamma a^{\prime}\subset 0$ .
Moreover, by (11) we have
(16) $c_{i}^{-1}\gamma a^{\prime}\subset \mathfrak{p}_{i}^{\mu_{i+1}}0_{i}$ .
Now define an element $\sigma$ of $E(V, A)$ by

(17) $x\sigma=bx+ay$ , $y\sigma=-\gamma a^{\prime}x+a^{-1}b^{\prime}ay$ .
By the relation $ N(b)+\gamma N(a)=\alpha$ , we can easily verify that $\sigma\in G(V,f)$ and
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$ N(\sigma)=\alpha$ . Further by (15), (15), we have $L\sigma\subset L$ . By Proposition 2.7, we have
$\mathfrak{p}_{i}^{\mu_{i}}L_{i}=\alpha L_{i}\subset L_{i}\sigma$ , so that
\langle 18) $\mathfrak{p}_{i}^{\mu_{i+1}}L_{i}\subset \mathfrak{p}_{i}L_{i}\sigma$ .
Put $M_{i}=0_{i}bx+c_{i}^{-1}a^{-1}b^{\prime}ay$ . Then we have, by (11), (16), (17), (18) and by Lemma
1.2, $ M_{i}=L_{i}\sigma$ , so that $L_{i}/L_{i}\sigma=L_{i}/M_{i}\cong 0_{i}/0_{i}b+c_{i}^{-1}/c_{i}^{-1}a^{-1}b^{\prime}a$ (as $0_{i}$-modules). By
(12) and (14), $ L_{i}/L_{i}\sigma$ has the desired elementary divisors. Let us now consider
$q_{h}$ for $1\leqq h\leqq s$ . As $ N(\sigma)=\alpha$ and $0_{h}\alpha=\mathfrak{Q}_{h}^{2\lambda_{h}}$, we have, by Proposition 2.7,
$L_{h}\sigma\supset \mathfrak{Q}_{h}^{2\lambda_{h}}L_{h}$ . As $ N(a_{1})=\beta$ and $g_{h}\beta=q_{h^{h}}^{\nu}$, we have $o_{h}a=\mathfrak{Q}_{h^{h}}^{\nu}$ . If $\lambda_{h}=0$ , we
have $L_{h}\sigma=L_{h}$ . Suppose that $\lambda_{h}>0$ . If $\nu_{h}=\lambda_{h}$ , we have $\mathfrak{o}_{h}a=\mathfrak{Q}_{h}^{\lambda_{h}}$ and hence
$N(b)=\alpha-\gamma N(a)\in \mathfrak{Q}_{h}^{2\lambda_{h}}$ . It follows that $a,$ $b,$ $-\gamma a^{\prime},$ $a^{-1}b^{\prime}a$ are contained in $\mathfrak{Q}_{h}^{\lambda_{h}}$ .
Hence we have $x\sigma,$

$y\sigma\in \mathfrak{Q}_{h}^{\lambda_{h}}L_{h}$ , so that $L_{h}\sigma\subset \mathfrak{Q}_{h}^{\lambda_{h}}L_{h}$ . As $ L_{h}\sigma$ is maximal and
$N(L_{h}\sigma)=\mathfrak{Q}_{h}^{2\lambda_{h}}=N(\mathfrak{Q}_{h}^{\lambda_{h}}L_{h})$ , we must have $L_{h}\sigma=\mathfrak{Q}_{h}^{\lambda_{h}}L_{h}$ . Then $L_{h}/L_{h}\sigma\cong 0_{h}/\mathfrak{Q}_{h}^{\lambda_{h}}$

$+0_{h}/\mathfrak{Q}_{h}^{\lambda_{h}}$ . It remains to consider the case $\lambda_{h}>\nu_{h}\geqq 0$ . As $N(b)+\gamma N(a)=a,$ $0_{h}a$

$=\mathfrak{Q}_{h}^{\nu_{h}},$ $0_{h}\alpha=\mathfrak{Q}_{h}^{2\lambda_{h}}$, we must have $o_{h}b=\mathfrak{Q}_{h}^{\nu_{h}}$ . It follows that $a^{\prime}b^{-1}$ is a unit of
$0_{h}$ . We note that

$y\sigma+\gamma(a^{\prime}b^{-1})x\sigma=(a^{-1}b^{\prime}a+\gamma a^{\prime}b^{-1}a)y=a^{-1}b^{-1}(bb^{\prime}+\gamma baa^{\prime}b^{-1})ay$

$=a^{-1}b^{-1}(N(b)+\gamma N(a))ay=\alpha(a^{-1}b^{-1}a)y$ .
Therefore we have $L_{h}\sigma=0_{h}x\sigma+0_{h}y\sigma=0_{h}x\sigma+0_{h}\alpha(a^{-1}b^{-1}a)y$ . On the other hand,
as $b^{-1}a$ is a unit of $0_{h}$ and as $x=b^{-1}x\sigma-b^{-1}ay$ , we have $ L_{h}=0_{h}x+0_{h}y=\mathfrak{o}_{h}b^{-1}x\sigma$

$+0_{h}y$ . Hence $L_{h}/L_{h}\sigma\cong 0_{h}b^{-1}/0_{h}+0_{h}/0_{h}(a^{-1}b^{-1}a)a=0_{h}/\mathfrak{Q}_{h}^{\nu_{h}}+\mathfrak{o}_{h}/\mathfrak{Q}_{h}^{2\lambda_{h}-\nu_{h}}$ (as $\mathfrak{o}_{h^{-}}$

modules). This completes our proof.

4.6. Global approximation theorem. As in \S 4.2, we define $\nu_{\kappa}(f)$ for
$1\leqq\kappa\leqq u$ , and reorder the $\mathfrak{p}>\kappa$ so that $\nu_{\kappa}(f)\neq n/2$ for $1\leqq\kappa\leqq t$ and $\nu_{\kappa}(f)=n/2$

for $t<\kappa\leqq u$ . Put

$\iota=\downarrow_{f}=\prod_{\kappa=1}^{t}\mathfrak{p}_{\infty\kappa}$ .

For every $\sigma\in G(V,f)$ , we have $N(\sigma)\equiv 1$ mod $t$ . If $n$ is odd, we have $t=u$ and
$t=\iota\downarrow$ .

Now we are ready to state and prove our main theorems.
THEOREM 1. Suppose that $A$ is indefinite. Let $L$ be a maximal lattice be-

longing to the principal genus $\mathfrak{L}_{0}(0)$ . Let $\mathfrak{p}_{1},$ $\cdots$ , $\mathfrak{p}_{r}$ be prime ideals of $F$ ; and let
$\sigma_{i}$ , for each $i$, be an element of $G(V_{\mathfrak{p}_{i}},f)$ such that $L_{\mathfrak{p}_{i}}\sigma_{i}\subset L_{\mathfrak{p}_{i}}$ . Let $\alpha$ be an ele-
ment of $\mathfrak{g}$ . Suppose that

$\alpha^{-1}N(\sigma_{i})\equiv 1$ $mod \mathfrak{p}_{i}^{\lambda_{i}}$ , $(1 \leqq i\leqq r)$ ,

$\alpha\equiv 1$ mod $t$ ,

where the $\lambda_{i}$ are positive integers. Then there exists an element $\sigma$ of $G(V,f)$

such that $L\sigma\subset L,$ $N(\sigma)=\alpha,$ $L_{\mathfrak{p}_{i}}(\sigma-\sigma_{i})\subset \mathfrak{p}_{i}^{\lambda_{l}}L_{\mathfrak{p}_{i}}(1\leqq i\leqq r)$ .
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We prove Theorem 1 in several steps. For simplicity, we denote $L_{\mathfrak{p}_{i}},$
$\mathfrak{g}_{\mathfrak{p}_{i}}$ ,

etc. by $L_{i},$
$\mathfrak{g}_{i}$ , etc.

ASSERTION 1. If Theorem 1 is proved when $N(L)=0$ for every maximal
order $0$ , then it is true for any $L$ belonging to the principal genus.

In fact, if $L$ belongs to $\mathfrak{L}_{0}(0)$ , we can find a left o-ideal $\mathfrak{x}$ such that $N(L)$

$=N(\mathfrak{x})0$ . Then by Proposition 2.5, $\mathfrak{x}^{-1}L$ is a maximal lattice, and $N(\mathfrak{x}^{-1}L)=0_{1}$ ,

where $0_{1}$ is the right order of $\mathfrak{x}$ We see easily that if Theorem 1 is true for
$\mathfrak{x}^{-1}L$ , then it is true for $L$ .

ASSERTION 2. If Theorem 1 is true for $L$ , then, for every $\tau\in G(V,f)$,

Theorem 1 is true for $ L\tau$ .
This is clear.
ASSERTION 3. If Theorem 1 is proved for a certain $L^{0}\in \mathfrak{L}_{0}(0)$ such that

$N(L^{0})=0$ , then for any $L\in \mathfrak{L}_{0}(\mathfrak{o})$ such that $N(L)=\mathfrak{o}$ , we have $ L=L^{0}\tau$ for an
element $\tau\in G^{0}(V,f)$ .

Let $\beta$ be a non-zero element of $\mathfrak{g}$ such that $\beta L\subset L^{0}$ . Take an integral
g-ideal $a$ such that $\beta L\supset aL^{0}$ . Let $\mathfrak{p}_{1}$ , $\cdot$

.,
$\mathfrak{p}_{r}$ be the prime factors of $\mathfrak{a}$ . By

Proposition 2.11 and by Proposition 3.7, there exists, for each $\mathfrak{p}_{i}$ , an element
$\tau_{i}$ of $G^{0}(V_{i},f)$ such that $L_{i}^{0_{T_{i}}}=L_{i}$ . Put $\sigma_{i}=\beta\tau_{i}$ . Then we have $N(\sigma_{i})=\beta^{2}$ .
Applying Theorem 1 to $L^{0}$ and these $\sigma_{i}$ , we get an element $\sigma$ of $G(V,f)$ such
that $L^{0}\sigma\subset L^{0},$ $N(\sigma)=\beta^{2},$ $L_{i}^{0}(\sigma-\sigma_{i})\subset \mathfrak{p}_{i}\mathfrak{a}L_{i}^{0}$ for $1\leqq i\leqq r$. As we have $\mathfrak{p}_{i}\mathfrak{a}L_{i}^{0}\subset \mathfrak{p}_{i}\beta L_{i}$

$=\mathfrak{p}_{i}L_{i}^{0}\sigma_{i}$ , we see, from Lemma 1.2, $L_{i}^{0}\sigma=L_{i}^{0}\sigma_{i}=\beta L_{i}$ . If $\mathfrak{p}$ is a prime ideal which
does not divide $a$ , we have $L_{\mathfrak{p}}^{0}=\beta L_{\mathfrak{p}}$ , since $L^{0}\supset\beta L\supset aL^{0}$ . It follows that
$N(L_{\mathfrak{p}}^{0})=\beta^{2}N(L_{\mathfrak{p}})$ , and hence $\beta$ is a $\mathfrak{p}$ -unit. As $L^{0}\sigma\subset L^{0}$ and $N(\sigma)=\beta^{2}$ , we have
$L_{\mathfrak{p}}^{0}\sigma=L_{\mathfrak{p}}^{0}=\beta L_{\mathfrak{p}}$ . Therefore, we have $L_{\mathfrak{p}}^{0}\sigma=\beta L_{\mathfrak{p}}$ for every prime ideal $\mathfrak{p}$ of $F$,

so that $L^{0}\sigma=\beta L$ . Putting $\tau=\beta^{-1}\sigma$ , we get $L^{0_{T}}=L$ .
ASSERTION 4. In order to prove Theorem 1, we may exchange the Q-

hermitian form $f$ for $\theta f$ for any non-zero element $\theta$ of $F$.
In fact, put $g(x, y)=\theta f(x, y)$ for $(x, y)\in V\times V$. Then $g$ is a non-degenerate

Q-hermitian form. We see easily $G(V,f)=G(V, g),$ $G^{0}(V,f)=G^{0}(V, g)$ , and, for
every $\sigma\in G(V,f),$ $N(\sigma)$ is common for $f$ and $g$. Further, for every $\mathfrak{g}$-lattice
$L$ in $V$, we have $N_{g}(L)=\theta N_{f}(L)$ . When $L$ is normal, $L$ is maximal with re-
spect to $f$ if and only if $L$ is maximal with respect to $g$. The genera and
the classes of normal maximal lattices do not change by exchanging $f$ for $g$.
Finally we note that $t_{f}=t_{g}$ . Therefore we get Assertion 4.

Now we proceed by induction on $n$ . If $n=1$ , Theorem 1 is just a re-
statement of Lemma 4.3. Assume that $n>1$ and Theorem 1 is true for
$\dim_{A}V<n$ .

ASSERTION 5. If $N(L)=0$ and $L$ contains an element $x$ such that $f(x, x)=1$ ,

then Theorem 1 is true for this $L$ and for $\alpha=1$ .
As $N(\sigma_{i})\equiv 1$ mod p5 $i$ and $N(L)=\mathfrak{o}$, we have $f(u\sigma_{i}, v\sigma_{i})\equiv f(u, v)mod \mathfrak{p}_{i}^{\lambda_{i}}0_{i}$ for
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$u,$ $v\in L$ . By Proposition 3.13, there exists an element $\tau_{i}$ of $G(V_{i},f)$ such that
$N(\tau_{i})=1,$ $L_{i}\tau_{i}=L_{i},$ $L_{i}(\sigma_{i}-\tau_{i})\subset \mathfrak{p}_{i}^{r_{i}}L_{i}$ . Put

$W=\{v\in V|f(x, v)=0\}$ , $M=W_{\cap}L$ .
Then we have $V=Ax+W,$ $L=ox+M$ ; and $M$ is a maximal lattice in $W$ such
that $N(M)=0$ . Put $x\tau_{i}=a_{i}x+y_{i}$ with $a_{i}\in 0_{i}$ and $y_{i}\in M_{i}$ . As $f(x\tau_{i}, x\tau_{i})=f(x, x)$.
$=1$ , we have $N(a_{i})+f(y_{i}, y_{i})=1$ . Now reorder the $\mathfrak{p}_{i}$ so that $N(a_{i})\neq 0$ for
$1\leqq i\leqq h,$ $N(a_{i})=0$ for $ h<i\leqq\gamma$ where $h$ is an integer such that $0\leqq h\leqq r$. Put
$\mathfrak{g}_{i}N(a_{i})=\mathfrak{p}_{i}^{\mu_{i}}$ for $1\leqq i\leqq h$ . We can find a regular element $a$ of $A$ such that
$a\in 0$ , and

$a\equiv a_{i}$
$mod o_{i}\mathfrak{p}_{i}^{\lambda_{i+\mu_{i}}}$ for $1\leqq i\leqq h$ ,

$a\equiv a_{i}$ $mod o_{i}\mathfrak{p}_{i}^{\lambda_{i}}$ for $ h<i\leqq\gamma$ .
We have then

$N(a)\equiv N(a_{i})$ mod p5 $i+l^{l}i$ for $1\leqq i\leqq h$ ,

$N(a)\equiv 0$ mod p5 $i$ for $ h<i\leqq\gamma$ ,

and hence $\mathfrak{g}_{i}N(a)=\mathfrak{p}_{i}^{\alpha_{i}}$ for $1\leqq i\leqq h$ . Put $\mathfrak{g}_{i}N(a)=\mathfrak{p}_{i}^{\mu_{i}}$ for $i>h$ . We have then
$\mu_{i}\geqq\lambda_{i}\geqq 1$ for $i>h$ . Now, as $1-N(a)\equiv 1mod \mathfrak{p}_{i}^{\mu_{i}}$ , we can find, by Proposition
3.2, for each $i>h$ , an element $\epsilon_{i}$ of $0_{i}$ such that $\epsilon_{i}\equiv 1mod o_{i}\mathfrak{p}_{i}^{\mu_{i}},$ $N(e_{i})=1-N(a)$.
Take an element $y$ of $M$ so that

$y\equiv y_{i}$
$mod \mathfrak{p}_{i}^{\lambda_{i}\vdash\mu_{i}}M_{i}$ for $1\leqq i\leqq h$ ,

$y\equiv e_{i}y_{i}$ $mod \mathfrak{p}_{i}^{\lambda_{i}+\mu_{i}}M_{i}$ for $h<i\leqq r$ .
Then we can easily verify that $f(y, y)\equiv 1-N(a)mod \mathfrak{p}_{i^{ii}}^{\lambda+/4}$ for every $i$ . Since
$n$ is not the product of all infinite prime spots of $F$, the projection of the set
$\{\beta|\beta=1+\xi, \xi\in\prod_{i=1}^{r}\mathfrak{p}_{i}^{l_{i}+\lambda_{i}}\}$ on $F_{1}\times\cdots\times F_{u}$ is dense. Hence there exists an

element $\beta$ of $\mathfrak{g}$ such that $1-\beta^{2}\equiv 1mod n,$ $\beta\equiv 1mod \prod_{i=1}^{r}\mathfrak{p}_{i}^{\mu_{i+\lambda_{i}}}$ . For a suitably

large integer $k,$ $1-\beta^{2k}f(y, y)\equiv 1mod n$ . Put $w=\beta^{k}y$ for such an integer $k$ .
Then we have

$w\equiv y$ $mod \prod_{i=1}^{\gamma}\mathfrak{p}_{i}^{\lambda_{i+\mu_{i}}}M$ ,

$1-f(w, w)\equiv 1-f(y,y)\equiv N(a)$ $mod \prod_{i=1}^{\tau}\mathfrak{p}_{i}^{\lambda_{i+\mu_{i}}}$ ,

$1-f(w, w)\equiv 1$ modu.

As $N(a)\mathfrak{g}_{i}=\mathfrak{p}_{i}^{\mu_{i}}$ , we have $N(a)^{-1}(1-f(w, w))\equiv 1mod \prod_{i=1}^{r}\mathfrak{p}_{i}^{\lambda_{i}}$ . Therefore, by Lemma
4.3, there exists an element $b$ of $0$ such that

$N(b)=1-f(w, w)$ , $b\equiv a$ $mod \prod_{i=1}^{r}\mathfrak{p}_{i}^{\lambda_{i}}\mathfrak{o}$ .
Put $u=bx+w$ . Then $f(u, u)=N(b)+f(w, w)=1$ , and
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$u\equiv ax+y\equiv a_{i}x+y_{i}=x\tau_{i}$ $mod \mathfrak{p}_{i}^{\lambda_{i}}L_{i}$ $(1 \leqq i\leqq r)$ .
Hence, putting

$U=\{z\in V|f(u, z)=0\}$ , $K=U\cap L$ ,

we have $V=Au+U,$ $L=ou+K$ ; and $K$ is a maximal lattice in $U$ such that
$N(K)=0$ . By Lemma 4.4, $(U,f)$ and $(W,f)$ are isomorphic. Therefore we
can find an element $\rho$ of $G^{0}(V,f)$ such that $x\rho=u,$ $W\rho=U$. We see easily
that $ M\rho$ is a maximal lattice in $U$ and $N(M\rho)=0$ . By our induction assump-
tion and Assertion 3, there exists an element $\varphi$ of $G^{0}(U,f)$ such that $M\rho\varphi=K$

Exchanging $\rho$ for $\rho\varphi$ on $W$, we may assume that $M\rho=K$ for $\rho$ itself. Then
we have $L\rho=L$ , and $x\tau_{i}\rho^{-1}\equiv xmod \mathfrak{p}_{i}^{\lambda_{i}}L_{i}$ . For every $z\in W_{i}$ , denote by $z\psi_{i}$

the projection of $z\tau_{i}\rho^{-1}$ onto $W_{i}$ defined by the decomposition $V_{i}=A_{i}x+W_{i}$ .
Then $\psi_{i}$ can be considered as an element of $E(W_{i}, A_{i})$ . If $z\in M_{i}$ , we have

$f(z\tau_{i}\rho^{-1}, x)\equiv f(z\tau_{i}\rho^{-1}, x\tau_{i}\rho^{-1})=f(z, x)=0$ mod p5 $i0_{i}$ . It follows that $M_{i}(\tau_{i}\rho^{-1}-\psi_{i})$

$\subset \mathfrak{p}_{i^{i}}^{\lambda}0_{i}X$, and hence $f(z_{1}\psi_{i}, z_{2}\psi_{i})\equiv f(z_{1}, z_{2})mod \mathfrak{p}_{i}^{\lambda_{i}}0_{i}$ for $z_{1}\in M_{i},$ $z_{2}\in M_{i}$ . By Prop-
osition 3.13, there exists an element $\theta_{i}$ of $G^{0}(W_{i},f)$ such that $M_{i}\theta_{i}\subset M_{i}$ and
$M_{i}(\psi_{i}-\theta_{i})\subset \mathfrak{p}_{i}^{\lambda_{i}}M_{i}$ . Applying our induction assumption to $M$ and the $\theta_{i}$ , we
find an element $\theta$ of $G^{0}(W,f)$ such that $M\theta\subset M,$ $M_{i}(\theta-\theta_{i})\subset \mathfrak{p}_{i}^{\lambda_{i}}M_{i}$ for $1\leqq i\leqq r$.
Define an element $\sigma$ of $E(V, A)$ by $x\sigma=u,$ $ z\sigma=z\theta\rho$ for $z\in W$. Then we have
$\sigma\in G(V,f)$ and $N(\sigma)=1,$ $L\sigma\subset L$ . Further, we have

$x\sigma=u\equiv x\tau_{i}\equiv x\sigma_{i}$ $mod \mathfrak{p}_{i}^{\lambda_{i}}L_{i}$ $(1 \leqq i\leqq r)$ ,

and if $z\in M_{i}$ ,
$z\sigma=z\theta\rho\equiv z\theta_{i}\rho\equiv z\psi_{i}\rho\equiv z\tau_{i}\equiv z\sigma_{i}$ mod p5 $iL_{i}$ $(1 \leqq i\leqq r)$ .

Therefore $L_{i}(\sigma-\sigma_{i})\subset \mathfrak{p}_{i}^{\lambda_{i}}L_{i}$ . This completes the proof of Assertion 5.
PROPOSITION 4.9. Let $L$ be a maximal lattice belonging to $\mathfrak{L}_{0}(0)$ . Let $\alpha$ be

an element of $\mathfrak{g}$ such that $\alpha\equiv 1mod t$ , and let $\mathfrak{p}_{1},$ $\cdots$ , $\mathfrak{p}_{r}$ be prime ideals of $F$.
Let $\sigma_{i}$, for $1\leqq i\leqq r$, be an element of $G(V_{\mathfrak{p}_{i}},f)$ such that $N(\sigma_{i})\mathfrak{g}_{\mathfrak{p}_{i}}=\alpha \mathfrak{g}_{\mathfrak{p}_{i}},$ $L_{\mathfrak{p}_{i}}\sigma_{i}$

$\subset L_{\mathfrak{p}_{i}}$ . Then there exists an element $\sigma$ of $G(V,f)$ such that $N(\sigma)=\alpha,$ $L\sigma\subset L$ ,

and $ L_{\mathfrak{p}_{i}}/L_{\mathfrak{p}_{i}}\sigma$ is isomorphic to $L_{\mathfrak{p}_{i}}/L_{\mathfrak{p}_{i}}\sigma_{i}$ as $0\mathfrak{p}_{i}$ -modules for $1\leqq i\leqq r$.
ASSERTION 6. If Theorem 1 is true, then Proposition 4.9 is true.
In fact, as $ N(\sigma_{i})^{-1}\alpha$ is a $\mathfrak{p}_{i}$ -unit for each $i$ , there exists, by Proposition 3.3

and Proposition 3.12, an element $\tau_{i}$ of $G(V_{i},f)$ such that $L_{i}\tau_{i}=L_{i},$ $ N(\tau_{i})=N(\sigma_{i})^{-1}\alpha$ .
Then we have $L_{i}\tau_{i}\sigma_{i}\subset L_{i},$ $ N(\tau_{i}\sigma_{i})=\alpha$ . By Theorem 1, there exists an element
$\sigma$ of $G(V,f)$ such that $L\sigma\subset L,$ $N(\sigma)=\alpha,$ $L_{i}(\sigma-\tau_{i}\sigma_{i})\subset \mathfrak{p}_{i}^{\lambda_{i+1}}L_{i}=\mathfrak{p}_{i}\alpha L_{i}$ for every $i$.
By Proposition 2.7, we have $\alpha L_{i}\subset L_{i}\tau_{i}\sigma_{i}$ . Therefore, by Lemma 1.2, we have
$L_{i}\sigma=L_{i}\tau_{i}\sigma_{i}=L_{i}\sigma_{i}$ . This proves our assertion.

Now exchanging $f$ for $\theta f$ with a suitable $\theta$ of $F$, if necessary, we may
assume that $\nu_{\kappa}(f)>n/2$ for $1\leqq\kappa\leqq t,$ $\nu_{\kappa}(f)=n/2$ for $\kappa<t\leqq u$ . By Assertion 4,
this does not influence the validity of our proof of Theorem 1.

ASSERTION 7. There exists a member $L$ of $\mathfrak{L}_{0}(0)$ satisfying the following
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conditions: i) $N(L)=0$ ; ii) $L$ contains an element $x$ such that $f(x, x)=1$ ; iii)

Proposition 4.9 is true for $L$ .
To prove this, let $U=Ax+Ay$ be an A-space of dimension 2. We can find

an element $\gamma$ of $\mathfrak{g}$ such that $(\gamma, \mathfrak{d})=1,$ $\gamma\equiv 1mod \mathfrak{p}_{\infty\kappa}$ for $1\leqq\kappa\leqq t,$ $\gamma\equiv-1mod \mathfrak{p}_{\infty\kappa}$

for $t<\kappa\leqq u$ . Define a Q-hermitian form $f_{0}$ on $U$ by $f_{0}(x, x)=1,$ $f_{0}(x, y)=0$,
$ f_{0}(y,y)=\gamma$ . Now let $W$ be an A-space of dimension $n-2$ and $f_{1}$ be a non-
degenerate Q-hermitian form on $W$ such that $\nu_{\kappa}(f_{1})=\nu_{\kappa}(f)-2$ for $1\leqq\kappa\leqq t$ and
$\nu_{h}(f_{1})=\nu_{\kappa}(f)-1$ for $t<\kappa\leqq u$ . Then, by Lemma 4.4, (V, $f$) is isomorphic to the
direct sum of $(U,f_{0})$ and $(W,f_{1})$ . Therefore, we may assume that $V=U+W$
$=Ax+Ay+W,$ $W=\{z\in V|f(x, z)=f(y, z)=0\},$ $f=f_{0}$ on $U\chi U$ and $f=f_{1}$ on
$W\times W$. Further we see easily that $1(f_{1})$ is a factor of $J\downarrow(f)$ . Let $c$ be an in-
tegral right o-ideal such that $ N(c)=g\gamma$ , and let $M$ be a maximal lattice in $W$

such that $N(M)=0$ . Put
$K=0X+c^{-1}y$ , $L=K+M$ .

Then, $K$ is a maximal lattice in $U,$ $L$ is a maximal lattice in $V$ ; and $N(K)$

$=N(L)=0$ . Now let the notation be as in Proposition 4.9. The structure of
the $0_{i}$-module $L_{i}/L_{i}\sigma_{i}$ is determined by Proposition 2.12 and Proposition 3.9.
In view of those propositions, we can find an element $\tau_{i}$ of $G(U_{i},f_{0})$ and an
element $\rho_{i}$ of $G(W_{i},f_{1})$ such that $N(\tau_{i})=\alpha,$ $ N(\rho_{i})=\alpha$ , and

$L_{i}/L_{i}\sigma_{i}\cong K_{i}/K_{i}\tau_{i}\oplus M_{i}/M_{i}\rho_{i}$ $(1 \leqq i\leqq r)$ ,

where $\cong$ means $0_{i}$-isomorphism. As $\alpha\equiv 1$ mod $t(f)$ , we have $\alpha\equiv 1mod l(f_{1})_{-}$

By Assertion 6 and by our assumption of induction, there exists an element
$\rho$ of $G(W,f_{1})$ such that $N(\rho)=\alpha,$ $M\rho\subset M$,

$M_{i}/M_{i}\rho\cong M_{i}/M_{i}\rho_{i}$ $(1 \leqq i\leqq r)$ .
By Proposition 4.8, there exists an element $\tau$ of $G(U,f_{0})$ such that $N(\tau)=\alpha_{p}$

$K_{T}\subset K,$ $K_{i}/K_{i}\tau\cong K_{i}/K_{i^{T}i}(1\leqq i\leqq r)$ . Define an element $\sigma$ of $E(V, A)$ by $ z\sigma=z\tau$

for $z\in U$ and $ w\sigma=w\rho$ for $w\in W$. Then it is clear that this $\sigma$ has the re-
quired properties of Proposition 4.9. Our assertion is thereby proved.

ASSERTION 8. For every maximal order $0$ in $A$ , there exists a member $L$

of $\mathfrak{L}_{0}(0)$ for which Theorem 1 is true and $N(L)=0$ .
We take as $L$ the one which satisfies the conditions i-iii) of Assertion 7.

By Assertion 5, Theorem 1 is true for $\alpha=1$ , for this $L$ . Now let the nota-
tion be as in Theorem 1. Then $\mathfrak{g}_{i}N(\sigma_{i})=\mathfrak{g}_{i}\alpha$ . By Assertion 7, there exists
an element $\tau$ of $G(V,f)$ such that $N(\tau)=\alpha,$ $L\tau\subset L$ and $ L_{i}/L_{i}\tau$ is isomorphic
to $L_{i}/L_{i}\sigma_{i}$ as $0_{i}$-module for $1\leqq i\leqq r$. By Proposition 2.13 and Proposition 3.11,
there exists, for each $i$, an element $\epsilon_{i}$ of $G^{0}(V_{i},f)$ such that $L_{i}\epsilon_{i}=L_{i},$ $L_{i}\tau\epsilon_{i}$.

$=L_{i}\sigma_{i}$ . Then we have $L_{i}\sigma_{i}\epsilon_{i}^{-1}\tau^{-1}=L_{i}$ and $N(\sigma_{i}\epsilon_{i}^{-1}\tau^{-1})\equiv 1mod \mathfrak{p}_{l}^{r_{i}}$ . By Assertion 5,
there exist elements $\rho$ and $\eta$ of $G^{0}(V,f)$ such that $L\rho=L,$ $L\eta=L,$ $L_{i}(\rho-\sigma_{i}\epsilon_{i}^{-1}\tau^{-})$

$\subset \mathfrak{p}_{i^{i}}^{\lambda}L_{i},$ $L_{i}(\eta-\epsilon_{i})\subset \mathfrak{p}_{i}^{\lambda_{i}}L_{i}$ . Put $\sigma=\rho\tau\eta$ . We have then $N(\sigma)=\alpha,$ $L\sigma\subset L$ . If
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$z\in L_{i}$ , we have
$z\sigma\equiv z\rho\tau\eta\equiv z\rho\tau\epsilon_{i}\equiv z(\sigma_{i}\epsilon_{i}^{-1}\tau^{-1})\tau\epsilon_{i}\equiv z\sigma_{i}$ mod p5 $tL_{i}$ ,

so that $L_{i}(\sigma-\sigma_{i})\subset \mathfrak{p}_{i}^{\lambda_{i}}L_{i}$ for every $i$ . This proves our assertion.
By Assertions 1, 2, 3 and 8, our Theorem 1 is completely proved.
We get a little weaker result than Theorem 1 for general maximal lattices,

namely:
THEOREM 2. Suppose that $A$ is indefinite. Let $M$ be a maximal lattice in

$V$ not necessarily belonging to the principal genus. Let $\mathfrak{p}_{1},$ $\cdots$ , $\mathfrak{p}_{r}$ be distinct prime
ideals of $F$ and let $\alpha$ be an element of $\mathfrak{g}$ . Let $\sigma_{i}$ , for $1\leqq i\leqq r$, be an element of
$C(V_{\mathfrak{p}_{i}},f)$ . Suppose that $\alpha\equiv 1mod l,$ $M_{\mathfrak{p}_{i}}\sigma_{i}\subset M_{\mathfrak{p}_{i}},$ $ N(\sigma_{i})=\alpha$ for $1\leqq i\leqq r$. Then,

for any set of positive integers $\{\lambda_{1}, \cdots , \lambda_{r}\}$ , there exists an element $\sigma$ of $G(V,f)$

such that $M\sigma\subset M,$ $N(\sigma)=\alpha,$ $M_{\mathfrak{p}_{i}}(\sigma-\sigma_{i})\subset \mathfrak{p}_{i}^{\lambda_{i}}M_{p_{i}}$ for $1\leqq i\leqq r$.
PROOF. Let $0$ be the order of $M$. Take a member $L$ of $\mathfrak{L}_{0}(\mathfrak{o})$ . Let $\{\mathfrak{p}_{r+1}$ ,

. $\mathfrak{p}_{w}$ } be the set of prime ideals $\mathfrak{p}$ of Fsuch that $M_{P}\neq L_{\mathfrak{p}}$ and $\mathfrak{p}\not\in\{\mathfrak{p}_{1}$ , $\cdot$ .. $\mathfrak{p}_{r}\}$ .
For each $\mathfrak{p}_{r+i}$ , we can find, in view of Proposition 2.10 and Proposition 3.5, an
element $\sigma_{r+i}$ of $G(V_{r+i},f)$ such that $M_{r+i}\sigma_{r+i}\subset M_{r+i},$ $ N(\sigma_{r+i})=\alpha$ . Take an in-
tegral ideal $\mathfrak{a}$ of $F$ such that $\mathfrak{a}L\subset M,$ $\mathfrak{a}M\subset L,$ $\mathfrak{a}L_{k}\sigma_{k}\subset L_{k}$ for $1\leqq k\leqq w$ . We
may assume that the prime factors of $\mathfrak{a}$ belong to $\{\mathfrak{p}_{1}, \cdots , \mathfrak{p}_{r}, \mathfrak{p}_{r+1}, \cdots, \mathfrak{p}_{w}\}$ . For
a suitably large positive integer $h,$ $\mathfrak{a}^{h}$ is a principal ideal $\mathfrak{g}\beta$ ; we have then
$\beta L\subset M,$ $\beta M\subset L,$ $\beta L_{k}\sigma_{k}\subset L_{k}$ for $1\leqq k\leqq w$ . By Theorem 1, there exists an ele-
ment $\tau$ of $G(V,f)$ such that $L\tau\subset L,$ $N(\tau)=\beta^{2}\alpha,$ $L_{k}(\tau-\beta\sigma_{k})\subset\beta^{3}\mathfrak{p}_{k}^{\lambda_{k}}L_{k}$ for $1\leqq k\leqq w$ .
Put $\sigma=\beta^{-1}\tau$ . Then $ N(\sigma)=\alpha$ and $M_{k}(\sigma-\sigma_{k})=\beta^{-1}M_{k}(\tau-\beta\sigma_{k})\subset\beta^{-2}L_{k}(\tau-\beta\sigma_{k})$

$\subseteq\beta \mathfrak{p}_{k^{k}}^{\lambda}L_{k}\subset \mathfrak{p}_{k^{k}}^{\lambda}M_{k}$ for $1\leqq k\leqq w$ . As $M_{k}\sigma_{k}\subset M_{k}$ , this implies $M_{k}\sigma\subset M_{k}$ for
$1\leqq k\leqq w$ . If $\mathfrak{p}\not\in\{\mathfrak{p}_{1}, \cdots , \mathfrak{p}_{w}\}$ , we have $L_{P}=M_{\mathfrak{p}}$ , and $\beta$ is a $\mathfrak{p}$ -unit. We have
therefore $M_{\mathfrak{p}}\sigma=L_{\mathfrak{p}}\beta^{-1}\sigma=L_{\mathfrak{p}T}\subset L_{\mathfrak{p}}=M_{\mathfrak{p}}$ . Hence $M_{\mathfrak{p}}\sigma\subset M_{\mathfrak{p}}$ for any prime ideal
$\phi$ of $F$. It follows that $M\sigma\subset M$. This completes the proof.

4.7. Class-number theorem. For every maximal lattice $L$ in $V$, put $N^{0}(L)$

$=N(L)\cap F$. Then $N^{0}(L)$ is a g-ideal. If $L$ is a member of $\mathfrak{L}(0;\{e_{i}\})$ , we have
$N(L)=N^{0}(L)\cdot\prod_{i=1}^{s}\mathfrak{Q}_{i}^{-e_{i}}$ .

THEOREM 3. Suppose that $A$ is indefinite. Then, for every maximal order
$\mathfrak{Q}$ in $A$ and for every genus $\sim\sigma|(0;\{e_{i}\})$ of maximal lattices in $V$, the mapping
$L\rightarrow N^{0}(L)$ gives $a$ one-to-one correspondence between the classes of maximal
lattices in $\mathfrak{L}(0;\{e_{i}\})$ and the ideal-classes modulo $t$ in $F$.

Therefore the number of classes in the genus $\mathfrak{L}(0;\{e_{i}\})$ is equal to the number
of ideal-classes modulo $f$ in $F$.

PROOF. Let $L$ and $M$ be members of $\mathfrak{L}(0;\{e_{i}\})$ . If we have $L\rho=M$ for
an element $\rho\in G(V,f)$ we have $N(L)N(\rho)=N(M)$ , so that $N^{0}(L)N(\rho)=N^{0}(M)$ .
As $N(\rho)\equiv 1mod t$ , the ideals $N^{0}(L)$ and $N^{0}(M)$ belong to the same ideal-class
modulo $l$ in $F$. Conversely, suppose that $\alpha N^{0}(L)=N^{0}(M)$ for an element $\alpha\in F$
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and $a\equiv 1mod t$ . Let $\beta$ be an element of $\mathfrak{g}$ such that $\beta M\subset L$ . Let $\mathfrak{a}$ be an
integral ideal of $F$ such that $\beta M\subset \mathfrak{a}L$ . Let $\mathfrak{p}_{1}$ , $\cdot$ .. , $\mathfrak{p}_{r}$ be the prime factors of
Q. As we have $N(\beta M)=\beta^{2}\alpha N(L)$ , we find, for each $\mathfrak{p}_{i}$ , by Proposition 2.11
and Proposition 3.7, an element $\sigma_{i}$ of $G(V_{i},f)$ such that $L_{i}\sigma_{i}=\beta M_{i},$ $ N(\sigma_{i})=\beta^{2}\alpha$ .
Since $\beta^{2}\alpha\equiv 1$ mod $t$ , we can apply Theorem 2 to $\{L, \sigma_{i}, \beta^{2}\alpha\}$ . Then we get
an element $\sigma$ of $G(V,f)$ such that $L\sigma\subset L,$ $N(\sigma)=\beta^{2}\alpha,$ $L_{i}(\sigma-\sigma_{i})\subset \mathfrak{p}_{i}\mathfrak{a}L_{i}$ . As
$p_{i}\mathfrak{a}L_{i}\subset \mathfrak{p}_{i}\beta M_{i}=\mathfrak{p}_{i}L_{i}\sigma_{i}$ , we have $L_{i}\sigma=L_{i}\sigma_{i}=\beta M_{i}$ by Lemma 1.2. If $\mathfrak{p}$ is a
prime ideal which does not divide $\mathfrak{a}$ , we have $L_{0}=\beta M_{\mathfrak{p}}$ , because $L\supset\beta M\supset \mathfrak{a}L$ .
It follows that $N(L_{\mathfrak{p}})=\beta^{2}\alpha N(L_{\mathfrak{p}})$, and hence $\beta^{2}\alpha$ is a $\mathfrak{p}$ -unit. As $L\sigma\subset L$ and
$ N(\sigma)=\beta^{2}\alpha$ , we must have $L_{0}\sigma=L_{\mathfrak{p}}=\beta M_{\mathfrak{p}}$ . Therefore we have $L_{\mathfrak{p}}\sigma=\beta M_{\mathfrak{p}}$ for
any prime ideal $\mathfrak{p}$ of $F$, so that $L\sigma=\beta M$. Putting $\tau=\beta^{-1}\sigma$ , we get $L\tau=M$.
In view of Proposition 4.5, this proves our theorem.

4.8. Classes with respect to $G^{0}(V, f)$ . If we take $G^{0}(V,f)$ instead of $G(V,f)$ ,

we find that the class-number of each genus is equal to one. In fact, by
Theorem 3 and its proof, we obtain easily

PROPOSITION 4.10. Suppose that $A$ is indefinite. Let $L$ and $M$ be maximal
lattices in $V$ with the same order. Then, lhere exists an element $\sigma$ of $G^{0}(V,f)$

such that $L\sigma=M$, if and only if $N(L)=N(M)$ .
Notation being as in \S 4.3, let $\mathfrak{G}^{0}$ be the subgroup of $\mathfrak{G}$ consisting of ele-

ments $(\sigma_{\mathfrak{p}}, \sigma_{\kappa})$ such that $\sigma_{\mathfrak{p}}\in G^{0}(V_{\mathfrak{p}},f)$ for every $\mathfrak{p}$ and $\sigma_{\kappa}\in G^{0}(V_{h},f)$ for every
$\kappa$ . Then $\mathfrak{G}^{0}$ can be regarded as the adele-group of $G^{0}(V,f)$ . Put $G^{0}=G^{0}(V,f)$

and $\mathfrak{U}_{L}^{0}=\mathfrak{U}_{L}\cap \mathfrak{G}^{0}$ . Then Proposition 4.10 implies the equality

$\mathfrak{G}^{0}=\mathfrak{U}_{L}^{0}\cdot G^{0}$

for every maximal lattice $L$ in $V$.

4.9. Elementary divisors of lattices. Let $L$ and $M$ be members of the
same genus $\mathfrak{L}(0;\{e_{i}\})$ . For every prime ideal $\mathfrak{p}$ of $F$, we can define, as in \S 2.5
and \S 3.2, the set of elementary divisors $\{L_{\mathfrak{p}} : M_{\mathfrak{p}}\}$ . We put $\{L:M\}_{\mathfrak{p}}=\{L_{\mathfrak{p}} : M_{\mathfrak{p}}\}$

and call it the $\mathfrak{p}$ -part of the set of elementary divisors of $M$ relative to $L$ .
The (global) set of elementary divisors of $M$ relative to $L$ is defined as the join
of $\{L:M\}_{P}$ for all prime ideals $\mathfrak{p}$ of $F$ and denoted by $\{L:M\}$ .

THEOREM 4. Suppose that $A$ is indefinite. Let $L,$ $M,$ $K$ be maximal lattices
in $V$ belonging to the same genus. Then, we have $\{L:M\}=\{L:K\}$ if and only

if there exists an element $\gamma$ of $G^{0}(V,f)$ such that $L\gamma=L$ and $M\gamma=K$

PROOF. The ’ if ‘ part is clear. Suppose that $\{L:M\}=\{L:K\}$ . Let $\Psi$ be
the set of prime ideals $\mathfrak{p}$ of $F$ for which $L_{\mathfrak{p}}=M_{\mathfrak{p}}=K_{\mathfrak{p}}$ does not hold. By
Lemma 1.1, $\Psi$ is a finite set. By Proposition 2.13 and Proposition 3.11, there
exists, for each $\mathfrak{p}\in\Psi$ , an element $\gamma \mathfrak{p}$ of $G^{0}(V_{\mathfrak{p}},f)$ such that $L_{\mathfrak{p}}\gamma_{\mathfrak{p}}=L_{\mathfrak{p}}$ and
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$M_{\mathfrak{p}}\gamma_{\mathfrak{p}}=K_{\mathfrak{p}}$ . Take a positive integer $c$ such that $\mathfrak{p}^{c}M_{\mathfrak{p}}\subset L_{\mathfrak{p}}$ and $\mathfrak{p}^{c}L_{\mathfrak{p}}\subset K_{\mathfrak{p}}$ for
every $\mathfrak{p}\in\Psi$ . By Theorem 2, there exists an element $\gamma$ of $G(V,f)$ such that
$N(\gamma)=1,$ $L\gamma\subset L,$ $L_{\mathfrak{p}}(\gamma-\gamma_{\mathfrak{p}})\subset \mathfrak{p}^{2c+1}L_{\mathfrak{p}}$ for every $\mathfrak{p}\in\Psi$ . Then obviously $L\gamma=L$ ,
and $M_{\mathfrak{p}}(\gamma-\gamma_{\mathfrak{p}})\subset \mathfrak{p}^{-c}L_{\mathfrak{p}}(\gamma-\gamma_{\mathfrak{p}})\subset \mathfrak{p}\cdot \mathfrak{p}^{c}L_{\mathfrak{p}}\subset \mathfrak{p}K_{\mathfrak{p}}=\mathfrak{p}M_{\mathfrak{p}}\gamma_{\mathfrak{p}}$ . By Lemma 1.2, we have
$M_{t)}\gamma=M_{\mathfrak{p}\gamma \mathfrak{p}}=K_{\mathfrak{p}}$ for every $\mathfrak{p}\in\Psi$ . If $\mathfrak{p}\not\in\Psi$ , we have $M_{\mathfrak{p}}\gamma=L_{\mathfrak{p}}\gamma=L_{\mathfrak{p}}=K_{\mathfrak{p}}$ .
Hence $M_{\mathfrak{p}}\gamma=K_{\mathfrak{p}}$ holds for any prime ideal $\mathfrak{p}$ of $F$, so that $M\gamma=K$ This
proves the ‘ only if ’ part.

PROPOSITION 4.11. Suppose that $A$ is indefinite. Let $L$ and $M$ be maximal
lattices in $V$ belonging to the same genus. Define the subgroups $\mathfrak{U}_{L}$ and $\mathfrak{U}_{M}$ of
the adele-group $\mathfrak{G}$ as in \S 4.3. Put $\Gamma_{L}=\mathfrak{U}_{L}\cap G,$ $\Gamma_{M}=\mathfrak{U}_{M}\cap G$ . Then we have,

for every $\xi\in \mathfrak{G}$ ,

$\mathfrak{U}_{L}\xi \mathfrak{U}_{M}=\mathfrak{U}_{L}\xi\Gamma_{M}=\Gamma_{L}\xi \mathfrak{U}_{M}$ .

PROOF. It is clear that $\mathfrak{U}_{L}\xi \mathfrak{U}_{M}\supset \mathfrak{U}_{L}\xi\Gamma_{M}$ . Let $u$ be an element of $U_{M}$ . As
$Mu=M$, we see easily, on account of the definition of $U_{M}$ , that $\{M:L\xi u\}$

$=\{M:L\xi\}$ . By Theorem 4, there exists an element $\gamma$ of $\Gamma_{M}$ such that $ L\xi u=L\xi\gamma$ .
It follows that $\mathfrak{U}_{L}\xi u=\mathfrak{U}_{L}\xi\gamma\subset \mathfrak{U}_{L}\xi\Gamma_{M}$ . This shows $\mathfrak{U}_{L}\xi \mathfrak{U}_{M}\subset \mathfrak{U}_{L}\xi\Gamma_{M}$ , and hence
$\mathfrak{U}_{L}\xi \mathfrak{U}_{M}=\mathfrak{U}_{L}\xi\Gamma_{M}$ . Similarly we get $\mathfrak{U}_{M}\xi^{=1}\mathfrak{U}_{L}=11_{M}\xi^{-1}\Gamma_{L}$ , so that $\mathfrak{U}_{L}\xi \mathfrak{U}_{M}=\Gamma_{L}\xi \mathfrak{U}_{M}$ .
This completes the proof.

The above theorem and proposition are generalization of [9, Proposition
1.4, Proposition 2.3]. These are necessary for our future investigation of the
Hecke-ring of $G$ .

Osaka University
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