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We shall assume the axiom of constructibility (cf. [1], [3]) throughout
this paper. In [8], we considered the hierarchy of predicates of ordinal num-
bers in the first or the second number-class. In this paper we shall consider
ordinal numbers of higher number-classes and we shall define the notions of
primitive and general recursive functions of those ordinal numbers similarly
as in [8] by introducing $\omega_{1},$ $\cdots$ , $\omega_{n}$ (where $\omega_{i}$ is the initial ordinal number of
the $i+2$ nd number class) as initial functions of primitive recursive functions
of ordinal numbers in the $n+2$ nd class. (We shall simply say an ordinal
number is in the $n$ th class if it is in the $m$ th number-class for some $m\leqq n.$)

Then the arguments given in \S \S 1-6 in [8] will be available with only slight
modifications. The main result of this paper states:

A predicate in Kleene hierarchy of predicates with variables of types
$\leqq n+1$ (for $n\geqq 1$) is in $\Sigma_{1}^{n+1}\cap^{\Pi_{1}^{n^{\perp}1}}$ if and only if it is expressible by a general
recursive predicate of ordinal numbers in the $n+2$ nd class.

By the way we shall define the classical hierarchy (cf. [2]) of ordinal
numbers in the third class and classically expressible ordinal numbers. We
shall denote the least ordinal number not classically expressible by $\omega_{1}^{*}$ and
show the analogous properties of $\omega_{1}^{*}$ to those of $\omega^{*}$ . It seems to suggest some
analogies between the classical hierarchy of predicates with variables of type-
2 and Kleene hierarchy of predicates with variables of type-l.

In the following we shall show how to extend the considerations in [8]

to the third class and we shall only show the outline for the extension to
higher number classes. Some acquaintance with [8] is assumed throughout
this paper. We shall often cite definitions, propositions and theorems con-
cerning with ordinal numbers in the $n+1$ st class $(n\geqq 2)$ by putting the super-
script $n$ to the corresponding ones in [8].

\S 1. Primitive recursive2 functions.

We say simply $ta$ is an ordinal number’, if $a$ is an ordinal number in
the third class. We follow [8] for most of notions and notations on ordinal
numbers and use $\omega_{1}$ as the initial ordinal number in the third number class.

DEFINITION. A function is said to be primitive $recursive^{2}$, if it can be
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defined by a series of applications of the schemata $(I)-(XII)$ of [8, \S 1] and the
following
$(II^{\prime})$ $f(a)=\omega_{1}$ .

DEFINITION. A function is said to be primitive recursive2 $ i\uparrow\iota$ the narrow
sense, if it can be defined by a series of applications of the schemata $(I)-(VII)$,
$(IX)-(XII)$ and (II’).

DEFINITION. A predicate is said to be primitive recursive2 (in the narrow
sense), if it has a primitive recursive2 representing function (in the narrow sense).

We can prove Propositions 1-4 in \S 1 of [8] by regarding ‘ primitive re-
cursive ’ there as ‘ primitive recursive2 ‘ defined above.

\S 2. General recursive2 functions.

DEFINITION. A function is said to be general recursive2 if it can be defined
by a series of applications of the schemata $(I)-(XIII)$ of [8] and (II’).

A function is said to be general recursive2 in the narrow sense, if it can
be defined by a series of applications of the schemata $(I)-(VII),$ $(IX)-(XIII)$ and
(II’). A predicate is said to be general recursive2 (in the narrow sense), if it
has a general $recursive^{2}$ representing function (in the narrow sense).

\S 3. Construction of a model of set theory.

We can construct a model of set theory in the theory of primitive recur-
sive2 functions quite similarly as in [8, \S 3]. (Cf. also [5] and [6].)

\S 4. Elementary2 functions.

DEFINITION. A function is said to be $elementary^{2}$ , if it can be defined by
a series of applications of the schemata $(I)-(XI),$ $(XIV)-(XVII)$ and (II’). A
predicate is said to be $elementary^{2}$ , if it has an elementary2 representing
function.

We have Proposition 5 in [8] by regarding ‘ elementary ‘ there ’ elemen-
tary2 ‘ defined above.

\S 5. Relations among elementary2, primitive recursive2 and general recursive2
predicates and their quantified forms.

We call the predicates constructed from elementary2 (or primitive recur-
sive2 or general $recursive^{2}$) predicates, propositional connectives and quantifiers
$(er^{2})-(or(pr^{2})- or(gr^{2})-)$ predicates. If a predicate is obtained from an elemen-
tary2 (or primitive recursive2 or general $recursive^{2}$) predicate by prefixing a
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sequence of alternating $k$ quantifiers, we call it a k-er2-(or $k- pr^{2_{-}}$ or $k- gr^{2_{-}}$) pre-
dicate. A $k-*2$-predicate is said a $\Sigma_{k}^{2,*}-$ or $\Pi_{k}^{2,*}$-predicate, according as the
outermost quantifier is existential or universal, where $*stands$ for er, $pr$ or
$gr$. We use $\Sigma_{k}^{2,*}$ or $\Pi_{k}^{2,*}$ to denote the class of $\Sigma_{k}^{2*}$ or $\Pi_{k}^{2*}$-predicates (resp.).
If a predicate is in both $\Sigma_{k}^{2,*}$ and $\Pi_{k}^{2,*}$ , it is called a $\Sigma_{k}^{2,*}\cap^{\Pi_{k}^{2,*}}$ -predicate. A
predicate is said to be expressible in the $\Sigma_{k}^{2,*}-$ (or $\Pi_{k}^{2,*}-$) $form$ , if it is equivalent
to a $\Sigma_{k}^{2,*}-$ (or $\Pi_{k}^{2,*}-$) predicate. A predicate is said to be expressible in the
$\Sigma_{k}^{2,*}\cap^{\Pi_{k}^{2,*}}$ -form, if it is equivalent to a $\Sigma_{k}^{2,*}\cap^{\Pi_{k}^{2,*}}$-predicate. If we consider
the similar concept concerning with predicates primitive (or general) recursive2
in the narrow sense, we write $prn^{2}$ (or $grn^{2}$) instead of $pr^{2}$ (or $gr^{2}$).

We have the propositions, theorems and corollary obtained from Proposi-
tions 6-8, Theorems 1-3 and Corollary in [8, \S 5] by replacing (er) by $(er^{2})$ ;
$(pr)$ by $(pr^{2});(gr)$ by $(gr^{2})$ ; er-form by $er^{2}$-form; $pr$-form by $pr^{2}$-form; gr-form
by $gr^{2}$-form; $\Sigma_{k}^{er},$ $\Pi_{k}^{er}$ by $\Sigma_{k}^{2,er},$ $\Pi_{k}^{2,er}$ (resp.); $\Sigma_{k^{\gamma}}^{p},$ $\Pi_{k}^{p_{r}}$ by $\Sigma_{k}^{2,Pr},$ $\Pi_{k}^{2,p_{r}}$ (resp.);
$\Sigma_{k}^{gr},$ $\Pi_{k}^{gr}$ by $\Sigma_{k}^{2,gr},$ $\Pi_{k}^{2,gr}$ (resp.); $\Sigma_{k}^{grn},$ $\Pi_{k}^{grn}$ by $\Sigma_{k}^{2,grn},$ $\Pi_{k}^{2,grn}$ (resp.). The proofs
are performed in the same way as in [8]. Then we use $\Sigma_{k}^{2,ord}$ or $\Pi_{k}^{2,0^{\cdot}a}$ to
denote $\Sigma_{k}^{2,er}(=\Sigma_{k}^{2,pr}=\Sigma_{k}^{2,gr})$ or $\Pi_{k}^{2,er}(=\Pi_{k}^{2,pr}=\Pi_{k}^{2,gr})(k\geqq 1)$ and say ‘a pre-
dicate is expressible in k-2-quantifier form’ if it is expressible in $\Sigma_{k}^{2,ora}$-form
or in $\Pi_{k}^{2}$,“-form.

\S 6. The enumeration theorem and hierarchy theorem.
We can prove the enumeration theorem for elementary2 functions, the

normal form theorem for general recursive2 functions and the hierarchy
theorem for any of $(er^{2})-,$ $(pr^{2})-$ and $(gr^{2})$-predicates.

Let $C_{1}$ be a class of functions of one variable satisfying the following
conditions:
(1) $a^{\prime},$ $0,$ $\omega,$ $\omega_{1},$ $a,$ $Iq(g^{1}(a), g^{2}(a)),$ $\max(g^{1}(a), g^{2}(a)),$ $g^{1}(a)+g^{2}(a),J(g^{1}(a),g^{2}(a)),fn(a)$

and $u(a)$ belong to $C_{1}$ .
(2) If $f(a)$ and $g(a)$ belong to $C_{1}$ , then $f(g(a)),$ $j(f(a), g(a)),$ $g^{1}(f(a)),$ $g^{2}(f(a))$

and $\mu x_{x<g^{2}(a)}f(j(g^{1}(a), x))$ belong to $C_{1}$ .
Let $T_{1}(x, y)$ be a primitive recursive function possessing the properties of

$T(x, y)$ defined in [8, \S 6] and the further property

$T_{1}(2^{10}, a)=\omega_{1}$ .
Then we have the proposition, theorems and corollaries obtained from

Proposition 9, Theorems 4-7 and Corollaries of Theorem 4 in [8, \S 6] by re-
placing $C$ by $C_{1},$ $T$ by $T_{1},$ $\Sigma_{k}^{or}a$ or $\Pi_{k}^{or}a$ by $\Sigma_{k}^{2,or}a$ or $\Pi_{k}^{2.or}a$ (resp.), h-quantifier-
forms by h-2-quantifier-forms and elementary, primitive recursive or general
recursive by considering elementary2, primitive2 or general recursive2 (resp.).
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\S 7. Expression of our $k$- $2$-quantifier forms in Kleene hierarchy.

DEFINITION. An ordinal number $a$ is said to be closed2 with respect to
functions $f_{1},$ $\cdots$ , $f_{n}$ , if the following conditions are satisfied:
1) $\omega_{1}<a$ .
2) $a_{1}<a,$ $\cdots,$ $a_{r_{i}}<a\rightarrow f_{i}(a_{1}, \cdots, a_{r_{i}})<a$ $(1 \leqq i\leqq n)$ .

We can prove, for given $f_{1},$ $\cdots$ , $f_{n}$ , the existence of an ordinal number
closed2 with respect to $f_{1},$ $\cdots,f_{n}$ . Now we can define ‘ system of equations ‘ and
‘ system of equations restricted by $a_{0}$

’ in the same way as in [8]. We have
the propositions corresponding to Propositions 10 and 11 in [8].

To translate our predicates in Kleene hierarchy of finite types, we shall
first explain some notions and notations in Kleene’s theory which we are to
use in the translation. In [4], Kleene defined $type- n+1$ objects to be the 1-
place functions from type-n objects to natural numbers. But we take here
as $type- n+1$ objects the i-places $(i\geqq 0)$ functions from type-n objects to type-
m-objects $(m\leqq n)$ . By the help of the $\lambda$ -notation and $type- n+1$ objects in
Kleene’s sense we can express these $type- n+1$ objects in Kleene’s theory; $e$ . $g$ .
if $H$ is a type-2 object which mapps type-l objects to type-l objects, $H(\alpha)$

is expressed as $\lambda xH^{\prime}(\lambda y<\alpha(y), x>),$ $H^{\prime}$ being a type-2 object in Kleene’s sense.
Especially $type- n+1$ variables in this sense are primitive recursive in the
sense of 1.5 of [4], because they can be constructed from the $\lambda$ -notation, type-
$n+1$ variables in Kleene’s sense and certain primitive recursive functions in
Kleene’s sense. In the following we shall use $\alpha,$ $\beta,$ $\cdots$ , $\alpha_{1},$ $\alpha_{2},$

$\cdots$ to denote
type-l variables and $\alpha^{2},$ $\beta^{2},$ $\cdots$ , $\alpha_{1}^{9},$ $\alpha_{2}^{2},$ $\cdots$ to denote type-2-variab1es in this
sense. The work of these variables can be understood by the usage. Types
of objects used in the rest of this section are less than 3.

In [8] we make an ordinal number $a$ correspond to a function $\alpha$ from
natural numbers to natural numbers which gives a well-ordering of natural
numbers and whose order-type is $a^{\prime}$ , and each ordinal number $b$ less than $a$

to a natural number $\hat{b}$ such that it is in the domain of $\alpha$ (i. e. $D(\alpha,\hat{b})$) and
the order-type of $\alpha r\hat{b}$ (cf. [8] for the notation) is $b^{\prime}$ . Here we use a 2-places
type-2 object from type-l objects to $\{0,1\}$ which gives a well-ordering of
type-l objects ( $i$ . $e$ . a function from $N^{N}\times N^{N}$ to $\{0,1\}$ which gives a well-
ordering of $N^{N},$ $N$ being the set of natural numbers) to express an ordinal
number in the third class by means of the axiom of constructibility.

Let $\alpha=\beta$ be $\forall x(\alpha(x)=\beta(x))$ ;

$\alpha\neq\beta$ be $ 7\alpha=\beta$ ;

$D^{2}(\alpha^{2}, \alpha, \beta)$ be $\alpha^{2}(\alpha, \beta)=0\vee\alpha^{2}(\beta, \alpha)=0$ ;

$D^{2}(\alpha^{2}, \alpha)$ be $\exists\beta D^{2}(\alpha^{2}, \alpha, \beta)$ ;
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$W^{2}(\alpha^{2})$ be $\forall\alpha\forall\beta(D^{2}(\alpha^{2}, \alpha)\Lambda D^{2}(\alpha^{2}, \beta)\leftarrow D^{2}(\alpha^{2}, \alpha, \beta))$

$\wedge\forall\alpha\forall\beta(\alpha^{2}(\alpha, \beta)=0$ A $\alpha^{2}(\beta, \alpha)=0-\alpha=\beta)$

A $\forall\alpha\forall\beta\forall\gamma(\alpha^{2}(\alpha, \beta)=0$ A $\alpha^{2}(\beta, \gamma)=0\leftarrow\alpha^{2}(\alpha, \gamma)=0)$

A $\forall\psi\exists x(\alpha^{2}(\lambda u\psi(u, x),$ $\lambda u\psi(u, x+1))=0\vee\lambda u\psi(u, x)$

$=\lambda u\psi(u, x+1))$

which means that $\alpha^{2}$ is a well-ordering and which is of order 2 ([4], \S 7).
$=(\alpha^{2}, \beta^{2})3$ be $\exists\gamma^{2}(\forall\alpha(D^{2}(\alpha^{2}, \alpha)-D^{2}(\beta^{2}, \gamma^{2}(\alpha)))$

A $\forall\beta\exists\alpha(D^{2}(\beta^{2}, \beta)|-D^{2}(\alpha^{2}, \alpha)\Lambda\beta=\gamma^{2}(\alpha))$

A $\forall\alpha\forall\beta(D^{2}(\alpha^{2}, \alpha)\Lambda D^{2}(\alpha^{2}, \beta)$

$\leftarrow(\alpha^{2}(\alpha, \beta)=0\wedge\alpha\neq\beta$

$\beta^{2}(\gamma^{2}(\alpha), \gamma^{2}(\beta))=0\wedge\gamma^{2}(\alpha)\neq\gamma^{2}(\beta))))$ ,

which means under the assumption of $W^{2}(\alpha^{2})$ and $W^{2}(\beta^{2})$ , that $\alpha^{2}$ and $\beta^{2}$ are
isomorphic and which is expressible in the $\Sigma_{1}^{2}$ -form;

$\alpha^{2}$ I $\alpha$ be $\lambda\beta\gamma(\alpha^{2}(\beta, \gamma)+\alpha^{2}(\beta, \alpha)+\alpha^{2}(\gamma, \alpha))$ ;
$Cl(\alpha^{2} ; \beta_{1}^{2}, \cdots, \beta_{m}^{2})$ be

$\forall\alpha_{1}\cdots\forall\alpha_{i_{1}}(D^{2}(\alpha^{2}, \alpha_{1})\Lambda\ldots\Lambda D^{2}(\alpha^{2}, \alpha_{i_{1}})|-D^{2}(\alpha^{2}, \beta_{1}^{2}(\alpha_{1}, \cdots, \alpha_{i_{1}})))$

$\wedge\cdots$

$\wedge\forall\alpha_{1}\cdots\forall\alpha_{i_{m}}(D^{2}(\alpha^{2}, \alpha_{1})\Lambda\ldots\Lambda D^{2}(\alpha^{2}, \alpha_{i_{m}})|-D^{2}(\alpha^{2}, \beta_{m}^{2}(\alpha_{1}, \cdots, \alpha_{i_{m}})))$,

which means the domain of $\alpha^{2}$ is closed with respect to functions $\beta_{1}^{2},$ $\cdots$ , $\beta_{m}^{2}$

and which is of order 2;

$L(\alpha, \alpha^{2})$ be $W(\alpha)$ A $W^{2}(\alpha^{2})$

$\wedge\forall\varphi(\forall x(D(\alpha, x)-D^{2}(\alpha^{2}, \lambda u\varphi(u, x)))$

$\wedge\forall x\forall y(D(\alpha, x)\Lambda D(\alpha,y)$

$-(\alpha(x,y)=0\Lambda x\neq y\alpha^{2}(\lambda u\varphi(u, x),$ $\lambda u\varphi(u,y))=0$

$\Lambda\lambda u\varphi(u, x)\neq\lambda u\varphi(u,y)))$

$-\exists\beta(D^{2}(\alpha^{2}, \beta)\wedge\forall x(D(\alpha, x)\leftarrow\alpha^{2}(\lambda u\varphi(u, x),$ $\beta$) $=0\wedge\lambda u\varphi(u, x)\neq\beta)))$ ,

which means that the order-type of $\alpha$ is less than that of $\alpha^{2}$ and which is of
order 2;

$N(\alpha^{2})$ be $W^{2}(\alpha^{2})$ A $\forall\alpha(W(\alpha)-L(\alpha, \alpha^{2}))$ ,

which means that the order-type of $\alpha^{2}$ is not in the second number class and
which is of order 2.

We define further auxiliary notions corresponding to the definitions of
initial functions of primitive recursive2 functions of ordinal numbers. These
notions are used only under the assumption that $W^{2}(\alpha^{2})$ :
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$(I)\vee$ $\forall\alpha\forall\beta(D^{2}(\alpha^{2}, \alpha)\wedge D^{2}(\alpha^{2}, \beta)\leftarrow(\beta=\psi_{0}^{2}(\alpha)\alpha^{2}(\alpha, \beta)=0\Lambda\alpha\neq\beta$

$\wedge\forall\gamma(\alpha^{2}(\alpha, \gamma)=0$ A $\alpha\neq\gamma-\alpha^{2}(\beta, \gamma)=0)))$

A $\forall\alpha(D^{2}(\alpha^{2}, \alpha)-D^{2}(\alpha^{2}, \psi_{0}^{2}(\alpha)))$

(abbr. $M_{0}^{2}(\alpha^{2}$ ; $\psi_{0}^{2})$), where $\psi_{0}^{2}(\alpha)$ corresponds to the successor of $\alpha$ in the sense
of $\alpha^{2}$ .
$(I^{\vee}I_{1})$ $\forall\alpha\forall\beta(D^{2}(\alpha^{2}, \alpha)\wedge D^{2}(\alpha^{2}, \beta)I-(\beta=\psi_{1}^{2}(\alpha) 7\exists\gamma(\alpha^{2}(\gamma, \beta)=0\Lambda\gamma\neq\beta)))$

A $\forall\alpha(D^{2}(\alpha^{2}, \alpha)\leftarrow D^{2}(\alpha^{2}, \psi_{1}^{2}(\alpha)))$

(abbr. $1\psi_{1}^{2}(\alpha^{2}$ ; $\psi_{1}^{2})$), where $\psi_{1}^{2}(\alpha)$ stands for the first element of the domain of $\alpha^{2}$ .
$(I^{\vee}I_{2})$ $\forall\alpha\forall\beta(D^{2}(\alpha^{2}, \alpha)\Lambda D^{2}(\alpha^{2}, \beta)-(\beta=\psi_{2}^{2}(\alpha)-|\exists\gamma(\alpha^{2}(\gamma, \beta)=0\wedge\gamma\neq\beta)$

A $\forall\gamma(\alpha^{2}(\gamma, \beta)=0\wedge\gamma\neq\beta l-\alpha^{2}(\psi_{0}^{2}(\gamma), \beta)=0\Lambda\psi_{0}^{2}(\gamma)\neq\beta)$

A $\forall\gamma(\exists\delta(\alpha^{2}(\delta, \gamma)=0$ A $\delta\neq\gamma$)

$\wedge\forall\delta(\alpha^{2}(\delta, \gamma)=0\Lambda\delta\neq r^{1}-\alpha^{2}(\psi_{0}^{2}(\delta), \gamma)=0$ A $\psi_{0}^{2}(\delta)\neq\gamma)$

$-\alpha^{2}(\beta, \gamma)=0)))$

$\wedge\forall\alpha(D^{2}(\alpha^{2}, \alpha)\mapsto D^{2}(\alpha^{2}, \psi_{2}^{2}(\alpha)))$

(abbr. $1M_{2}^{2}(\alpha^{2}$ ; $\psi_{0}^{2},$ $\psi_{2}^{2})$), which is used only under the assumption that $1\psi_{0}^{2}(\alpha^{2} ; \psi_{0^{?}}^{\Delta})$ .
$\psi_{2}^{2}(\alpha)$ corresponds to $\omega$ .
$(I^{\vee}I^{\prime})$

$\forall\alpha\forall\beta(D^{2}(\alpha^{2}, \alpha)\Lambda D^{2}(\alpha^{2}, \beta)$

$-(\beta=\psi_{2}^{2}(\alpha) N(\alpha^{2}|\beta)\wedge\forall\gamma(D\underline{)}(\alpha^{2}, \gamma)\wedge N(\alpha^{2}|\gamma)-\alpha^{9}\rightarrow(\beta, \gamma)=0)))$

A $\forall\alpha(D^{2}(\alpha^{2}, \alpha)|-D^{2}(\alpha^{2}, \psi_{2}^{2}(\alpha)))$

(abbr. $M_{2^{2}}^{\prime}(\alpha^{2},$ $\psi_{2}^{2},)$), $\psi_{2}^{2},(\alpha)$ corresponds to $\omega_{1}$ .
$(III)\vee$ $\forall\alpha\forall\beta(D^{2}(\alpha^{2}, \alpha)\Lambda D^{2}(\alpha^{2}, \beta)-(\beta=\psi_{3}^{2}(\alpha)\alpha=\beta))$

A $\forall\alpha(D^{2}(\alpha_{f}^{2}\alpha)|-D^{2}(\alpha^{2}, \psi_{d}^{2}(\alpha)))$

(abbr. $1\psi_{3}^{2}(\alpha^{2}$ ; $\psi_{3}^{2})$), where $\psi_{3}^{2}$ corresponds to the identity function.
$(I\check{V})$ $\forall\alpha\forall\beta\forall\gamma(D^{2}(\alpha^{2}, \alpha)\Lambda D^{2}(\alpha^{2}, \beta)$ A $D^{2}(\alpha^{2}, \gamma)$

$\mapsto(\gamma=\psi_{4}^{2}(\alpha, \beta)((\alpha^{2}(\alpha, \beta)=0$ A $\alpha\neq\beta\Lambda\gamma=\psi_{1}^{2}(\alpha))$

V $(\alpha^{2}(\beta, \alpha)=0$ A $\gamma=\psi_{0}^{2}(\psi_{i}^{Q}(\alpha))))))$

A $\forall\alpha\forall\beta(D^{2}(\alpha^{2}, \alpha)\Lambda D^{2}(\alpha^{2}, \beta)-D^{2}(\alpha^{2}, \psi_{4}^{2}(\alpha, \beta)))$

(abbr. $j\psi_{4}^{2}(\alpha^{2}$ ; $\psi_{0}^{2},$ $\psi_{1}^{2},$ $\psi_{4}^{2})$), which is used only under the assumption that
$M_{0}^{2}(\alpha^{2} ; \psi_{0}^{2})$ and $1\psi_{1}^{2}(\alpha^{2} ; \psi_{1}^{2})$ . $\psi_{4}^{2}$ corresponds to Iq.
$(\check{V})$

$\forall\alpha\forall\beta\forall\gamma(D^{2}(\alpha^{2}, \alpha)\wedge D^{2}(\alpha^{2}, \beta)\Lambda D^{2}(\alpha^{2}, \gamma)$

$\mapsto(\gamma=\psi_{5}^{2}(\alpha, \beta)(\alpha^{2}(\alpha, \beta)=0\Lambda\gamma=\beta)\vee(\alpha^{2}(\beta, \alpha)=0\wedge\gamma=\alpha)))$

$\Lambda\forall\alpha\forall\beta(D^{2}(\alpha^{2}, \alpha)\wedge D^{2}(\alpha^{2}, \beta)-D^{2}(\alpha^{2}, \psi_{5}^{2}(\alpha, \beta)))$
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(abbr. $M_{5}^{2}(\alpha^{2}$ ; $\psi_{\overline{0}}^{2})$). $\psi_{5}^{2}$ corresponds to $\max$ .
$(\check{V}I)$

$\forall\alpha\forall\beta\forall\gamma(D^{2}(\alpha^{2}, \alpha)\wedge D^{2}(\alpha^{2}, \beta)\wedge D^{2}(\alpha^{2}, \gamma)$

$\leftarrow(\gamma=\psi_{6}^{2}(\alpha, \beta)-|\underline{\forall}\varphi^{2}(\forall\alpha_{1}\forall\beta_{1}(\check{R}(\alpha^{2} ; \alpha_{1}, \beta_{1}, \alpha, \beta)\vee(\alpha_{1}=\alpha\wedge\beta_{1}=\beta)$

$l-\exists\gamma_{1}(\alpha^{2}(\gamma_{1}, \gamma)=0$ A $\varphi^{2}(\gamma_{1}, \alpha_{1}, \beta_{1})=0))$

$\wedge\forall\gamma_{1}(\alpha^{2}(\gamma_{1}, \gamma)=0\leftarrow\exists\alpha_{1}\exists\beta_{1}$(( $\check{R}(\alpha^{2}$ ; $\alpha_{1},$
$\beta_{1},$ $\alpha,$ $\beta)\vee(\alpha_{1}=\alpha$ A $\beta_{1}=\beta)$)

$\Lambda\varphi^{2}(\gamma_{1}, \alpha_{1}, \beta_{1})=0))$

$\wedge\forall\alpha_{1}\forall\beta_{1}\forall\gamma_{1}\forall\alpha_{2}\forall\beta_{2}\forall\gamma_{2}(D^{2}(\alpha^{2}, \alpha_{1})$ A $D^{2}(\alpha^{2}, \beta_{1})$ A $D^{2}(\alpha^{2}, \gamma_{1})$

A $D^{2}(\alpha^{2}, \alpha_{2})\wedge D^{2}(\alpha^{2}, \beta_{2})\wedge D^{2}(\alpha^{2}, \gamma_{2})$

A $\varphi^{2}(\gamma_{1}, \alpha_{1}, \beta_{1})=0$ A $\varphi^{2}(\gamma_{2}, \alpha_{2}, \beta_{2})=0$

$-$ $(\alpha^{2}(\gamma_{1}, \gamma_{2})=0$ A $\gamma_{1}\neq\gamma_{2}\check{R}(\alpha^{2} ; \alpha_{1}, \beta_{1}, \alpha_{2}, \beta_{2})))$

$\Lambda\forall\delta(D^{2}(\alpha^{2}, \delta)\mapsto\varphi^{2}(\psi_{1}^{2}(\delta), \psi_{1}^{2}(\delta),$ $\psi_{1}^{2}(\delta))=0)--\varphi^{2}(\gamma, \alpha, \beta)=0)))$

$\wedge\forall\alpha\forall\beta(D^{2}(\alpha^{2}, \alpha)\Lambda D^{2}(\alpha^{2}, \beta)-D^{2}(\alpha^{2}, \psi_{6}^{2}(\alpha, \beta)))$ ,

(abbr. $M_{6}^{2}(\alpha^{2}$ ; $\psi\frac{}{0},$ $\psi_{1}^{2},$ $\psi_{4}^{2},$ $\psi_{5}^{2},$ $\psi_{6}^{2})$), where $\check{R}(\alpha^{2} ; \alpha, \beta, \alpha_{1}, \beta_{1})$ is the abbreviation of

$D^{2}(\alpha^{2}, \alpha)\wedge D^{2}(\alpha^{2}, \beta)$ A $D^{2}(\alpha^{2}, \alpha_{1})\Lambda D^{2}(\alpha^{2}, \beta_{1})$

A $(\forall\gamma(D^{2}(\alpha^{2}, \gamma)|-\psi_{4}^{2}(\psi_{5}^{2}(\alpha, \beta),$ $\psi_{5}^{2}(\alpha_{1}, \beta_{1}))=\psi_{1}^{2}(\gamma))$

$\vee(\psi_{5}^{2}(\alpha, \beta)=\psi_{5}^{2}(\alpha_{1}, \beta_{1})$

$\wedge\forall\gamma(D^{2}(\alpha^{2}, \gamma)\leftarrow(\psi_{4}^{2}(\beta, \beta_{1})=\psi_{1}^{2}(\gamma)\vee$ ( $\beta=\beta_{1}$ A $\psi_{4}^{2}(\alpha,$ $\alpha_{1})=\psi_{1}^{2}(\gamma)$)))))

and is of order 2 in $\psi_{1}^{2},$ $\psi_{4}^{2},$ $\psi_{6}^{2}$ , which is used only under the assumption that
$M_{0}^{2}(\alpha^{2};\psi_{0}^{2}),$ $M_{1}^{2}(\alpha^{2};\psi_{1}^{2}),$ $M_{4}^{2}(\alpha^{2};\psi_{0}^{2}, \psi_{1}^{2}, \psi_{4}^{2})$ and $M_{5}^{2}(\alpha^{2};\psi_{5}^{2})$ . $\psi_{6}^{2}$ corresponds to $j$ .
We use also the predicate obtained from this by replacing the underlined
logical symbols V and $-$ by $\exists$ and A respectively as $M_{6}^{2}(\alpha^{2} ; \psi_{0}^{2}, \cdots, \psi_{6}^{2})$ under
the presupposition by which we can consider them to be equivalent.
$(VII_{1})\vee$ $\forall\alpha\forall\beta(D^{2}(\alpha^{2}, \alpha)\Lambda D^{2}(\alpha^{2}, \beta)\leftarrow(\beta=\psi_{7}^{2}(\alpha)\exists\gamma(\alpha=\psi_{6}^{2}(\beta, \gamma))))$

A $\forall\alpha(D^{2}(\alpha^{2}, \alpha)|-D^{2}(\alpha^{2}, \psi_{7}^{2}(\alpha)))$

(abbr. $M_{7}^{2}(\alpha^{2}$ ; $\psi_{0}^{2},$ $\psi_{1}^{2},$ $\psi_{4}^{2},$ $\psi_{5}^{2},$ $\psi_{6}^{2},$ $\psi_{7}^{2})$), which is used only under the assumption
that $M_{0}^{2}(\alpha^{2} ; \psi_{0}^{2}),$ $M_{1}^{2}(\alpha^{2} ; \psi_{1}^{2}),$ $M_{4}^{2}(\alpha^{2} ; \psi_{0}^{2}, \psi_{1}^{2}, \psi_{4}^{2}),$ $M_{5}^{2}(\alpha^{2} ; \psi_{5}^{2})$ and $M_{6}^{2}(\alpha^{2}$ ; $\psi_{0}^{2},$ $\psi_{1}^{2}$ ,
$\psi_{4}^{2},$ $\psi_{5}^{2},$ $\psi_{6}^{2}$). $\psi_{7}^{2}$ corresponds to $g^{1}$ .
$(VII_{2})\vee$ $\forall\alpha\forall\beta(D^{2}(\alpha^{2}, \alpha)\Lambda D^{2}(\alpha^{2}, \beta)\leftarrow(\beta=\psi_{8}^{2}(\alpha)\exists\gamma(\alpha=\psi_{6}^{2}(\gamma, \beta))))$

A $\forall\alpha(D^{2}(\alpha^{2}, \alpha)-D^{2}(\alpha^{2}, \psi_{8}^{2}(\alpha)))$

(abbr. $M_{8}^{2}(\alpha^{2}$ ; $\psi_{0}^{2},$ $\psi_{1}^{2},$ $\psi_{4}^{2},$ $\psi_{5}^{2},$ $\psi_{6}^{2},$ $\psi_{8}^{2})$), which is used only under the same assump-
tion as in $(VII_{1})_{2}\vee$ . $\psi_{8}^{2}$ correponds to $g^{2}$ .

We see easily that $M_{i}^{2}(\alpha^{2} ; \psi_{i_{1}}^{2}, \cdots , \psi_{i}^{2})$ is expressible in the $\Sigma_{1\cap}^{2}\Pi_{1}^{2}$-form
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for each $i$ ($0\leqq i\leqq 8$ or $i=2^{\prime}$).

Let $C(a_{1}, \cdots , a_{n})$ be a primitive recursive2 function in the narrow sense.
We define ‘ a system of equations $[f(a_{1}, \cdots , a_{n})=C(a_{1}, \cdots , a_{n})]^{\check{\alpha}_{0}}$

: with respect
to $\alpha_{0}^{2}$ , in Kleene’s theory corresponding to $[f(a_{1}, \cdots , a_{n})=C(a_{1}, \cdots , a_{n})]^{ao}$ , where
$W^{2}(\alpha_{0}^{2})$ is presupposed and the order-type of $\alpha_{0}^{2}$ is $a_{0}^{\prime}$ . The definition is given
under the presupposition that $W^{2}(\alpha_{0}^{2}),$ $M_{0}^{2}(\alpha_{0}^{2} ; \psi_{0}^{2}),$ $\cdots$ , $M_{8}^{2}(\alpha\frac{9}{0} ; \psi_{0}^{2}, \cdots , \psi_{8}^{2})$ . In the
definition type-2 variables $\check{f,}\check{g},$

$\cdots$ and the type-l variables $\check{a}_{1},$ $\cdots$ , $\check{a}_{n}$ correspond
to $f.g,$ $\cdots$ and $a_{1},$ $\cdots$ , $a_{n}$ (resp.). If $C(a_{1}, \cdots , a_{n})$ is of the form $g(C_{1}(a_{1}, \cdots , a_{n}),$ $\cdots$ ,
$C_{m}(a_{1}, \cdots , a_{n}))$ where $g$ is a function symbol, then $[f(a_{1}, \cdots , a_{n})=C(a_{1}, \cdots , a_{n})]^{\check{\alpha}_{0}^{2}}$ is

$(D^{2}(\alpha_{0}^{2},\check{a}_{1})\wedge\cdots$ A $D^{2}(\alpha_{0}^{2},\check{a}_{n})|-\check{f}(\check{a}_{1}, \cdots,\check{a}_{n})=\check{g}(\check{h}_{1}(\check{a}_{1}, \cdots,\check{a}_{n}), \cdots,\check{h}_{m}(\check{a}_{1}, \cdots,\check{a}_{n})))$

A $\forall\check{x}_{1}\cdots\forall\check{x}_{n}([h_{1}(x_{1}, \cdots, x_{n})=C_{1}(x_{1}, \cdots, x_{n})]^{\check{\alpha}_{0}^{1}})$

$\wedge\cdot\cdot$ ,

A $\forall\check{x}_{1}\cdots\forall\check{x}_{n}([h_{m}(x_{1}, \cdots, x_{n})=C_{m}(x_{1}, \cdots, x_{n})]^{\check{\alpha}_{0}^{z}})$

where $\check{g}$ is $\psi_{i}(0\leqq i\leqq 8)$ or $k_{l}(1\leqq l\leqq j)$ . If $C(a_{1}, \cdots , e_{n})$ is of the form
$\mu x_{x<c_{0^{(\alpha_{1},\cdots,a_{n})}}}C_{1}(a_{1}, \cdots , a_{n}, x)$, then $[f(a_{1}, \cdots, a_{n})=C(a_{1}, \cdots, a_{n})]^{\check{\alpha}_{0}^{2}}$ is

$(D^{2}(\alpha_{0}^{2},\check{a}_{1})\wedge\cdots$ A $D^{2}(\alpha_{0}^{2} ; \check{a}_{n})\leftarrow((\alpha_{0}^{2}(\check{f}(\check{a}_{1}, \cdots,\check{a}_{n}),\check{h}_{0}(\check{a}_{1}, \cdots , \check{a}_{n}))=0$

A $\check{f}(\check{a}_{1}, \cdots,\check{a}_{n})\neq\check{h}_{0}(\check{a}_{1}, \cdots,\check{a}_{n})$ A $\check{h}_{1}(\check{a}_{1}, \cdots,\check{a}_{n},\check{f}(\check{a}_{1}, \cdots,\check{a}_{n}))=\psi_{1}^{2}(\check{a}_{1})$

A $\forall\check{x}$( $\alpha_{0}^{2}(\check{x},\check{f}(\check{a}_{1},$
$\cdots$ , $\check{a}_{n}))=0$ A $\check{x}\neq f\check{(}\check{a}_{1},$

$\cdots$ , $\check{a}_{n}$ )

$-\check{h}_{1}(\check{a}_{1}, \cdots,\check{a}_{n},\acute{x})\neq\psi_{1}^{2}(\check{a})))$

$\vee(\check{f}(\check{a}_{1}, \cdots,\check{a}_{n})=\psi_{1}^{2}(\check{a}_{1})$

$\wedge\forall\check{x}(\alpha_{0}^{2}(\check{x},\check{h}_{0}(\check{a}_{1}, \cdots , \check{a}_{n}))=0$ A $\check{x}\neq\check{h}_{0}(\check{a}_{1}, \cdots,\check{a}_{n})$

$\leftarrow\check{h}_{1}(\check{a}_{1}, \cdots,\check{a}_{n},\check{x})\neq\psi_{1}^{2}(\check{a}_{1})))))$

A $\forall\check{x}_{1}\cdots\forall\check{x}_{n}([h_{0}(x_{1}, \cdots , x_{n})=C_{0}(x_{1}, \cdots , x_{n})]^{\dot{\alpha}_{\circ}^{2}})$

A $\forall\check{x}_{1}\cdots\forall\check{x}_{n}\forall\check{x}([h_{1}(x_{1}, \cdots , x_{n}, x)=C_{1}(x_{1}, \cdots , x_{n}, x)]^{a_{\dot{0}}^{\vee}})$ .
$[f(a_{1}, \cdots , a_{n})=g(a_{1}, \cdots , a_{n})]^{\check{\alpha}_{0}^{2}}$ for a function symbol $g$ is $ D^{2}(\alpha\frac{9}{0}, p^{\vee}\chi_{1})\wedge\cdots$ A $D^{2}(\alpha_{0}^{2},\check{a}_{n})$

$\leftarrow\check{f}(\check{a}_{1}, \check{a}_{n})=\check{g}(\check{a}_{1}, \cdot \check{a}_{n})$, where $\check{g}$ is $\psi_{i}^{2}$ or $k_{l}$ according as $g$ is introduced
by one of $(I)-(VII)$ , (II’) or (XII).

Now let $C(a_{1}, \cdots , a_{n})$ be a primitive recursive2 function in the narrow sense.
We define the result of the translation of $b=C(a_{1}, \cdots , a_{n})$ in Kleene hierarchy
which is denoted $(b=C(a_{1}, \cdots , a_{n}))^{\vee}(\varphi^{2}, \varphi_{1}^{2}, \cdots , \varphi_{n}^{2})$ (where $\varphi^{2},$ $\varphi_{1}^{2},$ $\cdots$ , $\varphi^{2_{?}}$ correspond
to $b,$ $a_{1},$ $\cdots$ , $a_{n}$). This has two equivalent forms $(b=C(a_{1}, \cdots , a_{n}))\forall^{\vee}(\varphi^{2}, \varphi_{1}^{2}, \cdots , \varphi_{n}^{2})$

and $(b=C(a_{1}, \cdots , a_{n}))^{\vee}\exists(\varphi^{2}, \varphi_{1}^{2}, \cdots , \varphi_{n}^{2})$ . $(b=C(a_{1}, \cdots, a_{n}))^{\vee}\forall(\varphi^{2}, \varphi_{1}^{2}, \cdots , \varphi_{n}^{2})$ is
$\underline{\forall}\alpha_{0}^{2}\underline{\forall}\check{a}_{1}\cdots\underline{\forall}\check{a}_{n}\underline{\forall}\check{b}\underline{\forall}\psi_{0}^{2}\underline{\forall}\psi_{1}^{2}\cdots\underline{\forall}\psi_{8}^{2}\underline{\forall}\check{h}_{1}\cdots\underline{\forall}\check{h}_{m}\underline{\forall}\check{k}_{1}\cdots\underline{\forall}\check{k}_{j}\underline{\forall}\check{f}$

$(W^{2}(\alpha_{0}^{2})\wedge D^{2}(\alpha_{0}^{2},\check{a}_{1})\Lambda\ldots$ A $D^{2}(\alpha_{0}^{2},\check{a}_{n})\Lambda D^{2}(\alpha_{0}^{2},\check{b})$
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$\wedge=$ ( $\varphi_{1}^{2},$ $\alpha_{0}^{2}$ I $\check{a}_{1}$ ) $\wedge\cdots\wedge=(\varphi_{n}^{2}, \alpha_{0}^{2}|\check{a}_{n})\wedge=(\varphi^{2}, \alpha_{0}^{2}|\check{b})$

A $ M_{0}^{2}(\alpha_{0}^{2}, \psi_{0}^{2})\wedge\cdots$ A $M_{8}^{2}(\alpha_{0}^{2}, \psi_{0}^{2}, \cdots, \psi_{8}^{2})$

$\Lambda Cl^{2}(\alpha_{0}^{2} ; \psi_{6}^{2},\check{k}_{1}, \cdots,\check{k}_{j})\wedge[f(a_{1}, \cdots, a_{n})=C(a_{1}, \cdots, a_{n})]^{\check{\alpha}_{0}^{2}}$

$-|-\check{b}=\check{f}(\check{a}_{1}, \cdots,\check{a}))$ ,

where $h_{1},$ $\cdots$ , $h_{m}$ are auxiliary functions of $[f(a_{1}, \cdots , a_{n})=C(a_{1}, \cdots, a_{n})]$ and
$k_{1},$ $\cdots$ , $k_{j}$ are functions introduced by the primitive recursion occurring in the

construction of C. $(b=C(a_{1}, \cdots , a_{n}))^{\vee}\exists(\varphi^{2}, \varphi_{1}^{2}, \cdots , \varphi_{n}^{2})$ is obtained from $(b=C(a_{1},$ $\cdots$ ,
$a_{n}))^{\vee}\forall(\varphi^{2}, \varphi_{1}^{2}, \cdot.. , \varphi_{n}^{2})$ by underlined $\forall s$ and $|-by\exists s$ and A respectively.
From the definition we have

THEOREM 1. Every primitive recursive2 predicate in the narrow sense is ex-
pressible by a $\Sigma_{1}^{2}\cap^{\Pi_{1}^{2}}$ -predicate in Kleene hierarchy.

COROLLARY 1. Every predicate containing no function variable and expres-
sible in the $\Sigma_{k}^{2,pr}- or\Pi_{k}^{2,pr}$-form $(k\geqq 1)$ is expressible by the $\Sigma_{k^{2}}- or\Pi_{k^{2}}$ -predicate (resp.).

PROOF. Using Theorem 1, it can be proved similary as in the proof of
Theorem 8 of [8].

COROLLARY 2. Every general recursive2 predicate containing no function
variable is expressible by a $\Sigma_{1}^{2}\cap^{\Pi_{1}^{2}}$ -predicate.

PROOF. This follows from Corollary 1 and Theorems $1^{2}$ and $2^{2}$ .

\S 8. Expression of predicates of order 3 in our hierarchy.

In this section we shall consider Kleene’s predicates of order 3 containing
only variables of type $\leqq 2$ and show that every predicate expressible in the
$\Sigma_{k^{2_{-}}}$ or $\Pi_{k}^{2}$-form is expressible in the $\Sigma_{k}^{2,or}a_{-}$ or $\Pi_{k}^{2,ord}$-form (resp.); especially
every predicate expressible in the $\Sigma_{1}^{2}\cap^{\Pi_{1}^{2}}$ -form is expressible as a general
recursive2 predicate.

Let $F^{2}(f)$ be

$\forall x(x<f\wedge x\in f-\exists y\exists z$( $<y,$ $ z>=x\wedge y<\omega$ A $y\in\omega\wedge z<\omega_{1}\wedge F(z)$)

$\wedge\forall x\forall y\forall z(x<\omega_{1}\wedge y<\omega\wedge z<\omega\wedge<y, x>\in f\wedge<z, x>\in f-y\equiv z)$

A $\forall x$ ($F(x)$ A $ x<\omega_{1}\leftarrow\exists y(y<\omega$ A $<m(y),$ $x>\in f)$) $\wedge\forall x(x<f\leftarrow 7x\equiv f)$

(cf. \S 8 of [8] for $F(x)$ and $m(y)$) and $f^{\{\}\}}g$ be

$\mu y_{y<\omega}(<m(y),g>\in f\wedge m(y)\in\omega)$ .
We shall define the #-operation from predicates of order 3 to predicates

of ordinal numbers, by which a type-O variable turns a variable of ordinal
numbers $<\omega$ , a type-l variable turns a variable $f$ of ordinal numbers such
that $F(f)$ and a type-2 variable turns a variable $f$ of ordinal numbers such
that $F^{2}(f)$ . By means of XXXV and XXXVII $b$ of [4], we define the #-opera-
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tion as follows:
$(j=\alpha(i))^{g}$ is $ F(f)\Lambda j=f^{\dagger\}}i\wedge j<\omega\Lambda i<\omega$ ;
$(j=\alpha^{2}(\alpha))\#$ is $F^{2}(f)$ A $F(g)\Lambda j=f^{\{\}\{}g$ A $j<\omega\wedge g<\omega_{1}$ ;
$(k=i+j)\#$ is $ k=i+j\wedge i<\omega$ A $ j<\omega\Lambda k<\omega$ ;
$(k=i\cdot j)\#$ is $ k=J(j, i)\wedge i<\omega$ A $ j<\omega\wedge k<\omega$ .
$(7A)\#$ is $ 7A\#$ ; $(A\wedge B)\#$ is $ A\#\wedge B\#$ ; $(A\vee B)\#$ is $A\#\vee B^{\#}$ .

Let $A(\alpha_{1}^{2}, \cdots, \alpha_{\iota}^{2}, \alpha_{1}, \cdots, \alpha_{m}, a_{1}, \cdots, a_{n}, a)$ be a predicate of order 3 and
$(A(\alpha_{1}^{2}, \cdots , \alpha_{\iota}^{2}, \alpha_{1}, \cdots , \alpha_{m}, a_{1}, \cdots , a_{n}, a))\#$ be defined. Then

$(\exists xA(\alpha_{1}^{2}, \cdots, \alpha_{\iota}^{2}, \alpha_{1}, \cdots, \alpha_{m}, a_{1}, \cdots, a_{n}, x))\#$

is $\exists x$ ($ x<\omega$ A ($A$( $\alpha_{1}^{2},$ $\cdots$ , $\alpha_{\iota}^{2},$

$\alpha_{1},$ $\cdots$ , $\alpha_{m},$ $a_{1},$ $\cdots$ , $a_{n},$ $x$)) $\mu*$);

Let $A(\alpha_{1}^{2}, \cdots, \alpha_{\iota}^{2}, \alpha_{1}, \cdots, \alpha_{m}, \alpha, a_{1}, \cdots, a_{n})$ be a predicate of order 3 and
$(A(\alpha_{1}^{2}, \cdots , \alpha_{\iota}^{2}, \alpha_{1}, \cdots , \alpha_{m}, \alpha, a_{1}, \cdots , a_{n}))\#$ be defined as $A\#(g_{1},$ $\cdots$ , $g_{l},f_{1},$ $\cdots,f_{m},f,$ $a_{1},$

$\cdots$ ,
$a_{n})$ . Then

$(\exists\alpha A(\alpha_{1}^{2}, \cdots, \alpha_{l}^{2}, \alpha_{1}, \cdots, \alpha_{m}, \alpha, a_{1}, \cdots, a_{n}))\#$

is $\exists f$($f<\omega_{1}$ A $F(f)\Lambda A\#(g_{1},$ $\cdots,$ $g_{l},f_{1},$ $\cdots,f_{m},f,$ $a_{1},$ $\cdots,$
$a_{n})$).

Let $A(\alpha_{1}^{2}, \cdots, \alpha_{\iota}^{2}, \alpha^{2}, \alpha_{1}, \cdots, \alpha_{m}, a_{1}, \cdots, a_{n})$ be a predicate of order 3 and
$(A(\alpha_{1}^{2}, \cdots , \alpha_{\iota}^{2}, \alpha^{2}, \alpha_{1}, \cdots , \alpha_{m}, a_{1}, \cdots , a_{n}))^{f}$ is defined as $A\#(g_{1},$ $\cdots,$ $g_{l},$ $g,f_{1},$ $\cdots$ , $f_{m},$ $a_{1},$

$\cdots$ ,
$a_{n})$ . Then

$(\exists\alpha^{2}A(\alpha_{1}^{2}, \cdots, \alpha_{\iota}^{2}, \alpha^{2}, \alpha_{1}, \cdots, \alpha_{m}, a_{1}, \cdots, a_{n}))\#$

is $\exists g$ ($F^{2}(g)$ A $A\#(g_{1},$ $\cdots$ , $g_{l},$ $g,f_{1},$ $’\cdot$ . , $f_{m},$ $a_{1},$ $\cdots$ , $a_{n})$).

Similarly for dual forms. Then from the definition of the #-operation

and Proposition 7 of [8], Proposition $7^{2}$ , we have
THEOREM. Every predicate of order 2 is expressible by a primitive recursive2

predicate and every predicate expressible in the $\Sigma_{k}^{2}-$ or $\Pi_{k}^{2}$ -form is expressible in the
$\Sigma_{k}^{2,0\prime a_{-}}$ or $\Pi_{k}^{2,ora}$-form (resp.); especially every predicate expressible in the $\Sigma_{1}^{2}\cap^{\Pi_{1}^{2_{-}}}$

form is expressible by a general recursive2 predicate. (Cf. Theorem $1^{2}.$)

\S 9. Remarks for predicates of ordinal numbers in higher number classes and
predicates of finite types in Kleene hierarchy.

In the previous sections we considered predicates of ordinal numbers in
the third class and type-2 objects in Kleene hierarchy. Let us consider, in
general, the $n+2$ nd number class $(n\geqq 0)$ . We shall define primitive and
general recursive functions of ordinal numbers in the $n+2$ nd class in the
same way as in [8] or in \S \S 1, 2 of this paper using $\omega,$ $\omega_{1}$ , $\cdot$ .. $\omega_{n}$ as initial
functions of primitive recursive functions and call them primitive and general
$recursive^{n+1}$ functions, respectively. Then our arguments about predicates of
ordinal numbers in the third class can straightly be extended to predicates
of ordinal numbers in the $n+2$ nd class for $n\geqq 2$ . We shall denote the classes
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corresponding to $\Sigma_{k}^{2,ord}$ and $\Pi_{k}^{2,or}a$ as $\Sigma_{k}^{n+1,ora}$ and $\Pi_{k}^{n+1,ord}$ , respectively.
To express our predicates of the k-quantifier form in Kleene hierarchy of

finite types, we shall use objects of higher finite types stated in \S 7. We
shall make correspond an ordinal number $a$ (in the $n+2$ nd class) to a type-
$n+1$ object from 2-places type-n objects to $\{0,1\}$ which gives a well-ordering
of type-n objects by means of the axiom of constructibility. Then we can
continue our arguments in the same way as in \S 7 and obtain

THEOREM. For $n\geqq 1$ ; every general $recursive^{n+1}$ predicate containing no
function variable is expressible in the $\Sigma_{1}^{n+1}\cap^{\Pi_{1}^{n+1}}$-form. Every predicate expres-
sible in the $\Sigma_{k}^{n+1,ora_{-or}}\Pi_{k}^{n+1,O7}a$-form is expressible in the $\Sigma_{k}^{n+1_{-}}$ or $\Pi_{k}^{n+1}$ -form (resp.)

in Kleene hierarchy.
Conversely, to express predicates of order $n+2$ in our hierarchy, we shall

define ordinal numbers which are functions in the model of the set theory
and correspond to variables of higher types; let $F(f),$ $F^{2}(f),$ $\cdots$ , $F^{n+1}(f)$ mean
that $f$ is the ordinal number of this kind. We can consider that $f<\omega_{m}$ if
$F^{m}(f)$ and $m\leqq n$ . We can easily extend arguments in \S 8 in this case and
obtain

THEOREM. Every predicate of order $n+1$ is expressible by a primitive recur-
$sive^{n+1}$ predicate and every predicate expressible in the $\Sigma_{k}^{n+1_{-}}$ or $\Pi_{k}^{n+1}$-form is ex-
pressible in the $\Sigma_{k}^{n+1,ord_{-}}$ or $\Pi_{k}^{n+1.ord}$ -form (resp.); especially every predicate expres-
sible in the $\Sigma_{1}^{n+1}\cap^{\Pi_{1}^{n+1}}$-form is expressible by a general $recursive^{n+1}$ predicate.

\S 10. Classical hierarchy and classically expressible ordinal numbers.

We shall call a function $f$ to be c-recursive if there exist a general recur-
sive function $g$ and an ordinal number $e\leqq\omega_{1}$ such that

$f(a_{1}, \cdots, a_{n})=g(a_{1}, \cdots, a_{n}, e)$ .
A c-recursive predicate is a predicate whose representing function is c-recursive.
We shall consider the predicates constructed from c-recursive predicates, pro-
positional connectives and quantifiers and call the hierarchy which consists
of these predicates the classical hierarchy (cf. [2] for the notion ’ classical ’).

We use the notation $\Sigma_{k}^{c}$ or $\Pi_{k}^{c}$ to express the counterpart of $\Sigma_{k}^{or}a$ or $\Pi_{k}^{or}a$ (resp.)
for the classical hierarchy. An ordinal number $a$ is called to be classically
expressible, if $a$ is expressible by using c-recursive functions and any ordinal
number not greater than $\omega_{1}$ . Let $\omega_{i^{k}}$ be the least ordinal number which is
not classically expressible.

Let $\mathfrak{R}_{1}=\{f(a)|f$ is c-recursive and $a<\omega_{i^{k}\}},$
$\varphi_{1}$ be a one to one mapping

from $\mathfrak{R}_{1}$ onto $\{x|x<\mathfrak{r}_{1}\}$ satisfying

$a_{1}\in \mathfrak{R}_{1},$ $a_{2}\in \mathfrak{R}_{1},$ $a_{1}<a_{2}\rightarrow\varphi_{1}(a_{1})<\varphi_{1}(a_{2})$ .
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$and\mathfrak{B}_{1}=\{\{x\}f(x, b)|fisc- recursiveandb\in \mathfrak{R}_{1}\}$ . $Iff\in \mathfrak{B}_{1}$ and $\varphi_{1}(f(a))=g(\varphi_{1}(a))$

for every $a\in \mathfrak{R}_{1}$ , then we say $g$ is an $f^{\varphi_{1}}$ (cf. [7]). Then the propositions
and theorems given in \S 10 of [8] remain valid by the following modification:
Replace ‘ general recursive ’ (or ‘ recursive ’ which means general recursive)

by $c$-recursive‘; the letter $\mathfrak{R}$ by $\mathfrak{R}_{1}$ , the letter $\mathfrak{B}$ by $\mathfrak{B}_{1}$ , the letter $\varphi$ by $\varphi_{1}$ ,
‘ recursively expressible ’ by ‘ classically expressible’, $\omega^{*}$ by $\omega_{1^{k}}^{j},$ $\omega$ by $\omega_{1},$

$\Sigma_{1}^{ord}$

by $\Sigma_{1}^{c},$ $\Pi_{1}^{ol}$ by $\Pi_{1}^{c}$ and moreover, the equivalence given in the proof of Theorem
17 by the following one;

$ a<\omega_{1}^{*}\Leftrightarrow\exists e(e\leqq\omega_{1}\wedge\exists f(f\wedge\omega$ A $\exists x(T(f,j_{4}(0, e, g^{1}(x), g^{2}(x)))=0$

A $a=g^{1}(x)\Lambda\forall y(y<x-T(\int,j_{4}(0, e, g^{1}(y),g^{2}(y)))\neq 0))))$ ,

and supply $\varphi_{1}(\omega_{1})=\omega_{1}$ to the counterpart of Proposition 13.
Tokyo University of Education
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