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Hecke’s Dirichlet series obtained from modular forms can be regarded as
zeta-functions attached to the general linear group GL(2,Q) over the rational
number field Q. In general, we may expect to obtain zeta-functions of this.
kind for a fairly wide class of algebraic groups defined over @. In order to:
realize this, it is necessary to develop, in the first place, the theory of ele-
mentary divisors for any algebraic group G in question. This is actually done:
in the case where G is the multiplicative group of a semi-simple algebra. Fur-
ther, the case of the orthogonal group is investigated in detail by M. Eichler
[3] In both cases, there are fundamental theorems, due to Eichler [4, 5] and.
M. Kneser [6], which may be called the approximation theorem in the group:
G, from which one can easily derive an important conclusion about the class-
number for G. This approximation theorem plays an essential role also in the-
theory of Hecke-rings attached to quaternion algebras [8, 9]. In fact, by
means of the theorem, we can prove the isomorphism between the Hecke-ring:
defined by the idele-group of a quaternion algebra D and the Hecke-ring
defined by the unit-groups of maximal orders in D (cf. [9, §2]).

The purpose of the present paper is to give an extension of the theory
of elementary divisors for the group of similitudes of a hermitian form over
a quaternion algebra, and to prove an approximation theorem for this group.
Let F be the quotient field of a Dedekind domain g and .4 a quaternion (not
necessarily division) algebra over F. Let V be aleft A-module which is iso-
morphic to the product of # copies of A. We consider an A-valued non-de-
generate hermitian form f(x,y) on V with respect to the canonical involution
of A (cf. §2.2). Let G be the group consisting of all A-automorphisms ¢ of
V' such that f(xo,yo)=N()f(x,y) for x€V, yeV with No)e F. Take a
maximal oder o in A. Let L be a g-lattice in V such that oL C L. We denote:
by N(L) the two-sided o-ideal generated by f(x,y) for x L, ye L, and call
it the norm of L. We say that L is maximal if L is a maximal one among
the lattices with the same norm. As in [3], our theory is mostly concerned
with maximal lattices in V. If A is the total matric algebra of degree 2
over F, then G is isomorphic to the group of similitudes of an alternating
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form over I with 2x variables. We treat this case in §1 and §2.5, and prove
fundamental propositions concerning the existence of canonical bases for maxi-
mal lattices and their elementary divisors. We give in § 3 similar propositions
in case where A is a division quaternion algebra over a p-adic field. These
propositions correspond to the results of the same kind obtained in the case
of orthogonal groups [Eicher, 3] and of quaternion anti-hermitian forms [Tsu-
kamoto, 107]. In §4, we consider the global theory, namely the case where F'
is an algebraic number field. Our principal aim is to prove approximation-
theorems for G (Theorems 1 and 2 of §4.6) in case where A is indefinite. As
an application of the theorems, we can show that the classes of maximal
lattices in each genus are in one-to-one correspondence with the ideal-classes
modulo t in F for a suitable product t of infinite prime spots of F (Theorem
3). If we denote by G° the unitary group of f, i.e. the subgroup of G com-
posed of the elements ¢ such that N(s)=1, then each genus with respect to
G° consists of only one class (§4.9). Finally we give a result on global set of
elementary divisors of maximal lattices (Theorem 4). As explained in the
beginning, our theory can be considered as preliminaries for the theory of the
Hecke-ring of G. In fact, by means of our propositions and theorems, we can
develop such a theory, which is a generalization of the theory in [9, §2].
As for this, we have only given Proposition 4.11. A further investigation of
the Hecke-ring of G will be made in a subsequent paper.

NOTATION. We denote by Z, Q, R, C and K, respectively, the ring of
rational integers, the rational number field, the real number field, the complex
number field, and the division ring of real quaternions. For a ring S with
an identity element, M,(S) denotes the ring of matrices of degree m with
entries in S; the identity matrix of degree m is denoted by 1,,; and the trans-
pose of a matrix X is denoted by ‘X. We mean by 9;; the usual Kronecker’s
delta, namely J,;=0 or 1 according as ¢+j or i=j.

§1. Arithmetic of alternating forms.

1.1. Alternating form and symplectic group. Let F be an arbitrary field
and W a vector space over F of finite dimension. We denote by E(W) the
ring of all F-linear mappings of W into itself, and by GL(W) the group of
regular elements of E(W). We write the operation of an element of E(W)
on the right; so we have (ax)g =a(xo) for e € F, x€ W, c = E(W). Let g(x,v)
be a non-degenerate alternating form on W. We denote by G(W, g) the sub-
group of GL{W) consisting of the elements ¢ of GL(W) for which there exists
a number N(o) of F such that g(xo, yo) = N(o)g(x,y) for every x,y =W, and
denote by G°(W, g) the symplectic group associated to g, namely, the subgroup
of G(W, g) consisting of the elements ¢ such that N()=1.
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1.2. Lattices in a vector space. Let ¢ be a Dedekind domain and F the
quotient field of g. Let W be a vector space over F. By a g-lattice in W, we
understand a finitely generated g-submodule L of W such that FL=W. Let
P be a prime ideal of g. We denote by F) and g, the p-completions of F' and g,
respectively. Put Wp:WéFpr. For every g-lattice L in W, put L,=aL;

then L, is a gy-lattice in W,. The following lemma is well-known.

LEMMA 1.1.- Let L be a g-lattice in W. Take, for each prime ideal b of g,
a Qv-lattice M* in Wy. Then therve exists a g-lattice M in W such that M, = MP®
for every b, if and only if M*=L, for all except a finite number of 9. If such
a lattice M exists, we have M= Q(Mpm w).

LEMMA 1.2. Let Ly be a gy-lattice in Wy ; let 6 and 7 be elements of GL(Wy).
Suppose that Li(o—7)T9PLyo. Then we have Lyo = Lyt.

ProOoOF. Let x,---,x, be generators of L, over g,. Put M= Lyo, K= L,t.
‘Then we have x;0—x;r € 9MC M for every i. As M and K are respectively
generated by the x;0 and the x;7, we get KC M. Further we have M C K-+pM.
From this we obtain inductively M cC K+v°M for every positive integer e.
This implies M C K, so that M= K.

1.3. Canonical base of a lattice with respect to an alternating form. We
first prove a generalization of a well-known theorem of Frobenius.

PROPOSITION 1.3. Let g be a Dedekind domain and F the quotient field of
a. Let W be a vector space of dimension 2n over I and g(x,y) a non-degenerate
alternating form on W. Let M be a g-lattice in W. Then there exist a base
V1, s Vs 20, =+ 20} Of W over F and (fractional) g-ideals ay, -+, a, such that

guy)=g@,z)=0,  g(¥,2) =04,
M=gy+8y.+ -+ +09,F 0202+ =+ +0nZn,
G200, - DAy
The ideals a; arve uniquely determined by M and g.

ProoF. We prove this by induction on n#. For every x € M, put a, = g(x, M).
Obviously, a, is a g-ideal. As M is a g-lattice, there exists a maximal one
among the a, say a;; and take an element y, of M so that a,=g(y,, M). As
we have g=g(y,, ai'M), there exists an element z, of a;'M such that g(y,, z,)
=1. Putb=g(M, z). Asb=g(y,z)=1, we have bDg, so that a,b =0a,2(}M, z,)
Da,. Assume that 6#¢. Then a,g(M, z,)+a,, and hence there exist an
element # of M and an element « of a, such that g(u,«az)<a,. Put B
= —g(u, az,), r =g(y,, #). We have then g(y,~+az,, u—7rz,)=pH. Since y €q, and
a,2, C M, the element #—rz, is contained in M. We note that g(y,+az,a,2,)
=q,. Therefore, we have

gy, taz, MD)Da+af2a;, a,+g8 #a;.
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This contradicts the maximality of a;., Hence we must have g(M, z)=g.
Now define a submodule M’ of M by M'={ve M| g(y,v)=g(z;,v)=0}. For
every w € M, put § =g(y, w), 7 =2g(z, w), wo=w+7y,—z,. Then fca,neqg,
and we have g(y,w,) =gz, w,)=0, so that w, = M. This shows that M
=gy,+a,2,-+- M. Applying our induction to M’, we get an expression M’
=gyt +GVn 0,2+ +an2, With the properties a; D+ Da,, g(vs,¥,) = 2(2s, 2,)
=0,y 2;)=0;;for 2=<i=m,2=<j=mn. Therefore, the first assertion is proved
if we show a,Da,. Let # and » be elements of M. We have g(y,+u, M)
D gy, tu, a,2,+0v) Da+ag(u, v) Da,. By the maximality of a,, we must have
g(u,v) € a,, namely g(M’, M")C q,. This implies a, Da, and completes the proof
of the first assertion. The invariance of the ideals a; is easily shown by
“localization”. Namely, for every prime ideal p of g, consider W,= W(%)F,,g

and a gy-lattice M, =g,M in W,. Then the invariance is an immediate con-
sequence of the theory of elementary divisors over a principal ideal domain
(cf. [2, §5.1, Theorem 17). We can also prove the invariance more directly
with no use of localization.

We call the ideals a; of [Proposition 1.3 tke invariant factors of M (with
respect to g), and call {y,, ===, 3, 21, -+, 2,} @ canonical base of M (with respect
to 2).

1.4. Maximal lattices. Let F, g, W, g be the same as in [Proposition 1.3,
For every g-lattice M in W, we see that the first member a, of the invariant
factors of M is the g-ideal generated by g(x,») for x,y= M. We put N (M)
=aqa, and call N (M) the norm of M with respect to g. For simplicity, we fix
g and write N(M)=N,(M). We say that M is maximal (with respect to g)
if M is a maximal one among the g-lattices in W with the same norm (with
respect to g). It is clear that N(Mo)= NMM)N(c) for every o= G(W,g). If
M is maximal, Mo is maximal for every o G(W, g). By [Proposition 1.3, we
see easily that M is maximal if and only if the invariant factors of M are
all equal to N(M). Furthermore, if M is a g-lattice in W and a is a g-ideal
such that a D N(M), we can find a maximal lattice L in W such that LD M,
N(IL)=a.

PROPOSITION 1.4. Let M, and M, be maximal lattices in W. Then we have
Mo = M, for an element o of G(W,g), if and only if N(M,)*N(M,) is a princi-
pal ideal.

ProOF. If M,o= M, for an element ¢ € G(W, g), we have N(M,) = N(M,o)
= N(M,)N(o) ; this proves the ‘only if’ part. Conversely, put a, = N(M,;) and
arla,=ga with aeF. Let {y, - ,¥n2zy,,2,} and {uy, -, un 0, ,0,} be
respectively canonical bases of M, and M,. Define an element ¢ of E(W) by
yio=u; 2,0 =av; for 1=i<#xn. Then we see easily ¢ € G(W, o), No)=«, M,s
= M,. This proves the ‘if’ part.
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We say that maximal lattices M, and M, in W are eguivalent if M, = Mo
for an element ¢ of G(IW,g), and call a maximal set of mutually equivalent
maximal lattices a class of maximal lattices. By [Proposition 1.4, we observe
that the mapping M— N(M) gives a one-to-one correspondence between the classes
of maximal lattices in W and the ideal-classes of F.

1.5. Invariant factors of elements of G(W, g). Notation being as in §§1.3
-4, suppose that g is a principal ideal domain.

PROPOSITION 1.5. Let L and M be maximal lattices in W. Lel « be an
element of I such that NIOM)=aN(L). Put N(L)=a. Then there exist a ca-
nonical base {y1, -+, Vn 21, =+ » 2} 0f L and elements ay, +++ , Qyn, by, -+, by of F such
that

L=gy+ - +8ypt0az+ - +az,,

M= ga1y1+ M +Gdn3’n+ab12’1+ o +abnzn,
a=aby= -+ = apby,
ga; D - Dga, Dgb, D - Dab; .

PrROOF. We proceed by induction on #. Put c={ceF|cMcCL}. 1t is
easy to see that ¢ is a g-ideal. As g is a principal ideal domain, we have
¢=gc, for an element ¢, of F. Put M’ =c¢,M. Then M is a maximal lattice,
and NUM)=claa, g={ceF|cM' cL}. If we prove our proposition for M’
and c¢,’a, we get easily the assertion for M and a. Therefore, we may as-
sume that M= M’, namely, g={c € F|cMcCL}. The last relation implies that
LD M and M contains an element y, =0 such that L/gy, is a free g-module.
Put M,=M+a«aL. Then M, is a g-latticein W. As L2 M and N(M) = aN(L),
we must have a =g; hence we see easily NM,))=aNL)=NM). As M is
maximal, we must have M= M, so that MD«al. Now taking a canonical
base of L, and expressing y, in a linear form of the base, we find that g(y,, L)
=a. By the proof of Proposition 1.3, we can find an element z, of a™*L such
that g(y,,2,)=1; and if we put U={xe€ W gy, x)=g(z,x)=0}, Ly =LNU,
we get L=gy,+az,+L,, We see easily that L, is a maximal lattice in U and
N(Ly)=a. As aLC M, we have aaz, C M. For every x< M, we have g(y,, x)
e NIM)=aa, gz, x) €a*N(L)=g. Hence if we put g(y, x)=~¢a, gz, x)=1,
then €€a, n=g. Put x,=x+79y,—faz,. We have then x,= M and g(¥,, %)
=g(zy, %) =0, so that x,= U~ M. This proves that M =gy,+aaz,+M, if we
put My=Un~M. As M is maximal, M, must be a maximal lattice in U such
that MM, =awa. Applying our induction assumption to L, and M, we find
a canonical base {v,, =+, ¥n, 2s, **+, 2,} Of L, and elements a,, -+, &, by, *++, b, Of
F such that
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Ly=0y:+ - +@yptaz+ - +az,,

M, =ga,y,+ -+ +08a, v, +abyz,+ -+ +ab,z,,
Q= a,b,= - =aub,,

qa; D+ DA, D0b, D - Db,

As L,D M, we have g Dga,, so that ¢b, Dga. Putting ¢;=1 and b, =«, we
obtain our assertion for L and M.

PROPOSITION 1.6. Let L be a maximal lattice in W. Let {#u,, -+, tn, U1, -+, Un}
be a canonical base of L. Denote by I'° the subgroup of G W, g) consisting of
elements v of GYW, g) such that Ly =L, and by 4 the set of elements o of G(W, &)
such that w0 = au;, vi0=bw; for 1 =i n with elements a;, b; of F and ga, D -
Daa, Db, D - Dby, Then we have GOV, g)=1"-4-1".

PROOF. Let ¢ be an element of G(W, g). Put M= Lo, a« = N(o), and apply
Proposition 1.5 to this {L, M, a}. Then we get a canonical base {y;, z;} of L
and elements a;, b; of F with the properties of that proposition. Define two
elements y and z of E(W) by wu;yr =y, vir = 24, it =att;, vic =bw;. We see
easily that y I and r = 4, M¢)=«. Further we have Lzy = Lo. Hence if
we put e¢ry =0, we have Le=L, e = G(W, g), N(e)=1, so that e I'". It follows.
that o =¢ry I - 4-1° Our proposition is thereby proved.

§2. Hermitian forms over a quaternion algebra.

2.1. Quaternion algebras. By a quaiernion algebra over a field F, we
understand a central simple algebra A over F such that [A:F]=4. Every
quaternion algebra A over F has an involution ¢—a’, which is uniquely de-
termined by the property that (X—a)(X—a’) is the principal polynomial of &
over F. We call it the canonical involution of A and always denote it by ¢—a’.
For every e = A, we put

Na)=aa’, Tr@)=a+ta’ .

If A is not a division algebra, A is isomorphic to MyF); and for every
a € M(F), N(a) is just the determinant of @« and Tr(«) is the trace of ¢. Here-
after we assume that the characteristic of F' is different from 2. Then, for
an element @ of A, we have ¢=¢’ if and only if e = F.

If F is the quotient field of a Dedekind domain g, we can develop ideal-
theory in A. Here we recall only the definition of different and norm of
ideals. Let o be a maximal order in A. The different ® =%(0/g) of o with
respect to ¢ is the integral two-sided o-ideal defined by

Di={xe A|Tr(xo)Cg}.
Let a be a right (resp. left) o-ideal. We denote by N(a) the g-ideal generated
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by the elements Na@) for a<=a. If we put a’={x’'|x=a}, then a’a= N a)o
(resp. aa’ = N(a)o).

2.2. @-hermitian forms. Let A be a quaternion algebra over a field F.
By an A-space of dimension n, we understand a left A-module V isomorphic
to the product of n copies of A; and we put » =dim,V. We call a set of
elements {x,, -, x,} of V a base of V over A if V= Ax,+ --- + Ax,.

Let V be an A-space of dimension #». We understand by a Q-hermitian
form on V an F-bilinear mapping f of VXV into A satisfying

flax,)=af(x,y), &y =%

for ac A, xV, ye V. We call f non-degenerate if f(x, V)= {0} implies x=0.

PROPOSITION 2.1. Let A be a quaternion algebra over a field F and V be
an A-space of dimension n. For every Q-hermitian form f(x,y) on V, there exists
@ base {x,, - ,x,} of V over A such that f(x;, x)=a;0;; for 1 <i<n, 1=<j<n
with o, F. Moreover, suppose that f is non-degenevate and A satisfies the
following condition :

(D) For every a € F, there exists an element a of A such that N(a)= «.
Then there exists a base {yy, -, ¥} of V over A such that f(y:,y;)=20;;.

This is well-known and in fact easily proved. If A= MyF), the condi-
tion (D) is clearly satisfied.

Let V be an A-space. We denote by E(V,A) the ring of all F-linear
mappings ¢ of ¥ into itself satisfying (ex)o = a(xo) for every a€ A, x<V,
and by GL(V, A) the group of regular elements of E(V,A). Let f be a non-
degenerate @Q-hermitian form on V. We denote by G(V,f) the subgroup of
GL(V, A) consisting of the elements ¢ for which there exists a number N(o)
of F such that f(xo,yo)=N(o)f(x,y) for every x €V, yeV; and put GV, f)
={o=GV,f)| Nlo)=1}. G%V,f) is clearly a normal subgroup of G(V,f). If
£ is a non-zero element of F, we have f(&x, £y)=E&%(x,y); so we often con-
sider & as an element of G(V,f). If dim,V' =1, E(V, A) is isomorphic to A4, and
G(V,f) is isomorphic to the group of regular elements of A; for every o
e G(V, 1), N(o) coincides with N(o) of o considered as an element of A.

Fix a base {x, -, x,} of V over A. Every element ¢ of E(V,A) is re-
presented by a matrix (s;;) of M,(A) with respect to {x;}:

(1) in:ilsijxj (lélé n).
=

For every element S=(s;;) of M,(A4), we put S'=(#;) with #;=s;/. Then
S— S’ is an involution of M,(A). Let f(x,») be a @-hermitian form on V.
Define an element H=(%;;) of M, (A) by A;;=s(x;,x;,). Then we have H = H.
An element ¢ of GL(V, A) belongs to G(V, f) if and only if we have SHS = «aH
with a € F for the matrix S corresponding to ¢; and then we have N(o)=a.
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2.3. Elementary theory of maximal lattices. Let ¢ be a Dedekind domain
and F the quotient field of g. Let A be a quaternion algebra over Fand V an
A-space of dimension #. Take a non-degenerate Q-hermitian form f on V.
Let L be a g-lattice in V. Puto={a= AleLCL}. Thenoisan order in A.
We call o the ovder of L and say that L is normal if o is a maximal order in
A. Assume that L is normal. We denote by N,(L) the two-sided o-ideal gen-
erated by the elements f(x,y) for xe L, y<= L, and call N L) the norm of L
with respect to f. We denote N(L)simply by N(L) when we fix f and there
is no fear of confusion.

Now, for every prime ideal p of g, consider the p-completion Fy and g, of
F and ¢. Put Ap:A(%QFp, Vp:V(?Fp. Then T, can be considered as an A,-

space of dimension » in a natural manner. Further f is uniquely extended
to a non-degenerate @-hermitian form on V,, which we denote again by f.
The following proposition is an easy consequence of our definition.

PROPOSITION 2.2. Let L be a g-lattice in V. If o is the ovder of L, then
0p (=qw0) is the ovder of Ly (=@L). L is normal if and only if L, is novrmal
for every prime ideal b of g. If L is normal, we have N(L), = N(Ly).

Let L be a normal lattice in ¥ and o the order of L. We call L maximal
(with respect to f) if L is a maximal one among the normal lattices with the
same order » and the same norm N(L).

PROPOSITION 2.3. Let L be a ¢-lattice in V and o an element of G(V,f).
Then Lo is a g-lattice in V with the same ovder as L. If L is normal, so is La;
and we have N(Lo)= N(L)N(c). Movreover, if L is maximal, so is Lo.

This is also an easy consequence of definition. Further, by
and [Proposition 2.2, we obtain

PROPOSITION 2.4. A normal g-lattice in V is maximal if and only if Ly is
wmaximal for every prime ideal b of g.

Hereafter, we call a normal maximal g-lattice in V simply a maximal lat-
tice in V.

PROPOSITION 2.5. Let L be a normal g-lattice in V with the ovder o. Let a
be a right o-ideal and o, the left order of a. Then aL is @ normal g-lattice in V
with the order v,, and N(aL)=aN(L)a™' - N(a). Moreover, if L is maximal, so
is al.

PrROOF. The first assertion is clear. Let x= Zale and y= Zb,yj be ele-

ments of aL where @;,b; caand x;,y,€ L. Then we have f(x,y)= Eazf(xl,y])b’
eaMNML)’'. As aa’ =0,Na), we get aN(L)a' =aN(L)a™* - Na). Therefore we
obtain N(aL) CaN(L)a™* - N(a). Substituting a™* and oL for a and L, we get
the inverse inclusion, so that the equality NMal)=aN(L)a7'N(a) holds. The
last assertion follows easily from this relation.

PROPOSITION 2.6. Let {x,,--,x,} be a base of V over A such that f(xi x;)
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=aa;0;; with a; € F. Let o be a maximal order in A and b, -+, b, be left o-ideals
such that a,N(6,))= -+ = a,N(O,). Then L="0x,+ - +b,x, is a maximal lattice
with the ovder v and N(L)=a,N(b)o.

PrROOF. It is clear that L is a g-lattice in V with the order o, and N(L)
=a;Nb,)o. Let M be a g-lattice with the order » such that M DL and N(M)

=N(L). Let y= szxz be an element of M with b, A. We have ba;b}

=f(y, bx) N(M) N(L)= a;b;b5, so that b; =b;. This implies y € L and hence
M=L. Therefore L is maximal.

PROPOSITION 2.7. Let L and M be maximal lattices in V with the same ovder.
Let a be a g-ideal. If LD M and NM)DaN(L), then MDal.

PROOF. As aNML)C N(M)c N(L), a is an integral ideal. Put K= M+-aL.
Then K is a g-lattice in ¥V with the same order as L. We have f(X K)
CfM, MD)+af(M, L)+af(L, M)+ a?®f(L, L) N(M), so that N(K)=N(M). By
the maximality of M, we must have K= M, and hence oL C M.

ProPoSITION 2.8. Let M be a normal g-lattice in V. Then there exists a
maximal lattice L, with the same ovder as M, such that N(LY= N(M) and LD M.

ProOOF. Let o be the order of M. Take a base {x,--,x,} of V over A
such that x; = M for every i. Put K= {y|f(», x,) € N(M) for every i}. It is
easy to see that K is a g-lattice in V" with order o. Now, let L be a g-lattice
in V with order o such that LD M and N(L)=NWM). If y= L, we have f(y, x,)
e N(L)= N(M), so that y= K. Hence L is contained in K. As K is a g-lattice,
the ascending chain condition holds for the g-lattices contained in K. There-
fore, we can find a maximal one among the lattices containing M, with order
o and with norm N(M). This proves our proposition.

2.4. The relation between alternating form and Q-hermitian form. We
now consider the case A= M,(F) for an arbitrary field F. Let ¢; (i=1,2;
7=1,2) be the matrix units of A. We note that ef,=e,,, ela= —e,, €)= —e,.
Let V' be an A-space of dimension » and f a Q-hermitian form on V. Put
W,=eyV for i=1,2. Then W; is a vector space over F of dimension » for
i=1,2; and V is the direct sum of W, and W,. If x,y = W,, we have f(x,»)
= flenx, e;1y) = e, f (%, ¥)ey, € Fey,. Hence we can define an F-bilinear mapping
gof W, xW, into F by
) fx, =g, ye;. .

As ely= —e,,, we have g(v, X)e,, =f(y, x) =f(x,v)Y = —g(x,¥y)e;,;, so that g is an
alternating form on W, If o< E(V, A), we have W,o0 C W, ; so the restriction
of ¢ to W, gives rise to an element of E(W,), which we denote by g,.

PROPOSITION 2.9. Notation being as above, the mapping ¢— o, gives an iso-
morphism of E(V,A) and GL(V, A) onto E(W,) and GL(W,), respectively. More-
over, suppose that f is non-degenerate. Then g is non-degenerate; and c— o,
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gives an isomorphism of G(V,f) and GV, f) onto GIW,, g) and G W,g), re-
spectively ; and further we have N(o)= N(o,) for o € G(V,f).

This can be proved in an almost straightforward way. By
2.1, there exists a base {x,,---,x,} of V over A such that f(x;, x;)=9;;. Using
matricial representation with respect to this base, the mapping o—g, is given
explicitly as follows. First note that {e;,x; e,x; (1 =i=n)} is a base of W,
over F. Let o be an element of E(V, A) and S=(s;;) the element of M,(A)
determined by (1) of §22. Put enmi=9; ewti=2 and sy=( % ”U) with

(% 1%}
aijs bij, Cijs dij in . Then we have ¥yi0 — ﬁlaijyj+£lbijzj, zi(J:ijcijyj—{—Zn]]dijzj.
J= J= Jj= J=
Now define an isomorphism ¢ of M,(A) onto M,,(F) by z(sij):< EZ“)) (<cl;”; )
(%) (%
Then o, is represented by ¢(S) with respect to the base {y;,z;}. As f(x; x;)
171
=0:j, We get g(v,3;) = g(21,2;) =0, g(y3, 2) = —0;5. Put J= < _(1) 0 ) Then
N (i) —" i) N\ _ 7.t rayi-t . , .
we have () =( _, (B ) =T 4. Therefore, if SS'=al, with
—(cs;) (@:j)
a e F, we have «(S)]-“(S)=«J. This will give a ‘non-intrinsic’ proof of
[Proposition 2.8

2.5. Paraphrase of the result of §1. The notation A= M,(F), V, f, W;
g being as in § 24, suppose that F'is the quotient field of a Dedekind domain

g. For every g-ideal ¢, put n(c):gen+Ce12+c‘1e21+ge22:( g_l ; ) Then, o{c)
is a maximal order in A; and for every maximal order o in A, there exist
an element @ of A and a g-ideal ¢ such that ava”*=0(¢). Fix a g-ideal ¢ and
put 0=o0(c). Let L be a g-lattice in ¥V with the order o. Put eyl =M;. Then
we have M;=L\W;, L=M,+M,; and M; is a g-lattice in W,. Further we
have M, =ce,,M,, M,=c"e,,M,. Now, by [Proposition 1.3, there exist g-ideals
a, - ,a, and a base {y; z;} of W, over F with the properties of that proposi-
tion for M= M,. Then we have

My =T"eyyt - e Yt aes 20 o T ARe012,
Put x,= y;—e,zi, Bi:ge11+caielz+c—1e21+aiezz:( - (Zilai ) for I<i=n Then
the b; are left po-ideals; and we see easily L =0+ --- +b,%,, b,D --- Db,
S (%, %;)=0;. Further we have N(L)= N(b))o, N(b,)=c""a,=c"*N,(M,). There-
fore, if L is maximal, we must have b, = .- =b,, and hence a,= --- =q,, so
that M, is maximal with respect to g&. Thus we obtain
PROPOSITION 2.10. Let F be the quotient field of a Dedekind domain o, and
A=M(F). Let V be an A-space of dimension n and f be a non-degenerate Q-
hermitian form on V. Let L be a normal lattice in V and o the order of L.
Then there exist left o-ideals by, -+, b, and a base {x,, -+, x,} of V over A such
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that
L=5bx+4 - +b,x,, bD . Db,,
S(x, xj) =04,

and we have N(L)= N(b). Moreover, if L is maximal, b, = --- =b,.

PRrROPOSITION 2.11. Notation being as in Proposition 210, let L, and L, be
maximal lattices in V with the same order 0. If Lo =L, for an element o of
G(V, 1), then aN(L,) = N(L,) for an element o of F. Conversely, if aN(L,)= N(L,)
with a € F, we can find an element o of G(V,f) such that Lo =L, N(o)=«.

ProoF. The first assertion is obvious. Now suppose that N(L,)=aN(L,)
with a« € F. We may assume that o =o(c¢) for a g-ideal ¢. Put Mi=e¢,L, M?3
=eyL, for i=1,2. By the above consideration, M}{ and M} are maximal lat-
tices in Wy, and N (Ma = N (M?). By Proposition 1.4 and its proof, there
exists an element o, of G(W,, ) such that Mis,= M} N(s,)=«a. Let o be an
element of G(V,f) corresponding to g, by the mapping of Proposition 2.9. We
get then N(o)=a, and Lo =L,, since L,=0M}, L,=0M3; This completes our
proof. We can also derive our proposition more directly from Proposition 2.10.

PROPOSITION 2.12. Notation being as in Proposition 2.10, suppose that ¢ is
a principal ideal domain. Put 0= Myg). Let L and M be maximal lattices in
V with the order 0. Let 7 and o be elements of F such that N(L)=n0 and N(M)
=aN(L). Then there exist a base {x,, ---, x,} of V over A and elements a,, -+, ay,,
by, -+, b, of F such that

I, xj) = 775ij ’
L= Dxl+ o +Dxn ’

M=oe,x,+ - +0e2,, ;= g‘ 2.) O=izw,

ga, D - Dga, D¢b, D - Dgby,
a=ab,=--=ayb,.

Proor. Put L,=e, L, M,=e,, M. Then L, and M, are maximal lattices
in W, with respect to g, and N(L,)=gn, N(M,)=gan. Applying Proposition
1.5 to this {L,, M, a}, we obtain {y;, z;} and {a;, b;} with the properties of that
proposition for L, and M,. Put x;,=y,—e,72;. Then we can easily verify that

Sf(xi, 2;) =905, L =0x,+ -+ +0x,, M =0e,%,+ -+ +0e,%, with ei:< 6”3 b0~ ) This
proves our proposition. '

Notation being as in Proposition 2.12, we call {ga,, ---, 8@, 801, -*-, 8b,} the
set of elementary divisors of M relative to L and denote it by {L:M}. We get
an assertion for {V,f} which is a paraphrase of Proposition 1.6. Instead of
stating it, we give the following proposition.

PROPOSITION 2.13. Notation and assumption being as in Proposition 2.12,



44 G. SHIMURA

det L, M, K be maximal lattices in V with the ovder o. Then there exists an
element o of GXV,f) such that Lo=1L and Mo=XK, if and only if {L:M}
={L:K}.

ProoF. The ‘only if’ part is clear. Put N(L)=on, NWM)=roan, NK)
=ofn with a, 8,7 F. By Proposition 2.12, we get a base {x;} of V over A
and a set of elements {a;, b;} of F for M with the properties of that proposi-
tion, and a base {#;} of ¥V over A and a set of elements {¢;, d;} of F with
the corresponding properties for K. If {L:M}={L:K}, we have ga;=gc;
gb; =qad;, so that gae=gh. Hence we may put «a =5. We have then a;b; = cid;.
Let ¢;, for each ¢, be a unit of g such that ¢a;=c;; then we have &b, =d,.

Define an element ¢ of E(V,A) by xio:( 81 (6)71 )uZ Then we see easily o

eG(V,f), Lo=L, Mo=K. This proves the ‘if’ part.
REMARK. Notation being as in Proposition 2.13, suppose that L D M,
LD K. Then the following three conditions are equivalent to each other.
i)y {L:M}={L:K}.
ii) L/M and L/K are isomorphic as g-modules.
iii) L/M and L/K are isomorphic as o-modules.

§3. Local theory of @-hermitian forms.

3.1. Quaternion algebras over local fields. By a p-adic number field, we
understand a finite extension of the p-adic number field, for any prime number
p. In this § 3, Fy, a5, p denote respectively a p-adic number field, the ring of
p-integers in Fy, the maximal ideal of gy. It is well-known that there exist, up
to isomorphism, only two quaternion algebras over Fj, the matric algebra AM,(F})
and a division algebra. The latter is written as (B, S,7) = B+ B# in the usual
notation of cyclic algebra, where B is the unique unramified quadratic exten-
sion of Fj, S is the Frobenius automorphism of B over F,, = is a prime
element of Fy, and ufu~*= % for f = B, u*=n. We denote this division qua-
ternion algebra over F, by D;.

For every maximal order o, in M,(F}), there exists an element w such that
wopw™t = M,(gp). Every one-sided oy-ideal is principal. Every two-sided op-ideal
ap is written in the form a, = "0, with v € Z, and conversely. Further ©(0,/gs)
=py. As for Dy, it has only one maximal order o,={x< D, | N&¥) g,}; and
every one-sided o,-ideal is principal and equal to a power of the maximal
ideal B, so that it is a two-sided 0,-ideal. We have P*=po,, B =DD(0p/ap).

ProPOSITION 3.1. Let Ay be a quaternion algebra over Fy and vy a maximal
order in Ay. For every two-sided op-ideal ay, we have Tr(ay)=ay\ F.

ProoF. This is clear if Ay= M,(F;). Therefore suppose that A,= D,.
Then every op-ideal ap is written in the form ay=P°- (ay "\ F;) with e=0 or
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—1.  We have Tr(ay)=Tr($) - (e Fy) and Trop)C Tr(P) Tr(P) gy
Therefore, it is sufficient to prove Tr(op)=¢s. As Tr(o,) is an integral g,-ideal,
there exists an integer v =0 such that Tr(o,) =p"gy. We get then Tr(p="0,) C gy,
so that p~o, © D(op/gy)"' =P, which implies v =0, since P2=9po,. This com-
pletes our proof.

PROPOSITION 3.2. A, and o, being as in Proposition 3.1, let B be a non-zero
element of g and a an element of 0y such that B7*N(@)=1 modp* where A is a
positive integer. Then there exists an element b of oy such that N(b)=45,
b= a mod p’o,.

ProoF. We first consider the case Ay=M,(F)). We may then put oy
= M,(gy). Let = be a prime element of /. We can find elements x, ¥ of p, such

7"
that N(x)= N(y)=1, xay= ( ”06 7377 ) where 0 < # <y, and ¢, 7 are units of gy.
As f7'N(@)=1 mod p?, we have f==""§ with a unit ¢ of gy, and 6 =ez mod pA.

Put p=21( 7" L0
b=a modp* and clearly N(b)=="""6§ =pF. This proves our assertion for A,
= M/(F,). Now put Ay,=D,. Let II be a prime element in 0,; put NUl)=r;
then = is a prime element in gp. Put ¢=1II"¢ with a unit e of n,. As f7N(a)
=1 modp*, we have f=r"¢ with a unit ¢ of gy, and N(e)=¢ mod pt. Now we
construct inductively a sequence {e,, e, -, en, ---} 0of units of o, such that e,
=e, N(e,)=e¢ mod p**", ¢,,, =e, mod p**"p,. Assume that e, is already defined.
Put ¢—N(e,) =r**" - r with y €q,. By Proposition 3.1, we have Tr(e;0;) = Tr(o,)
=gy, so that there exists an element d of o, such that Tr(e,d)=1y. Put
lnyy =e,+74""d.  Then we have Ney..)= N(e,)+r**"Tr(esd)+n**Nd)=e
mod pA*t,. We get thus a sequence {e,} with the required property. As
€n+1 = e, mod p?7p,, this converges to a unit # of o,, for which we have N(%)
=¢, h=e modplo,. Put b=1II"4 Then we have N(b)=f, b =a mod pY,. This
completes our proof.

ProPOSITION 3.3. A, and o, being as in Proposition 3.1, let & be an element
of 8. Then there exists an element x of 0y such that N(x)=§&. In particular,
Ay satisfies the condition (D) of Proposition 2.1.

Proor. If A,= M, (F;), we may put o, = Mygy), so that our assertion is
obvious. If A,=D,, it is well-known that any quadratic extension of Fy is
isomorphic to a subfield of Dy, over F;. Hence, for every & e Fy, there exists
an element x of D, such that Nx)=¢&. If & gy, we have x =0, automatically.
This completes our proof.

)y‘l. As €10 =7 modp4 and as 571, y~' 0y, We have

3.2. Canonical bases of maximal lattices. Let 4, be a quaternion algebra
over Fy, and V, be an A,-space of dimension ». Take a non-degenerate Q-
hermitian form f on V,. By [Proposition 3.3 and [Proposition 2.1, we see that,
for every regular element H=(%;;) of M,(As) such that H' = H, there exists
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a base {x;, -, x,} of Vyover A, for which f(x;, x;)=/h;;. In particular we get
PROPOSITION 34. V), has a base {x,, -, Xp, Y1, *** , Ym» 2} over Ay such that

fo2) =930 =f (%, 2)=f(y,2)=0,

f(xi;yj):aaij) flz,2)=4 Al=gi=m,1=5=m),
where a is a vegular element of Ay, B is a non-zevo element of Fy, the last mem-
ber z (and hence ) occurring only in the case where n is odd.

We call a base {x, -, X, ¥1, *** » Ym» 2} Of V over Ay, with the property of
the above proposition a canonical base of V,. [Proposition 3.4 implies that, if
7n>1, V, contains an element x such that f(x, x)=0, Axx= A,.

Now we want to study the arithmetic of maximal lattices in V,. If A,
= M,(F}y), we can apply the theory of § 2.5 and §1 to the present case, since gy
is a principal ideal domain ; and this is sufficient for our later use. Therefore,
we have only to consider the case A,—= D,. From now on, until the end of
this §3.2, V) is a Dy-space of dimension 7, and o, denotes the unique maximal
order in Dy.

PROPOSITION 3.5. Let L be a maximal lattice in Vy. Let a be an element
of Dy such that N(L)=opa, and B be an element of Fy such that N(L) N Fy=a8.

Then there exists a canonical base {xy, -+, Xm Y1, *** » Ym» 2} 0f Vv Such that
) L =o0px,F0py;+ -+ 00X+ 0pYp+ 02,
(4) f(xw .y]) - aaij ’ f(zl Z) - ﬂ ’

where the term o,z and B occur only when n is odd. Conversely, let a be a regular
element of Dy and B an element of Iy such that (pa) N\ Fy=gwB. Let {x;, i 2}
be a canonical base of Vy satisfying (4). Then the lattice L defined by (3) is
normal, maximal and N(L)=oya or 08 according as n>1 or n=1.

PROPOSITION 3.6. Let L be a gp-lattice in Vy. Let b be an op-ideal such that
NI Cb. Then there exists a maximal lattice M such that M DL, N(M)=5b or
N =0y « (O Fy) according as n>1 or n=1.

We first show that, if Proposition 3.5 is true for #n, then [Proposition 3.6
is true for n. Let the notation be as in [Proposition 3.6l By [Proposition 2.8,
we may assume that L is maximal. Put N(L)=opa, N(L)N\ Fy =85 with a € Dy,
peh. If n=1, we put ¢ =p. By [Proposition 3.5, there exists a canonical
base {x;,v: 2z} of V, satisfying (3) and (4). Put b=o0sb, b\ Fy=qvr, @¢=cb,
f=c¢r. Then c<py, e=gy. By [Proposition 3.3, we can find an element e of

o, such that Ne)=e. Put M= % opc“lxi—l—ﬁ opystope™'z.  As flcT'x;,5;) = b0y
i=1 i=1

and f(e 'z, e7*2)=7, we see, from [Proposition 3.0, that M is a maximal lattice
and N(M)="0 or oy - (b F;) according as »>1 or #=1. By our construction
of M, we have M D L. This proves [Proposition 3.0

Now we want to prove the converse part of [Proposition 3.5 Define L as
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in [Proposition 3.5, It is clear that L has o, as its order and N(L)=oya or o/
according as n>1 or w=1. Let M be a lattice with order o, such that MDL,

NOD = NL). Let u=3ex,-+diy) ez, with c;, ds, e € Dy, be an element of M,
=1

the term ez occurring only when » is odd. As the x; and y; are contained in
M, we have

da’ = f(u, x) € NOM) = vya, ac,—f(u,y,) € NIM) = .

This implies d; €0y, ¢;€0,. It follows that ez:u—in;(cixﬁ—diyi)eM. Hence

we have N(e)B =f(ez, ez) € NIM) N Fy =g, so that N(e) gy, and hence e €oy.
Therefore # must be contained in L; so we have M= L,; this proves the
maximality of L.

Let us prove the direct part of [Proposition 3.5 by induction on . If n=1,
take a base x of V, over Dy. Then L is written in the form L=ax with an
op-ideal a. We have N(L)=0,N(a)f(x, x), so that Ma)f(x, x)=gy5. By Proposi-
tion 3.3, there exists an element » of D, such that N(b)= gf(x, x)™*. Put z=bx.
Then f(z,2)=p, NOb)3,= Na) and hence o,pb=a. We have therefore L =pyz.
This proves the case n=1. Now suppose that »>1. By the remark after
[Proposition 3.4, V), contains an element x=+0 such that f{(x,x) =0. Put
c={ceD;|cxe L}. Obviously, ¢ is an oy-ideal, so it is written in the form
¢c=0pc,. Put cex=ux,. Then we see that

(5) op={ceDyl|cx,e L}
and f(x;, x,)=0. Putb=s(x, L). Itis clear that bis an o,-ideal. If b & N(L)b™!

and #< L, we have f(bx, u)=bf(x, u) € ON(L)b™* = N(L). Therefore, if b, ¢
e NIL)6* and %, v = L, we have

(6) Fox,+u, cx,4-v) = f(0xy, v)+Sf (u, cx,)+f (w, v) € N(L).

Put M= N(L)"'x,+L. The relation (6) shows that NMM)=NL). As L is
maximal, we must have L=0M, so that N(L)b"'x,C L. By (5), we have
NI oy, so that ML)C b, As b=s(x, L)C N(L), we must have b= N(L)
=opya. Hence there exists an element y of L such that f(x;,y)=ea. By Prop-
osition 3.1, we have Tr(o,e) = NL)N Fy > —f(»,y). Therefore we can find an
element ¢ of o, such that Tr(te)=—f(y,¥). Put y,=#¢x;+y. Then y,eL,
and we have f(x,y)=a, f(y,v,)=0. Put

U={uc Vy|flx, w)=f(y, u)=0},
K=UnNL.

For every we V, if we put ¢ i (x, w)=d and f(w,y,)ea"'=c¢, we see easily
w—cx;—d'y, = U.  This implies Vy=Dyx,+Dyy,+U. If we L, then f{x,w)
and f(w,y,) are contained in N(L)=roa, so that ¢ and d are contained in o,.
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We have therefore, L =o0,x,-+-0yy,+K. Obviously, Kis a lattice in U with the
order oy, and MK)C N(L). As L is maximal, K must be maximal; so we
can apply our induction to K. By the assumption of induction,
3.6 is true for n—2. Therefore, if #>3, we must have NK)= NL)=na,
while if #=3, N(K)=o0,8. This completes our proof.

We call the base {x;, v;, 2} in the above proposition a cenonical base of L.

PrOPOSITION 3.7. Let L and M be maximal lattices in V. If Lo=M for
an element o of G(Vy,f), then N(LY"*N(M) is an even power of the maximal
ideal of oy, namely NIL)'N(M)=o0 for an element « of Fy. Conversely, if
aN(L)= NM) with a<F, there exists an element o of G(Vy, f) such that Lo
=M, Nio)=a.

ProoF. If Lo= M for some o< G(Vs, f), we have N(L)N(o)=NM), so
that N(L)*N(M)= N(o)p. This proves the first assertion. Conversely, sup-
pose that aN(L)= N(M) with ae F,. Put NL)=owa, NL)Nn Fr=gB with
as Dy, B F,. Then we have NM)=oyaa, NOM)NFy=gafB. By Proposi-
tion 3.5, there exists a canonical base {x;, v;, 2} of L such that f(x,y;)=ady,
f(z,z2)=0, and a canonical base {u;, v;, w} of M such that f(u;,v;)=aad;;
f(w,w)=afB. Define an element ¢ of E(Vy, Dy) by x0=wu; y,0=0v; z0=uw.
Then we see easily that 6 € G(V5,f), Lo =M and N(o)=«. This completes
our proof.

PrOPOSITION 38. Let L be a maximal lattice in Vy. If n>1, there exists
a base {uy, -+, u,} of Vy over Dy such that L =opu,+ - +0ptty, (s, u;)=0 for
1<i<n.

Proor. Take a canonical base {x;,y;,z} of L. If n is even, our asser-
tion is a consequence of the relation f(x; x;)=f(v;,v,)=0. Suppose that » is
odd. The elements ¢ and 5 being as in Proposition 3.5, we get, by Proposi-
tion 3.1, B Fy nopa=Tr(oya). Hence there exists an element b of 0, such
that Tr(ba)=p. Put w=z+bx,—y,. Then we have f(w,w)=0 and L=nopx,
+opy, -+ o0 H0pXpF0pyn+opw. This proves our proposition.

PROPOSITION 3.9. Let L and M be maximal lattices in Vy. Put N(L)= hoy,
NLYNFy =70y with h < Dy, n € Fy, and suppose that N(M)= aN(L) for an ele-
ment « of Fy. Then there exist a canonical base {x;,v;, 2} of Vv and elements
a;, by, ¢ of Dy such that

L =0px,+0py,+ ++ +0pXp+0pYm+0p2,
M=opa%,+0pb, v, + -+ +00@nXp 0000 Vi +0pc2 ,
S&oyp="hdi;, fz2)=7,
ahb{= - = ahb, =ah, c’'=a,
Dpay D+ D 0ply D 0pC D 0pbyy D -+ D 0pby,

where z and ¢ occur only when n is odd.
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ProorF. We proceed by induction on n. If =1, this is obvious. Sup-
pose that #>1. Put e={e€ Dy|eMcCL}. Asceisan oyideal, we have e =ope,
for an element e, =0p. Put e,M= M, ; then N(M,)= N(e,)N(L). If we prove
our proposition for M,, we get easily the assertion for M. In fact, suppose that
we get a canonical base {x;,v;, 2z} of V, and elements 7;, s;, £ of D, such that

L= é(ﬂpxﬁopyi)ﬂpz, M,= é(omxﬁopsiyi)ﬂptz, fa,y)=nh, f(z,2)=n, rhsi

= N(eyan, tt'= Ney)a, 0p7; D *++ D 0p¥p D 0pl D 0pSyy D ==+ D0pSy.  Put a;=ep'r;, b
= h7le; hs;, c =e;'t. Then we can easily verify that {x;, y;, 2} and {a;, b;, ¢} have
the properties of our proposition for M and L. Therefore we may assume
that M= M;, namely op,={e=Dy|eMCL}. Let II be a prime element of o,.
By Proposition 3.8, M contains an element x; such that f(x,, x,)=0, II'x, & L.
Namely, the relation (5) holds for this {x,, L}. Hence, applying the proof of
Proposition 3.5 to the present case, we get an element y, of L such that
flx,vyD)=4, f(v,y)=0. By Proposition 2.7, we have aL C M, so that ay, € M.
Put U={ucV,|fx,u)=r(y,u)=0}, L,i=UNL, M,=U~M. Then, as in
the proof of Proposition 3.5, we obtain

Vo= Dyx,-+Dyy,+U, L =0px;+0py,+ Ly ;

and L, is a maximal lattice in U such that ML, =#hAo, or 70, according as
n>1or n=1.Let w=dx,tey,+w, withdso;, e <oy, w, = L,, be an element
of M. Then we have e=f(w, ) € N(M)=oyah, so that e = oy, ey, € 0pay, C M,
and hence w,=w—dx,—ey, = MU= M, This implies M= opx;+0pcty,+M,.
We observe that M, is a maximal lattice in U such that N(M,)= aN(L,).
Therefore we can apply our induction to L, and M, Then we obtain a ca-

nonical base {x,, ***, Xm, ¥o» *** , ¥m, 2} Of U and elements a,, -, @m, s, ==+ , by, ¢ Of
Dy such that L0:'§(Dpxi+0pyi)+0pz, Mo:_g(opaixi—kopbiyi)iropcz, f(x;,y;)=nh for
2=iZm, f(z,2)=7, ahbs= - = ahbl, = ah, cc’ =, 0pat, D +++ D Dyl D 0pC D Oyby

D Doph,. As L,D M, we have oy = a,, so that o0, Dopa. Putting ¢, =1
and b, = a, we obtain our assertion for L and M. This completes the proof.

PROPOSITION 3.10. Let L be a maximal lattice in Vy. Put N(L)= hoy,
NLYN Fy=ngp with h€ Dy, n € Fy. - Let {us, v;, w} be a canonical base of L such
that f(ui, v;)=hds;, f(w,w)=17. Denote by I'° the subgroup of GAVs,f) consist-
ing of the elements v = GV, f) such that Ly =L, and by 4 the set of elements
o of GV, f) such that w0 = am;, v:0 = bw;, wo=cw with elements a;, b;, ¢ of
Dy satisfying the relation

0p@; DD o+ D 0pllyn 2D 0pC D 0pby, D v+ D0pb, .

Then we have G(Vy, f)=T°-4-T".
Proofr. Let z be an element of G(V5, f). Put M= Lz, « = N(r), and apply
Proposition 3.9 to this {L,M,a}. Then we get a canonical base {x;,y; 2} of
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L and elements @;, b;, ¢ of D, with the properties of that proposition. Define
two elements y and o of E(Vy, Ap) by wiyr = xi, 07 =55, Wy =2, %0 = Q;, ;0
=bw;, wo=cw. We see easily that y €I'* and o= 4, N(c)=a. Further we
have Loy =Lz. Hence if we put eoy =7, we have Le=L, e G(Vy,f), N
=1, so that eI It follows that c=ecor=I°- 4-1° Our proposition is
thereby proved.

Notation being as in [Proposition 3.9, we call {opa,, -+, 0p@m, 0vC, 09Dy, **+ , Dby}
the set of elementary divisors of M velative to L and denote it by ,{L 1 M.

PrROPOSITION 3.11. Let L, M, K be maximal lattices in Vy such that N(M)
=aN(L), N(K)=ANL) with «, B Fy. Then, there exists an element c of
G"(Vy, f) such that Lo=L and Mo =K, if and only if {L:M}={L:K}.

By virtue of [Proposition 3.9, this can be proved by the same argument
as in the proof of Proposition 2.13, When LDOM and LDK, the equality
{L:M}={L:K} holds if and only if L/M and L/K are isomorphic as ,-
modules.

3.3. Local approximation theorem. Let A, be a quaternion algebra over
Fy, which may be or may not be a division algebra. Let o, be a maximal
order in A,.

PROPOSITION 3.12. Let V, be an As-space of dimension n and f be a non-
degenerate Q-hermitian form on Vy. Let L be a maximal lattice in V, such
that N(L)=0p. Then there exists a base {x;, -+, x,} of Vv over Ay such that
(%, %) =08;5 and L =0px,+ +++ +0px,,.

ProoF. By Proposition 2.1 and Proposition 3.3, ¥/, has a base {y,, -, .}
over A, such that f(y;,y,)=20:. Put M=o+ --- +0py,. By Proposition 2.6,
M is a maximal lattice in V, and N(M)=0p,. By Proposition 2.11 (if Ay = M,(Fy))
and by Proposition 3.7 (if A, = D,), there exists an element ¢ of G°(V5,f) such
that L = Mo. Putting x;,—=y,0 for 1 <i<#n, we get the desired result.

PROPOSITION 3.13. Let Vv and U, be As-spaces of the same dimension ; let
f and h be non-degenerate Q-hermitian forms on Vy and on U, vespectively. Let
L and M be maximal lattices in Vy and in Uy, vespectively, such that N (L)
=N(M)=0y. Let v be an Avlinear mapping of Vy into Uy such that Lt C M,
J(x, v)= Wxc, yr) mod Yo, for every x, y< L, where 2 is an integer =0. Then
there exists an Ayp-isomorphism o of Vy onto Uy such that Lo = M, f(x,v) = h(xg, y0)
Jor every x, v Vy and L(c—1)CpAM.

Proor. Our proposition is clear if A=0; so we assume A=1. Let n be
the common dimension of V, and U,. We proceed by induction on #n By
Proposition 3.12, there exists a base {u,, -, u,} of Uy over Ay such that M
=0psy+ -+ +0vtty, M(u;, u;)=0;;; and L contains an element » such that f(»,v)=1.

Put vr= Zn a;u; wWith a; 0. Then 1=S(,v)=hlvr,vr)= Zn}lN(ai) mod po,.
i=1 i=
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Therefore Ma;) is a unit of g, for some 7, say 1. Put lefﬁzN(ai). Then

MNa))= £ modplo,, and hence B is a unit of g,. By [Proposition 3.7, there
exists an element & of oy, such that b=¢, modpb, and ND)=pF Put w

= bul—l—iaiui. Then A(w,w)=1, w=wvr mod M, and we M. Put
i-2

Vo={xc Vy|flx,v)=0}, U'={x< Uy | lx,w)=0},
L=LnV*, M =MnNU".
As f(v,v)=hw,w)=1, we obtain
Ve=Aw+V?", Uy=Aw+V?,
L =ow+L°, M =ow+M°.

It can be easily seen that L and M are respectively maximal lattices in V°
and U°; and N (L%)= N,(M°)=0,. Now define an A,-linear mapping p of V?°
into U°® by xr=tw-+xo for x= V°, where t = A,. We see easily Lo M°. If
x€ L° and xz=tw-+xp, we have 0=1 (v, x) = W(vz, x7) = Mw, tw+x0) = ¢ mod Ploy.
This shows xz=x0 modp*M for x= L°. If further ye L° we have f(x,y)
= W(xr, y7) = Wxpo, yo) mod p*o,. Therefore we can apply induction to L°, M° po.
Namely there exists an Ay-isomorphism ¢° of V°onto U° such that L°%°®= M?,
Sf(x, v) = h(xc®, ya®) for every x, y= V?°, and L%(c°—p)Cp*M°. Now define an
Ap-isomorphism o of V, onto U, by vo =w and xo=u2x0° for every x< V°
Then we have clearly Lo =M, f(x, y) = h(xo, yo) for every x, y= V. Further-
more, vo =w=ypr mod p*M; and if x< L°, x0=2x0"=x0=xr mod p*M. There-
fore L(o—7)Cp*M. This completes our proof.

§4. Global theory of Q-hermitian forms.

In this section, we always mean by F an algebraic number field of finite
degree, and by g the ring of integers in F. For every prime ideal p of F, Fy
and g, denote respectively the p-completions of F and g. We denote by p.,
for 1 <k =<v the infinite prime spots of Fand by F, the completion of F with
respect to P.,.

4.1. Quaternion algebras over an algebraic number field. Let A be a
quaternion algebra over F. For each prime ideal p of F, and for each infinite
prime spot pwx of F, we put

A=ARF,, A, =ARF,.
F ¥
A finite or infinite prime spot of F' is called ramified in A/F if the corre-

sponding completion A, or A, is a division algebra. Let o be a maximal order
in A. Let D=%®(o/g) be the different of o with respect to g. Then we have
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@:ﬁﬁi, %=gq;, where the g; are all the prime ideals of F which are rami-
=1

fied in A/F, and £; is a prime o-ideal. Every two-sided o-ideal a is written
in the form a=1IQ% - a,, where ¢;=0 or 1, and q, is a g-ideal.

PROPOSITION 4.1. Let Poy, -+, Py, e the infinite prime spots of F vamified
in AJ/F, and & be a non-zero element of F. Then theve exists an element x of
A such that Nx)=E, if and only if E=1 mod Doy *** Dooy-

Proor. Consider N(x)=xx’ as a quadratic form on A over F. By Hasse’s
theorem, the equation xx’—¢& has a solution if and only if it is solvable in
every local fields. Our proposition is therefore an immediate consequence of
Proposition 3.3.

We call A definite (or totally definite) if all the infinite prime spots of F
are ramified in A/F, and call A indefinite otherwise. If A is definite, then F
must be totally real and A.= K for every infinite prime spot ., of F. Now
the following two fundamental lemmas are due to Eichler; they are origi-
nally given in a more general case (cf. [5, Satz 5]).

LEMMA 4.2. Suppose that A is indefinite. Let 0 be a maximal ovder in A
and let Pey, -+, Doy, be the infinite prime spots ramified in A/F. Let b and ¢ be
left v-ideals. Then therve exists an element x of A such that b= x, if and only
if N(b) and N(¢) belong to the same ideal-class modulo Pey -+ Py of F.

LEMMA 4.3. Notation and assumplion being as in Lemma 4.2, let a be an
integral two-sided v-ideal. Let B be an element of ¢ and b an element of o such
that F=1 mod Pey -+ Py, NO)= B mod*(a N\ F). Then there exists an element
by of o such that b=b, moda, N(b,)= 5.

Here mod * means the multiplicative congruence. is easily
derived from (cf. [5, p. 239]). Our later discussion will prove this
fact as a particular case.

4.2. Hasse principle for Q-hermitian forms. In view of [Proposition 3.3
there exists, among the quaternion algebras over local fields F, and F,, only
one which does not satisfy the condition (D) of Proposition 2.1; it is the di-
vision ring K of real quaternions. Let V be a K-space of dimension » and

f a non-degenerate @-hermitian form on V. Then there exists a base {x,, ---, %,}
of V over K such that f(x;,%x;)=¢0;; for 1=i=#%n, 1<j<#%n and ¢=1 for
1<i<y, ¢, =—1 for y<i=<#n. The integer v is uniquely determined by f.

We put v=yv(f).

Let A be a quaternion algebra over F and let Poy, -+, Py, be all the in-
finite prime spots of F ramified in A/F. Consider an A-space V and a non-
degenerate Q-hermitian form fon V. Put Vi,=VQgF, for 1=x=<u. Then
V. can be considered as an A,-space in a natural manner; and f is uniquely
extended to a non-degenerate Q-hermitian form f, on V,. As A, is isomorphic
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to K, we can define v(f,). We put v.(f)=v(fx). Now, by Ramanathan [7],
the structure of {V,f} is completely determined by the v (f). We state this
result in the following form.

LEMMA 4.4. Let f and g be non-degenerate Q-hermitian forms on an A-space
V. There exists an element o of GL(V, A) such that f(xc,y0) = g(x,y) for every
% v of V, if and only if vi(f)=v.(g) for every infinite prime spot Y«r of F
ramified in A/F.

This can be proved easily by means of [Proposition 4.1l and the approxima-
tion theorem in the number field F.

4.3. Adele-group of G(V,f). Let A be a quaternion algebra over F and
V an A-space of dimension z. For each prime ideal p of F and for each in-
finite prime spot 9., of F, we put

Vb:V@FD; VE:V@FE'

Then V, (resp. V,) can be considered as an A,-space (resp. A.-space) in a
natural manner. Let f be a non-degenerate Q-hermitian form on V. We ex-
tend f to non-degenerate @-hermitian forms on V, and on V., and denote them
again by f. Put now G=GV,f), Go=G(Vs,f), G.=G(V,,f). Then G, G,
are locally compact topological groups with usual topology. Let L be a g-
lattice in V. For each p, denote by U, the set of elements ¢ of G, such that
Lyc=1Ly,. Then U, is a compact subgroup of Gy. Put

U, =T1IU, X I1G,.
P K

By the product topology, 1, is a locally compact group. Now we define the
adele-group & of G(V,f) as the set of elements (oy,0,) of IIGy» X IIG, such

that o, €, for all except a finite number of p. Define a tgpologyx of & so
that 11, is an open subgroup of &. Then & becomes a locally compact group.
The topological group & is determined independently of the choice of L. By
the injection ¢— -+, 0,0, ), G can be considered as a discrete subgroup of @.
By a general theorem of Borel [1], @ is the union of a finite number of double
cosets U G with £ @ (cf. also Weil [11, 127).

4.4. Classes and Genera of maximal lattices. Notation being as in §4.3,
let o0 be a maximal order in A, and op =gw. We denote by (o) the set of all
maximal lattices in V with the order 0. Let L and M be two members of
Lo). We say that L and M belong to the same genus, if there exists, for each
prime ideal p of F, an element gy of G(Vy,f) such that Lo, = M,. Further
we say that L and M belong to the same class, if there exists an element o
of G(V,f) such that Lo =M.

PROPOSITION 4.5. If n>1, for every two-sided o-ideal a, theve exists a mem-
ber L of &) such that N(L)=qa.
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Proor. Take an arbitrary maximal lattice M in V with the order o.
There exist only a finite number of p such that MM,)#a,. For each one of
such p, take a maximal lattice L* in V, with the order o), such that NI*) = a,.
This is possible by Propositions 2.6 and 3.5. Put L*= M, for every p such
that MMy)=a,. Then, by Lemma 1, there exists a g-lattice L in V such that
Ly=1* for any p. It is clear that L is a member of £(0) and N(L)=a.

PROPOSITION 4.6. Let o be a maximal order in A. If n=1, 20) consists of
only one genus, 20) itself. If n>1, there are exactly 2° genera in £(0), where s
is the number of prime ideals ramified in A/F.

ProoF. The Q; being as in §4.1, we have N(L)=Q¢ --- Q% - a for every
L = %(v), where ¢;=0 or 1, and a is a g-ideal. By Proposition 2.11 and Proposi-
tion 3.7, the genus of L is determined only by {e,, -, e;}. This together with
Proposition 4.5 proves our proposition.

We denote, for any set of integers {e, :--,e;} such that ¢,=0 or 1, by

YWo; {e;}) the genus of L such that N(L)z}sllﬁii - a with an ideal a of . We

call especially L(o; {0, ---,0}) the principal genus with the order o and denote it
by ¥,(0).
Fix a member L of £(0) and define U, as in §4.3. For every element &
=(&y, &¢) of the adele-group &, put LE=N\(LEy N\ V). By Lemma 1.1, L€ is
p

a g-lattice in V; and (L&), = Lyéy. By Propositions 2.2, 2.3, 2.4, we see that
Lé is a member of ¥(). Further, by our definition, L¢ belongs to the same
genus as L. Conversely, if M is a maximal lattice belonging to the same genus
as L, we can find an element & of @ such that LE=M. If £< G, the nota-
tion L& is just the same as the transform of L by &; so there is no fear of
confusion. We have L&= Ly if and only if W 6 =U;n. Therefore, the map-
ping £— L& gives a one-to-one mapping of U \@ onto the genus of L. More-
over, we note that this gives a one-to-one correspondence between 1;\&/G and
the classes in the genus. By the fact remarked at the end of §4.3, this im-
plies that each genus consists of a finite number of classes. Further, by
Proposition 2.5, we observe that the number of classes in ¥(o; {¢;}) depends
only on {e;} and is independent of the choice of o.

4.5. An existence theorem in the case n=2. Let A be a quaternion
algebra over F. We denote by qy, -+, qs; all the prime ideals of F which are
ramified in A/F, and by Pwy, ==+, Pey all the infinite prime spots of F which

are ramified in A. We put
S w
b=1I0qx, u=IIPe,.

h=1 k=1

Let V be an A-space of dimension z and f a non-degenerate Q-hermitian form
on V. Fix a maximal order o in A; and for each q,, let £, be the prime
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p-ideal such that 9} =q,. We put gp=9p for every prime ideal p of F, and
e, 82, =90, for every 4, when there is no fear of confusion.

LEMMA 4.7. Let D be a prime ideal of F which is unrvamified in A/F. Let
0y be a maximal order in Ay. Let a be a regular element of Ay and & be an
element of ¢s. Then theve exists an element d of 0, N\ avya™ such that N(d)=79.

PrROOF. We may assume that Ay, = My(F,) and op = M,(gy). Then we can

find units ¢, 7 of oy such that ean = ( 8‘ 2 ) with a, € Fy. Put d:e—l( (1) g €.

Then we have N(d)=290 and d=pn,. Further we get

e} Qa4 (& Dria(d e

so that d € aoya™, which completes the proof.

PROPOSITION 4.8. Suppose that A is indefinite and n=2. Let L be a g-lattice
in V written in the form L =ox-1+c"'y, where ¢ is an integral vight o-ideal, f(x, x)
=1, f(x,»)=0, f(y,y) =71, NO)=171g with an element y of 8. Suppose that y is
prime to d. Let b, -, P, be distinct prime ideals which are prime to b, and let
« be a non-zevo element of ¢ such that « =1 mod p., whenever ¥ =1 mod p..,
for 1=k =u. Putga=0for 1<i<randg,a=qir forl=h=s. Let &, 7,
Sfor 1=<i<v, and v,, for 1 = h=<s, be integers such that

0§Ei§ﬂi§ﬂi—ﬂi§#i*fi§ﬂi, 0§Vh§_/lh-

Then there exists an element o of G(V,f) such that Lo C L, N(o)=a,
{qu; : Lbio} — {pfz’ p;“, 1/,:‘1'_51',, pfi_vi} f07’ l :r<: l é v,

{Lq, : Loyo} = {Qpr, Qir~n} for 1Zh<s.

ProoF. For simplicity, we denote the indices p; and q, respectively by i
and %; for example, L; means Ly, and g, means ¢,,. By Proposition 2.6, L
is maximal and N(L)=o. Now, for each p;, we identify o; with My(g;), and fix
an element =z; of g such that p, =g;z;. Put g;y =p%. Without any loss of gener-

. . . . 7 prdi
ality, we may assume that ¢;' is written in the form c{‘=< p:_%. f):_di ), where

c; and d; are integers such that ¢;=d; =0 and ¢;+d;=e;. Consider the ideal-
class modulo u containing the inverse of the ideal

7 S
ﬂpgﬂi+2+ci~di+ﬂi—éiﬂqﬁn .
i= =

We can find an integral ideal a in that class which is prime to ra_Hlpi - b.
in
We get then

a- Ir[p%ﬂi+2+ci—di+‘ﬂi—$if’[q;:h — (ﬂ) , ﬂ =1 modu
i=1 h=1

for an element S of g. By Lemma 4.3, there exists an element @, of o such
that N(@,)=pF and
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D a, =

it Liter+l :
(™ ,@n—m ;) mod Fptestip, A<i<p.
Let ¢ be a unit of F such that a(l—e*)=1 modu. Such an ¢ really exists,
because 1 is not the product of all the infinite prime spots of F. Then, by
our assumption on «, we have

a—e™Na)r=1 modu

for a suitably large integer m. Fix such an m. By Lemma 4.3, there exists
an element b; of o such that N(b,)=a—é&™N(a,)y. By our choice of f#, we
observe that gN(b)=pst for 1<i<s». Put a=¢c"a,. For every prime ideal
r of F, let b, denote the right order of (¢"!¢™),. Let {t} be the set of prime

ideals t such that (t,Dd - f_Ipi):l, 0, #0,. Obviously {r} is a finite set. For

each r, take an element b, of 0.\ 0. such that N(b.)= N(b,). This is possible
by virtue of Now by we can find an element & of o
such that N(b)= N(b,), b= b, mod (5. "\ 0.) for r < {t}, and

£
12) b= Nyt 5 ) modgperete  (=isn).
1 k3
Then we have N(®)+7N()=«, and by and (12),
57,—2/"1,
aba = ay'ba, = B~ 'alba, = ( __N(b)ﬂ"olnt‘fiﬂﬂiﬂ hmi ) mod pf'iteitlp, |
so0 that
ite;—d;
13) a‘%’az( q,//-né‘i—'(ﬂ)i-—cﬁdi frlited ) mod piiteitly,

with units 8 and ¢ of g;. It follows that

14) o vay=( P o P )

pgrﬂr% pgi—di
Hence we have ¢;'(a¢™0’a)C ¢;'. By our choice of b,, we have &’ €0, for every
r
t such that (t,b - I[lpi):l, and hence ;¥ e™0’a)C ;! for any such r. Further
ic

it is obvious that ¢;'(¢™'0’a@) C¢;'. Therefore, we have

(15) Yo 'a) et
As geoC ¢t and N()=rg, we have

¢lra’ Co.
Moreover, by we have

(16) Glra’ Cpflitio,.

Now define an element ¢ of E(V, A) by

an x0 = bx+ay, yo=—ra'x+a‘b'ay.
By the relation N(b)+rN(a)=«a, we can easily verify that aeG(V f) and
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N@)=«a. Further by (15”), we have Lo — L. By [Proposition 2.7, we have
#iL;=aL;C Lo, so that
(18) piHL, Lo

Put M;=obx+c;'a"’ay. Then we have, by (11}, [16), [17) (18) and by
1.2, M,= Lo, so that L;/L,c=0L;/M;=0;/0;b+c7'/c;ta *b’a (as o;-modules). By
(12) and L;/L;o has the desired elementary divisors. Let us now consider
q, for 1=<A2=<s. As N{o)=«a and o,a=Q%», we have, by [Proposition 2.7}
L,oDQ¥rL,. As N(a)=4# and g,8 =0qs», we have p,a=2Qpr If 1,=0, we
have L,0=L,. Suppose that 2,>0. If v,=2, we have o,a=}» and hence
NO)=a—rN@) € Q¥r. It follows that @, b, —ya’, a~'b’a are contained in Qfr.
Hence we have xo0, yo € QfrL,, so that L,oCQ#L,. As L,o is maximal and
N(L,0) =0 = N(Q#L,), we must have L,o =Qf»L,. Then L,/L,0=0,/Q
+0,/QAr It remains to consider the case 2, >v,=0. As NO®)+rNa)=a, 0,0
=82n, o = QPr, we must have 0,6 =0~ It follows that a’pb! is a unit of
v,. We note that

yo+r(a’b Vo =(a *0'a+ra’b a)y = a” b~ (bb’+rbaa’ b~ )ay
= a0~ Y{ND)+rNa))ay = ala™ b a)y .
Therefore we have L,0 =0,x0-+0,v0 =0,x0+0,a(e"b"'@)y. On the other hand,
as b7'q is a unit of o, and as x=>b"x0—b"'ay, we have L, =0,4-F0,y =0,0""x0

+0,9. Hence L,/L,0=20,b7t/0,-+0,/0,(@" b7 @) = 0,/ r-+0, /5" (as 0,
modules). This completes our proof.

4.6. Global approximation theorem. As in §4.2, we define v (f) for
1=k =u, and reorder the p.,. so that v (f)#n/2 for 1 <r=¢ and v (f)=n/2
for t<e=Zu. Put

t
t:tf:’:!_;[lpw,;.

For every o € G(V,f), we have N(c)=1 modt. If » is odd, we have ¢ =u and
t=nu.

Now we are ready to state and prove our main theorems.

THEOREM 1. Suppose that A is indefinite. Let L be a maximal lattice be-
longing to the principal genus L,0). Let b, -+, 9, be prime ideals of F; and let
0 for each i, be an element of G(Vy,, f) such that Ly,0,C Ly,. Let « be an ele-
ment of §. Suppose that

a*N(o)=1 mod pf, A=i=zr),
a=1 modt,

where the A; arve positive integers. Then there exists an element o of G(V,f)
such that Lo C L, No)=a, Ly(6—0;) Cp}iLy, 1=Zi<7).
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We prove in several steps. For simplicity, we denote Ly;, @,
etc. by L;, ¢;, etc.

ASSERTION 1. If is proved when N(L)=o for every maximal
order o, then it is true for any L belonging to the principal genus.

In fact, if L belongs to Z,(0), we can find a left o-ideal ¢ such that ML)
= N@). Then by [Proposition 2.5, t™!L is a maximal lattice, and N *L)=0,,
where o, is the right order of . We see easily that if is true for
7L, then it is true for L.

ASSERTION 2. If is true for L, then, for every ze G(V,f),
[Theorem 1 is true for Lr.

This is clear.

ASSERTION 3. If is proved for a certain L°< ¥ (o) such that
N(L")=yp, then for any L & &y(0) such that N(L)=o, we have L=L‘c for an
element = € GV, f).

Let B be a non-zero element of g such that SLC L’. Take an integral
g-ideal a such that AL>DalL® Let p,-,p, be the prime factors of a. By
[Proposition 2.11] and by [Proposition 3.7, there exists, for each p;, an element
7; of GV, f) such that LY;=L;. Put o;,=pfr;. Then we have N(o;)= B
Applying to L° and these o;, we get an element ¢ of G(V,f) such
that L% C L°, N(o)=p?, L o—0c;) C"p;all for 1l <i=7. As we have p,al}Cp,8L;
=p,L%;, we see, from Lemma 1.2, L% = L%;=pBL;. If pisa prime ideal which
does not divide q, we have L= gL,, since L°DFLDal’. It follows that
N(LY)= B2N(Ly), and hence £ is a p-unit. As L% C L° and N(o)= 2, we have
Lo =Ly=pBL,. Therefore, we have Ljo= BL, for every prime ideal p of F,
so that L% = L. Putting = /"0, we get L'z=1L.

ASSERTION 4. In order to prove [Theorem 1, we may exchange the Q-
hermitian form f for 6f for any non-zero element & of F.

In fact, put g(x,y)=01(x,y) for (x,)= VX V. Then gis a non-degenerate
Q-hermitian form. We see easily G(V, f)=G(V, g), G"(V,f)=G(V, ¢), and, for
every g € G(V,f), N(o) is common for f and g. Further, for every g-lattice
L in V, we have N (L)=0NLL). When L is normal, L is maximal with re-
spect to f if and only if L is maximal with respect to g. The genera and
the classes of normal maximal lattices do not change by exchanging f for g.
Finally we note that {,=1,. Therefore we get Assertion 4.

Now we proceed by induction on #. If n=1, is just a re-
statement of Assume that #>1 and is true for
dim,V < n.

ASSERTION 5. If M(L)=o and L contains an element x such that f(x, x)=1,
then is true for this L and for a=1.

As N(o)=1 modp} and N(L)=o, we have f(uo;, vo;)=f(u,v) mod p}io; for
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u, ve L. By [Proposition 3.13 there exists an element z; of G(V, f) such that
N()=1, Lyr;=Ly, Lo;—7;) CpfL;. Put
W={ve V|fxv)=0}, M=WnL.

Then we have V=Ax+W, L=o0x+M; and M is a maximal lattice in W such
that N(M)=vo. Put xc;=ax+y; with ;= 0; and y; = M,. As f(xzry, xz) =f(x, x)
=1, we have Na)+f(;,v;)=1. Now reorder the p; so that MNa,)+0 for
1=<igh Na,)=0 for A<i=r, where % is an integer such that 0 <2=<r. Put
g:N(@)=0n{ for 1<i<h We can find a regular element a of A such that
a <o, and

a=a; mod opitH for 1<i<h,
a=a; mod o;p}t for A<iZr.
We have then
Na)= N(a;) mod plit#i for 1<:<h,
Na)=0 mod pii for A<i=r,

and hence g;NMa)=pf* for 1 =i<h Put g;Na)=>»pf for i >k We have then

#;=2,=1 for i>h Now, as 1—N(@)=1 mod p{é, we can find, by
3.2, for each 7> %, an element ¢; of o; such that ;=1 mod op{¢, N(&;) =1—N(a).
Take an element y of M so that

y=y;, modpltHi), for 1<i<h,
y=egy; mod pltHipL; for A<i<r.

Then we can easily verify that f(v,y)=1—N(&) mod p}i*#: for every i. Since
u is not the product of all infinite prime spots of F, the projection of the set

{;9[,8:1+$,Eefllpé‘i“i} on F,X .- XF, is dense. Hence there exists an

element B of g such that 1—452=1 modu, =1 mod ]I[p{‘i“i. For a suitably
i=1

large integer %, 1—B%f(y,y)=1 modu. Put w=p% for such an integer k.
Then we have

w=y mod f[pé““iM,
1~/ o, )=1—f(3,9)=N@) mod ITp}i*:,
1—f(w,w)=1 modu.

As N(a)g; = pt, we have N(a)*(1—f(w, w))=1 mod ]f[lpéi. Therefore, by
4.3, there exists an element & of o such that

Nb)=1—f(w,w), b=a mod fIlpg‘io.

Put #=0bx+w. Then f(u,un)= N®)+f(w,w)=1, and
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u=ax+y=ax+y,=xr; mod L, Agigy).
Hence, putting
U=1{zeV|f(u,2)=0}, K=UnL,

we have V=Au+U, L=ou+K; and K is a maximal lattice in U such that
NK)=»p. By (U,f) and (W, f) are isomorphic. Therefore we
can find an element p of G%(V,f) such that xo=u, Wo=U. We see easily
that Mp is a maximal lattice in U and N(Mp)=0p. By our induction assump-
tion and Assertion 3, there exists an element ¢ of G*(U, f) such that Mpp = K.
Exchanging o for pp on W, we may assume that Mp=K for p itself. Then
we have Lp=L, and xr;0™'=x mod p}*L,. For every z& W,, denote by zy;
the projection of zr;0™! onto W, defined by the decomposition V;= Ax+W..
Then r; can be considered as an element of E(W;, A,). If z< M;, we have
SGro™, x) = fzri07), x0:07Y) = f(2, ) = 0 mod plio;. It follows that M(r;07'—;)
C pfio;x, and hence f(2,Yrs, 2,¥75) = (24, 2,) mod pio; for z, € M,, z, = M;. By Prop-
osition 3.13, there exists an element §; of G"(W,, f) such that M0, M, and
M(ri—0;) T p¥M,;. Applying our induction assumption to M and the 6, we
find an element 8 of GY(W, f) such that M6 c M, M;6—0;)Cp¥M, for 1<i<vr.
Define an element ¢ of E(V, A) by xo=u, z6 =20p for z€ W. Then we have
o= G(V,f) and N(o)=1, Lec L. Further, we have

X0 =u = x7; = x0; mod p}L; a=sisn,
and if z € M,,
20 =20p = 20,0 = 2yr;0 = zv; = 20; mod pliL; =iy,

Therefore L{o—oa;)CpfL;. This completes the proof of Assertion 5.

PROPOSITION 4.9. Let L be a maximal lattice belonging to £,0). Let a be
an element of § such that « =1 modt, and let p,, -+, D, be prime ideals of F.
Let o;, for 1=i=<v, be an element of G(Vy,f) such that N(o)gp, = aQs;, Ls,0;
C Ly, Then there exists an element o of G(V,f) such that N(o)=a, LoC L,
and Ly,/Ly,0 is isomorphic to Ly,/Ly,0; as op,-modules for 1 <i=<r.

ASSERTION 6. If is true, then [Proposition 4.9 is true.

In fact, as N(o,)"'a is a p;-unit for each 7, there exists, by [Proposition 3.3
and Proposition 3.12, an element z; of G(V3;, f) such that L;z; = L;, N(ts) = N(o,) '«
Then we have L;r;0,C L;, N(z;0,)=«a. By [Theorem 1, there exists an element
o of G(V,f) such that LocC L, Mo)=«, L{o—71;0,) Cp}i*'L; =p,aL; for every i.
By [Proposition 2.7, we have «L;C Lit;0;. Therefore, by we have
L,o=L;,t;0,= L;0;, This proves our assertion.

Now exchanging f for 0f with a suitable 8 of F, if necessary, we may
assume that v (f)>n/2 for 1 ==t v, (f)=n/2 for k<t =<=wu. By Assertion 4,
this does not influence the validity of our proof of [Theorem 1|

ASSERTION 7. There exists a member L of £(0) satisfying the following
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conditions: i) NML)=po; ii) L contains an element x such that f(x,x)=1; iii)
[Proposition 4.9 is true for L.

To prove this, let U= Ax+ Ay be an A-space of dimension 2. We can find
an element 7 of g such that (r,0)=1, r=1 mod p., for 1 £k ¢, 7= —1 mod o,
for <k =u. Define a Q-hermitian form f, on U by filx, x)=1, fo(x,y)=0,
fy,y)=7. Now let W be an A-space of dimension nz—2 and f; be a non-
degenerate @-hermitian form on W such that v.(f,)=v.(f)—2 for 1<k <¢ and
v (f)=v(f)—1 for t<e=<wu. Then, by (V,f) is isomorphic to the
direct sum of (U, f,) and (W,f,). Therefore, we may assume that V=U+W
=Ax+Ay+W, W={ze V|fx,2)=f(y,2)=0}, f=f, on UXU and f=jf, on
WxW. Further we see easily that i(f,) is a factor of i(f). Let ¢ be an in-
tegral right o-ideal such that N(¢c)=g7r, and let M be a maximal lattice in W
such that MM)=o. Put

K=ox+cy, L=K+M.

Then, K is a maximal lattice in U, L is a maximal lattice in V'; and N(XK)
=N(L)=o0. Now let the notation be as in [Proposition 4.9 The structure of
the o;module L;/L;0; is determined by [Proposition 2.12 and [Proposition 3.9.
In view of those propositions, we can find an element z; of G(U;,f,) and an
element p; of G(W,, f,) such that N(z;)=«, N(p;)=«, and

L;/Lo; = K/ Kty @ M,/ M;p; A=sisn,

where = means o,-isomorphism. As a=1 modi(f), we have a =1 mod t(f}).
By Assertion 6 and by our assumption of induction, there exists an element
o of G(W,f) such that Npo)=a, MpC M,

M,/ Mo = M;/M;p0; I=igy).

By [Proposition 4.8, there exists an element = of G(U,f,) such that Nz)=a,
Krc K, K;/Kit= K;/Kir; 1 <i<7). Define an element o of E(V, A) by zo=2zc
for z€ U and wo=wp for we W. Then it is clear that this ¢ has the re-
quired properties of [Proposition 4.9. Our assertion is thereby proved.

ASSERTION 8. For every maximal order o in A, there exists a member L
of £,(0) for which is true and N(L)=o.

We take as L the one which satisfies the conditions i-iii) of Assertion 7.
By Assertion 5, is true for =1, for this L. Now let the nota-
tion be as in [Theorem 1. Then g;N(o;)=g¢,«. By Assertion 7, there exists
an element z of G(V,f) such that M¢)=«, LzC L and L;/L;r is isomorphic
to L;,/L,0; as o;-module for 1 £i=<7. By [Proposition 2.13| and [Proposition 3.11,
there exists, for each 7, an element ¢; of GV f) such that L,;—=L;, L;te;
= L;0;. Then we have L;0.,67'z7 = L; and N(os,c7'z"") =1 mod p.. By Assertion 5,
there exist elements p and 7 of G%(V,f) such that Lo=L, Ly =L, L{o—o;c'c™%)
CybL, L{in—e)CTpEL,, Put o=prp. We have then No)=«, LoC L. 1If
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ze L;, we have
20 = zotn = zpte; = 2(0:67 't )re; = zo; mod piL,,

so that L (o—o;) CplL; for every i. This proves our assertion.

By Assertions 1, 2, 3 and 8, our is completely proved.

We get a little weaker result than for general maximal lattices,
namely :

THEOREM 2. Suppose that A is indefinite. Let M be a maximal lattice in
V' not necessarily belonging to the principal genus. Let by, ---, 9, be distinct prime
ideals of F and let & be an element of §. Let o, for 1<i=<v, be an element of
GV, f). Suppose that a =1 modt, My,0,C My, No)=«a for 1=i=r. Then,
Jor any set of positive integers {2y, ---, A}, there exists an element ¢ of G(V,f)
such that Mo C M, N(o)=a, My (c6—0,) ColiM,, for 1<i<r.

PROOF. Let o be the order of M. Take a member L of £0). Let {pr+y,
.-, b,} be the set of prime ideals p of F such that M, L, and p e {p, -, b, }.
For each p,,;, we can find, in view of Proposition 2.10 and Proposition 3.5, an
element o,4; of G(V,.;, f) such that M,,6,4;C M,y;, N(o,s)=«. Take an in-
tegral ideal a of F such that aLC M, aMCL, aLyo,CL; for 1=k=w. We
may assume that the prime factors of a belong to {p, -, 9, Ppsy, -+, Pw}. For
a suitably large positive integer %, o* is a principal ideal g8; we have then
BLC M, BMCL, fLyo,C L, for 1 <k<w. By Theorem 1, there exists an ele-
ment 7 of G(V,f) such that LrC L, N(z) = 2, L {t—fox) C B*fc L, for 1 <k <Zw.
Put 6=p". Then No)=a and My o—oy) = B ‘Mz—Bo,) C B *Li(z—Boy)
C ppfe L, C M, for 1<k<w. As M,,C M, this implies M,cC M, for
1<=k=w. If pe&E{p,--,p}, we have Ly=M,, and f is a p-unit. We have
therefore Myo=Lyf 6 =LycC Ly= M, Hence MyocC M, for any prime ideal
v of F. It follows that Mo C M. This completes the proof.

4.7, Class-number theorem. For every maximal lattice L in V, put N%L)
=ML)NF. Then N°(L) is a g-ideal. If L is a member of ¥(o; {e;}), we have
N(L)= NL) - H1 e,

THEOREM 3. Suppose that A is indefinite. Then, for every maximal order
o in A and for every genus &0; {e;}) of maximal lattices in 'V, the mapping
L—NYL) gives a one-to-one correspondence between the classes of maximal
dattices in X0;{e;}) and the ideal-classes modulo t in F.

Therefore the number of classes in the genus X0 ; {e;}) is equal to the number
of ideal-classes modulo t in F.

Proor. Let L and M be members of o; {e;}). If we have Lo=M for
an element p € G(V,f) we have N(L)N(p)= N(M), so that N*(L)N(p)= N°(M).
As N(p)=1 modt, the ideals N%L) and N%M) belong to the same ideal-class
modulo t in /. Conversely, suppose that aN°(L)= N°M) for an element e & F
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and a =1 modt. Let f# be an element of g such that M C L. Let a be an
integral ideal of F such that gMCalL. Let p,---,p, be the prime factors of
a. As we have N(BM)= p*aN(L), we find, for each p;, by [Proposition 2.11I
and [Proposition 3.7, an element o; of G(V,, f) such that L0, = BM;, N(s,)= f’«.
Since f2a =1 modt, we can apply to {L,0; Ba}. Then we get
an element o of G(V,f) such that LeC L, No)=fa, L{c—a)Cpal; As
val, Cp.AM;=pL;0;, we have L= L,o,=pM,; by If pis a
prime ideal which does not divide a, we have L,= fM,, because L DAMDal.
It follows that N(L»)= f2aN(Ly), and hence A%« is a p-unit. As Lo L and
N(o)= f*a, we must have Lyo=Ly= M, Therefore we have Lyo = BM, for
any prime ideal p of F, so that Lo=pAM. Putting r=p5""0, we get Lt=DM.
In view of Proposition 4.5 this proves our theorem.

4.8. Classes with respect to G°(V, ). If we take G%(V,f) instead of G(V, 1),
we find that the class-number of each genus is equal to one. In fact, by
and its proof, we obtain easily

PrOPOSITION 4.10. Suppose that A is indefinite. Let L and M be maximal
lattices in V with the same ovder. Then, there exists an element o of GV, f)
such that Lo =M, if and only if N(L)= N(M).

Notation being as in §4.3, let &° be the subgroup of & consisting of ele-
ments (o, 0,) such that o, € G*(Vy,f) for every p and o, = G(V,,f) for every
£. Then & can be regarded as the adele-group of G%(V,f). Put G*=G%V,f)
and Wy =1, ~&°. Then [Proposition 4.10] implies the equality

G =1y - G°

for every maximal lattice L in V.

4.9. Elementary divisors of lattices. Let L and M be members of the
same genus (0; {e;}). For every prime ideal p of F, we can define, as in §2.5
and § 3.2, the set of elementary divisors {Ly: M,}. We put {L:M}y=1{Ly: M}
and call it the p-part of the set of elementary divisors of M relative to L.
The (global) set of elementary divisors of M relative to L is defined as the join
of {L: M}, for all prime ideals p of F and denoted by {L:Mj}.

THEOREM 4. Suppose that A is indefinite. Let L, M, K be maximal lattices
in V belonging to the same genus. Then, we have {L M} ={L:K} if and only
if there exists an element v of G°(V,f) such that Ly =L and Mr =K.

ProoF. The “if’ part is clear. Suppose that {L: M} ={L:K}. Let ¥ be
the set of prime ideals p of F' for which Ly=M,=K, does not hold. By
Lemma 1.1, ¥ is a finite set. By Proposition 2.13 and Proposition 3.11, there
exists, for each pe ¥, an element yy, of GYVy,f) such that Lyyy=L, and



64 G. SHIMURA

M,ry=K,. Take a positive integer ¢ such that M, L, and p»°L,C K, for
every pe¥. By [Theorem 2, there exists an element y of G(V,f) such that
Np)=1, Lr C L, Li(y —7») Cp*"Ly for every p=¥. Then obviously Ly=1L,
and My(r—70) TP Ly(r—7) Ch - p°Ly CPK, =pMys. By we have
Myyr =Myry=K, for every pes¥. If p&¥, we have Myy=Lyy=Ly=K,.
Hence M,r = K, holds for any prime ideal p of F, so that Myr=K. This
proves the ‘only if’ part.

PROPOSITION 4.11. Suppose that A is indefinite. Let L and M be maximal
lattices in V belonging to the same genus. Define the subgroups Uy and Uy of
the adele-group & as in §4.3. Put I'y =0, NG, I'y=WuynG. Then we have,
for every Ec @,

lILEuM:uLEFM:FLEuM.

ProoF. It is clear that U U, DU ET,,. Let # be an element of U,. As
Mu= M, we see easily, on account of the definition of U, that {M:L&u}
= {M: L&}. By Theorem 4, there exists an element y of I'y, such that L&u = Lé&r.
It follows that U éu=Ur c N "y, This shows W &0, C U, &Iy, and hence
N N, =N, 81N, Similarly we get U,&~WN, =U,ET",, so that U W, =T",£U,.
This completes the proof.

The above theorem and proposition are generalization of [9, Proposition
1.4, Proposition 2.3]. These are necessary for our future investigation of the
Hecke-ring of G.

Osaka University

References

[1] A. Borel, Some properties of adele groups attached to algebraic groups, Bull.
Amer. Math. Soc., 67 (1961), 583-585.

[2] N. Bourbaki, Algébre, Chap. 9, Formes sesquilinéaires et formes quadratiques,
Hermann, Paris, 1959.

[ 3] M. Eichler, Quadratische Formen und orthogonale Gruppen, Berlin-Géttingen-
Heidelberg (Springer), 1952.

[4] M. Eichler, Die Ahnlichkeitsklassen indefiniter Gitter, Math. Z., 55 (1952), 216-252.

[5] M. Eichler, Allgemeine Kongruenzklasseneinteilungen der Ideale einfacher Alge-
bren iiber algebraischen Zahlkérpern und ihre L-Reihen, J. Reine Angew. Math,,
179 (1938), 227-251.

[6] M. Kneser, Klassenzahlen indefiniter quadratischer Formen in drei oder mehr
Verdnderlichen, Arch. Math., T (1956), 323-332.

[ 7] K.G. Ramanathan, Quadratic forms over involutorial division algebras, J.Indian
Math. Soc., 20 (1956), 227-257.

[8] G. Shimura, On the zeta-functions of the algebraic curves uniformized by cer-
tain automorphic functions, J. Math. Soc. Japan, 13 (1961), 275-331.

[9] G. Shimura, On Dirichlet series and abelian varieties attached to automorphic



Arithmetic of alternating forms 65

forms, Ann. Math., 76 (1962), 237-294.

[10] T. Tsukamoto, On the local theory of quaternionic anti-hermitian forms, J.
Math. Soc. Japan, 13 (1961), 387-400.

[117 A. Weil, Discontinuous subgroups of classical groups, lecture note, Univ. of
Chicago, 1958,

[12] A. Weil, Adeies and algebraic groups, lecture note, Institute for Advanced
Study, Prirceton, 1961,



	Arithmetic of alternating ...
	\S 1. Arithmetic of alternating ...
	\S 2. Hermitian forms ...
	\S 3. Local theory of ...
	\S 4. Global theory of ...
	THEOREM 1. ...
	THEOREM 2. ...
	THEOREM 3. ...
	THEOREM 4. ...

	References


