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Introduction.

Let $G$ be a discontinuous group acting on the upper half-plane $\mathfrak{X}$ . As a
subgroup of $GL(2, R),$ $G$ admits a tensor representation $M_{n}$ of degree $n$ . One
can then define the cohomology groups $H^{1}(M., G)$ after Eichler [1], and from
Shimura [6], there exists a canonical isomorphism between $H^{1}(1\psi_{n}, G)$ and the
space $S_{n+2}(G)$ of cusp forms of degree $n+2$ with respect to $G$ . Under certain
“ integrality “ assumptions on $G$ (for example, when $G=SL(2, Z)$ , these condi-
tions are satisfied), he defines a lattice in $H^{1}(1M_{n}, G)$ and proves that the torus
so obtained, admits a canonical structure of an abelian variety.

Suppose more generally, we have two discontinuous groups $G\subset G_{1}(G$

normal in $G_{1}$ and $(G_{1} : G)<\infty)$ . Then, associated with a real representation $R$

of $G_{1}/G$ , we can define the cohomology groups $H^{1}(R\otimes 1\psi_{n}, G_{1})$ and establish a
canonical isomorphism between $H^{1}(R\otimes 1\psi_{n}, G_{1})$ and the space $S_{n+2,R}(G_{1})$ of
vectors of cusp forms of degree $n+2$ with respect to $G$ which remains invari-
ant under the representation $R$ (cf. Theorem 1). If then $R$ is rational and $G_{1}$

satisfies the “ integrality ‘’ assumption [6], a lattice in $H^{1}(R\otimes M_{n}, G_{1})$ can be
defined, and as in the case of Shimura, this torus can be endowed with a ca-
nonical structure of an abelian variety (say) $A_{n+2,R}(G_{1})$ . In the special case $G_{1}$

$=\Gamma(1),$ $G=\Gamma_{1}(q)$ ($q$ , a prime) and $n=0$ , these have been noticed by Hecke [4].

We note finally that these abelian varieties provide a decomposition of
$A_{n+2}(H)$ for any subgroup $H$ with $G\subset H\subset G_{1}$ . Further in the special case $G_{1}$

$=\Gamma(1),$ $G=\Gamma_{1}(q)$ , one can define Hecke operators $\tau_{r}$ (for $r$ prime to q) as endo-
morphisms of these abelian varieties.

It is with great pleasure that the author records here his deep gratitude
to Dr. C. S. Seshadri for his critical comments, to Professor G. Shimura for
having gone through the manuscript, and to Professor K. G. Ramanathan for
constant encouragement.

It was noticed by the author, after the preparation of the manuscript that
Gunning has also proved Theorem 1 in [2], but however our proof is different.

$NoTATIONS$ .
$\Gamma(1)=SL(2, Z)=\{\left(\begin{array}{ll}a & b\\c & d\end{array}\right)$ with $a,$ $b,$ $c,$ $d$ integral and $ad-bc=1\}$
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$\Gamma_{c}(q)(\subset\Gamma(1))=\{\left(\begin{array}{ll}a & b\\c & d\end{array}\right)\in\Gamma(1)$ with $c\equiv 0(mod q)\}$ for $q$ , a prime.

$\Gamma_{1}(q)(\subset\Gamma(1))=\{\left(\begin{array}{ll}a & b\\c & d\end{array}\right)\in\Gamma(1)$ with $\left(\begin{array}{ll}a & b\\c & d\end{array}\right)\equiv\left(\begin{array}{ll}1 & 0\\0 & 1\end{array}\right)(mod q)\}$ . The tensor

representation of $GL(2, C)$ is defined as follows: If $\left(\begin{array}{l}u\\v\end{array}\right)\in C^{2}$ and $\sigma\in GL(2, C)$,

denote by $\left(\begin{array}{l}u_{1}\\v_{1}\end{array}\right)=\sigma\left(\begin{array}{l}u\\v\end{array}\right)$ . Then if $\left(\begin{array}{l}u\\v\end{array}\right)$ and $\left(\begin{array}{l}u_{1}\\v_{1}\end{array}\right)$ denote respectively the

vectors in $C^{n+1}$ with components $u^{n},$ $u^{n-1}v,$ $\cdots$ , $v^{n}$ and $u_{1}^{n},$ $u_{1}^{n-1}v_{1},$
$\cdots,$

$v_{1}^{n}$ , the tensor re-

presentation $\sigma\rightarrow M_{n}(\sigma)$ of degree $n$ of $GL(2, C)$ is defined by $\left(\begin{array}{l}u_{1}\\v_{1}\end{array}\right)=M_{n}(\sigma)\left(\begin{array}{l}u\\v\end{array}\right)$

For simplicity, we denote $M_{n}(\left(\begin{array}{ll}1 & z\\0 & 1\end{array}\right))$ by $L_{n}(z)$ for any complex variable $z$ .
If $s$ is a parabolic fixed point (cusp) of a discontinuous group $G$ on the

upper half plane $\mathfrak{X}$ , the set of elements of $G$ fixing $s$ is an infinite cyclic group

generated by $\tau\in G$ where $\tau=\rho\left(\begin{array}{ll}1 & h\\0 & 1\end{array}\right)\rho^{-1}$ with $\rho$ , an element of $SL(2, R)$ such

that $\rho(\infty)=s$ and in fact $\rho=\left(\begin{array}{ll}-s & 1\\-1 & 0\end{array}\right)$ or $\left(\begin{array}{ll}1 & 0\\0 & 1\end{array}\right)$ according as $s$ is real or
$\infty$ , and $h$ is a positive real number. [We then denote $e^{2\pi iz/h}$ by $q.$] The set of
all such parabolic transformations of $G,$ $i$ . $e$ . ($\sigma\in G;\sigma(s)=s$ for a parabolic
fixed point $s$ of $G$) is denoted by $Y(G)$ .

\S 1. $R\otimes M_{n}$-forms and $R\otimes M_{n}$-vectors.

Let $G$ be a discrete subgroup of $SL(2, R)$ such that $SL(2, R)/G$ has finite
total volume. Let $G_{1}$ be another discrete subgroup of $SL(2, R)$ containing $G$

(and in which $G$ is normal and of finite index). Further, let $\sigma\rightarrow R(\sigma)$ be a real
representation of the finite group $G_{1}/G$ . If $\sigma\rightarrow M_{n}(\sigma)$ is the tensor represen-
tation of degree $n$ of $G_{1}$ , we shall be concerned with the representation
$\sigma\rightarrow(R\otimes M_{n})(\sigma)$ in the sequel. Restricted to the subgroup $G$ , this is nothing
but $M_{n}(\sigma)$ repeated $m$ times, if $m$ is the dimension of the representation $R(\sigma)$ .

DEFINITION. A column vector of $(n+1)m$ elements to $=\left(\begin{array}{l}\omega_{01}\\\vdots\\\omega_{n1}\\\vdots\\\omega_{om}\\\vdots\\\omega_{nm}\end{array}\right)$ is an

$R\otimes M_{n}$-form with respect to $G_{1}$ , if the following conditions are satisfied.
a) Each component $\omega_{ik}$ is a meromorphic differential form on $\chi$ .
b) For every $\sigma\in G_{1},$ $\omega\circ\sigma=(R\otimes M_{n})(\sigma)0\omega$ .
c) For every parabolic cusp $s$ of $G$ , the functions $f_{ij}(q)$ defined by the

vector form
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$(E\otimes L_{n}(z))^{-1}(E\otimes M_{n}(\rho))^{-1}\omega\circ\rho=\left(\begin{array}{l}f_{01}(q)dq\\\vdots\\ f_{n1}(q)o^{-}q\\\vdots\\ f_{nm}(q)dq\end{array}\right)$ ,

are meromorphic at $q=0$ .
If they are holomorphic at $q=0$ , and if $\omega_{ik}$ are holomorphic, we say that

$\omega$ is a cusp $R\otimes M_{n}$-form.
One can define $R\otimes M_{n}$-vectors in a similar way.

DEFINITION. A column vector of $(n+1)m$ elements $\mathfrak{g}=\left(\begin{array}{l}g_{01}\\\vdots\\ g_{om}\\\vdots\\ g_{nm}\end{array}\right)$ is an $R\otimes M_{n}-$

vector with respect to $G_{1}$ , if it satisfies the following conditions.
a) Each component $g_{ik}$ is a meromorphic function on X.
b) For every $\sigma\in G_{1}$ , we have $g\circ\sigma=(R\otimes M_{n})(\sigma)g$ .
c) For every parabolic cusp $s$ of $G$ , the functions $F_{ij}(q)$ defined by the

vector

$(E\otimes L_{n}(z))^{-1}(E\otimes M_{n}(\rho))^{-1}g\circ\rho=\left(\begin{array}{l}F_{01}(q)\\\vdots\\ F_{n1}(q)\\\vdots\\ F_{nm}(q)\end{array}\right)$

are meromorphic at $q=0$ .
If the components $g_{ik}$ are holomorphic and if the above defined functions

$F_{i.j}(q)$ are holomorphic and vanish at $q=0$ , then $g$ is defined to be a cusp
$R\otimes M_{n}$-vector. We now deduce the following analogue of Theorem 1 in [5].

PROPOSITION 1. Let $n$ and $\nu$ be even, $n>0$ , $-(n-2)\leqq\nu\leqq n+2$ and
$\mu=\underline{n+}\underline{2-\nu}2$ Then, if $(f_{i})$ is a vector whose components are automorphic forms
of degree $\nu$ with respect to $G$ with the property $((f_{i})\circ\sigma)f(\sigma, z)^{\nu}=R(\sigma)(f_{i})$ for $\sigma\in G_{1}$

(if $\sigma=\left(\begin{array}{ll}a & b\\c & d\end{array}\right),$ $J(\sigma,$ $z)=(cz+d)^{-1}$), then the vector form $\omega=(E\otimes L_{n}(z))\left(\begin{array}{l}\mathfrak{g}_{!}\\.\\\mathfrak{g}_{m}\end{array}\right)dz$

(where each $\mathfrak{g}_{i}$ is an $(n+1)$ vector defined by $\mathfrak{g}_{i}=\left(\begin{array}{l}0\\\vdots\\ 0\\\alpha_{0}f_{i}\\\vdots\\\alpha_{\rho}f_{i^{(l^{Z})}}\end{array}\right)$ with certain constants

$\alpha_{i}$ and $f_{i}^{\prime},f_{i^{\prime\prime}},$ $\cdots$ , $f_{i^{(h}}$ denote $\frac{df_{i}}{dz}$ , $\frac{d^{l}}{d}z^{f_{i}}l4$ ) is an $R\otimes M_{n}$-form with respect to
$G_{1}$ . In order that $\omega$ be a cusp $R\otimes M_{n}$-form, it is necessary and sufficient that
the $f_{i}$ are cusp forms of degree $\nu$ , with respect to $G$ .

PROOF. From Theorem 1 of [5], we have, for elements $\sigma\in G,$ $\omega 0\sigma$
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$=(E\otimes M_{n})(\sigma)\omega$ . We need consider only $\sigma\in G_{1}$ and $eG$ . Then

$\omega\circ\sigma=(E\otimes L_{n}(z)\left(\begin{array}{l}\mathfrak{g}_{!}\\.\\\mathfrak{g}_{m}\end{array}\right)\cdot dz)\circ\sigma=(E\otimes L_{n}(\sigma(z))\left(\begin{array}{l}\mathfrak{g}_{1}\circ\sigma\\\vdots\\\mathfrak{g}_{m}\circ\sigma\end{array}\right)\cdot J^{2}dz)$

(here $J=J(\sigma,$ $z)$).

We now require the following lemma:

LEMMA. If $f=\left(\begin{array}{l}\mathfrak{g}_{1}\\\vdots\\\mathfrak{g}_{m}\end{array}\right)$ (as in Proposition 1) and if $\omega=(E\otimes L_{n}(z))fdz$ , then

$\omega\circ\sigma=(R\otimes M_{n})(\sigma)\omega$ for $\sigma\in G_{1}$ if and only if

$(f\circ\sigma)J^{2}=R(\sigma)\otimes M_{n}(\left(\begin{array}{ll}J & 0\\c & J^{-1}\end{array}\right))f$ .

PROOF. From the relation $L_{n}(\sigma(z))^{-1}M_{n}(\sigma)L_{n}(z)=M_{n}((JcI^{0_{-1}}$ )) by tensor-
ing with $R(\sigma)$ , we have

$(E\otimes L_{n}(\sigma(z))^{-1})(R(\sigma)\otimes M_{n}(\sigma))(E\otimes L_{n}(z))=R(\sigma)\otimes M_{n}(\left(\begin{array}{ll}J & 0\\c & J^{-1}\end{array}\right))$

and this gives the required.
For proving the proposition, in view of the lemma, we need verify only

the following:

$(g_{i}\circ\sigma)J^{2}=M_{n}(\left(\begin{array}{ll}J & 0\\c & J^{-1}\end{array}\right))\sum_{j=1}^{m}r_{ij}g_{j}=\sum_{j=1}^{m}r_{ij}M_{n}(\left(\begin{array}{ll}J & 0\\c & J^{-1}\end{array}\right))\cdot g_{j}$

where $R(\sigma)=(r_{ij})$ .
For automorphic forms $h_{i}(1\leqq i\leqq m, m=\dim R(\sigma))$ of degree $\nu$ with respect

to $G$ , satisfying the relation, $(h_{i}\circ\sigma)(J(\sigma, z))^{\nu}=\sum_{j\Rightarrow 1}^{m}r_{ij}h_{j}$ (for $\sigma\in G_{1}$), holds the
identity:

$(h_{i^{(k)}}\circ\sigma)J^{2}=\sum_{j=\perp}^{m}r_{ij}\sum_{l=\cup}^{k}\left(\begin{array}{l}k\\l\end{array}\right)\left(\begin{array}{l}\nu+k-1\\l\end{array}\right)l$ ! $c^{l}J^{l+2-2k-\nu}h_{j}^{(k-l)}$

for $\sigma\in G_{1}$ . (The proof is by induction.) Using this identity and computing
$M_{n}(\left(\begin{array}{ll}J & 0\\c & J^{-1}\end{array}\right))$ explicitly [5], we obtain the required relation and the proof of

Proposition 1 is complete.
We have then an analogous result for cusp $R\otimes M_{n}$ vectors as well.

Now if for a vector $(f_{i})$ of automorphic forms of degree $\nu$ with respect to $G$

with the property that $((f_{i})\circ\sigma)J^{\nu}=R(\sigma)(f_{i})$ for $\sigma\in G_{1}$ , we denote by $\omega$ and $f$,

the associated cusp $R\otimes M_{n}$-form and $R\otimes M_{n}$-vector respectively, then by
Theorem 5 in [5], we have $ df=\mu(n-\mu+1)\omega$ .

If we denote by $\mathfrak{J}_{n,R}(G_{1})$ the space of all cusp $R\otimes M_{n}$-forms, with respect
to $G_{1}$ , we have the following analogue of Theorem 2 in [5].

PROPOSITION 2. $s_{n.R}^{\alpha}(G_{1})=\sum_{\sim^{\backslash }\nu=}^{n+2}\mathfrak{S}_{\nu.R}^{n}(G_{1})$ ( $\nu$ even) where $\mathfrak{S}_{\nu.R}^{n}(G_{1})$ is the space of
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cusp $R\otimes M_{n}$ forms associated to the space of vectors $(f_{i})$ of automorphic cusp
forms of degree $\nu$ with respect to $G$ , as in Proposition 1.

PROOF: Denote by $S_{\nu.R}(G_{1})$ , the space of vectors $(f_{i})$ of automorphic cusp
forms of degree $\nu$ with respect to $G$ and such that $((f_{i})\circ\sigma)J^{\nu}=R(\sigma)(f_{i})$ . Then,
from Proposition (1), $S_{\nu,R}(G_{1})$ is canonically isomorphic to $\mathfrak{S}_{\nu,R}^{n}(G_{1})$ by the
mapping $(f_{i})\rightarrow\omega$ .

Now, we have $\sum_{\nu=2}^{n+2}\mathfrak{S}_{\nu,R}^{n}(G_{1})\subset\circ s_{n,R}(G_{1})$ . Conversely, from Theorem 2 in [5],

we deduce that any vector in $s_{n,R}^{\alpha}(G_{1})$ can be written as a sum of vectors of

the form $\left(\begin{array}{l}\mathfrak{g}_{!}\\.\\\mathfrak{g}_{m}\end{array}\right)$ ( $\mathfrak{g}_{i}$ again as defined in Proposition 1). We need only show

that these summands belong to $\mathfrak{S}_{\nu,R}^{n}(G_{1})$ respectively.

If $\omega=\sum_{\nu=l}^{n+g}\omega_{\nu},$ $\omega\circ\sigma=\sum_{\nu=2}^{o}\omega_{\nu}\circ\sigma=(R\otimes M_{n})(\sigma)\omega \mathfrak{n}+L$

$=(R\otimes M_{n})(\sigma)(\sum_{\nu\Rightarrow 2}^{n+2}\omega_{v})$

$=\sum_{\nu}(R\otimes M_{n})(\sigma)\omega_{\nu}$

i. e. $\sum_{\nu=\underline{/}}^{n+q}(\omega_{\nu}\circ\sigma-(R\otimes M_{n})(\sigma)\omega_{\nu})=0$ and this sum being a direct sum, $\omega_{\nu}\circ\sigma=$

$(R\otimes M_{n})(\sigma)\omega_{\nu}$ or $\omega_{\nu}\in \mathfrak{S}_{\nu,R}^{n}(G_{1})$ for $\nu=2,4,$ $\cdots$ , $n+2$ .
Similarly, we can obtain the decomposition of the space of cusp $R\otimes M_{n^{-}}$

vectors.
NOTE. If $R$ is irreducible and if $\kappa_{\nu}$ denotes the multiplicity of the irre-

ducible representation $R$ in the representation of the group $G_{1}/G$ in the space
of cusp forms of degree $\nu$ with respect to $G$ , then $S_{\nu,R}(G_{1})$ and hence $\mathfrak{S}_{\nu,R}(G_{1})$

is a complex vector space of dimension $\kappa_{v}$ . This can be computed explicitly

and hence $\dim_{cs_{n,R}^{\prime}(G_{1})}^{o}=\sum_{\nu=2}^{n+2}\kappa_{\nu}$ can be computed.

\S 2. Cohomology group.

We may now define the cohomology group $H^{1}(R\otimes M_{n}, G_{1})$ . We call $\mathfrak{x}$ , a
parabolic cocycle, a map $\mathfrak{x}:G_{1}\rightarrow R^{k}(k=(n+1)m)$ with the following properties.
(We shall denote hereafter $R\otimes M_{n}$ by $M$)

a) $\mathfrak{x}(\sigma\tau)=\mathfrak{x}(\sigma)+M(\sigma)\mathfrak{x}(\tau)$ for every $\sigma,$ $\tau\in G_{1}$ .
b) For each $\tau\in Y(G_{1})$, there exists a vector ($\ddagger\in R^{k}$ with $\mathfrak{x}(\tau)=\mathfrak{a}-M(\tau)\cdot \mathfrak{a}$ .
We denote by $Z^{1}(M, G_{1})$ , the parabolic cocycles and by $B^{1}(M, G_{1})$ the co-

boundaries, $i$ . $e$ . cocycles $\mathfrak{x}\in Z^{1}(M, G_{1})$ with the property that, for all $\sigma\in G_{1}$ ,
$\mathfrak{x}(\sigma)=b-M(\sigma)\cdot b$ (for some b). The space $Z^{1}(M, G_{1})/B^{1}(M, G_{1})$ shall be denoted
by $H^{1}(M, G_{1})$ .

Now, every cocycle $\mathfrak{x}$ of $G_{1}$ when restricted to $G$ gives a cocycle of $G$ and
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in fact a parabolic cocycle of $G_{1}$ gives rise to a parabolic cocycle of $G$ , since
$Y(G)\subset Y(G_{1})$ . So, we have a map: $Z^{1}(M, G_{1})\rightarrow Z^{1}(M, G)$ in which $B^{1}(M, G_{1})$ goes
to $B^{1}(M, G)$ so that we have a map : $H^{1}(M, G_{1})\rightarrow H^{1}(M, G)$ . It can then be
shown that this is injective; for, choose a system of coset representatives $\tau_{i}$

of $G_{1}$ modulo $G$ . Then, if $\mathfrak{x}\in Z^{1}(M, G_{1})$ and in $B^{1}(M, G),$ $i$ . $e$ . if $\mathfrak{x}(\sigma)=M(\sigma)\cdot \mathfrak{a}-\mathfrak{a}$

for $\sigma\in G$ and $\mathfrak{a}\in R^{k}$ , it follows that $\mathfrak{x}(\sigma_{1})=M(\sigma_{1})\cdot b-b$ , for every $\sigma_{1}\in G_{1}$ and
$r_{j}=(\frac{1}{G_{1}:G)}[\sum_{i}M(\tau_{i})L(\tau_{i}^{-1})+\sum_{i}M(\tau_{i})\cdot \mathfrak{a}]$ . In other words, $\mathfrak{x}\in B^{1}(M, G_{1})$ .

\S 3. Periods of Integrals.

Let $\omega\in s_{n,R}^{\alpha}(G_{1})$ . Then, with a fixed point $z_{0}\in \mathfrak{X}$ , set $f(z)=\int_{z_{0}^{z}}Re(\omega)$ . We

have then $f(\sigma(z))=M(\sigma)f(z)+\mathfrak{x}(\sigma)$ where $\mathfrak{x}$ is a cocycle of $G_{1}$ (\S 2). $\mathfrak{x}$ is in fact,
a parabolic cocycle of $G_{1}$ ; for the same, we note that it is enough to prove

that $ z_{in}\rightarrow s_{1}\int_{0}^{z}Re\omega Lc_{\Im_{1}},<\infty$ where $s_{1}$ is any parabolic cusp of $G_{1}$ and $s_{1}^{\alpha}$ is a funda-

mental domain of $G_{1}$ in $\mathfrak{X}$ . We can then denote this limit by $f(s_{1})$ and if
$\tau\in Y(G_{1})$ fixes $s_{1},$ $\mathfrak{x}(\tau)=(E-M(\tau))\cdot f(s_{1})$ and hence $\mathfrak{x}$ is a parabolic cocycle.

Now, if $\omega=(\omega_{i})(1\leqq i\leqq m)$ with each $\omega_{i}\in s_{n}^{\alpha}(G)$ we know from condition

c) of the definition in \S 1, that $ z_{in}L\rightarrow t_{\Im}s\int_{z_{0}}^{z}Re(\omega_{i})<\infty$ for every parabolic cusp $s$

of $G$ and $s^{\alpha}$ is a fundamental domain of $G$ in N. Since $s_{1}^{\alpha}\subset s^{\alpha}$ and the inequi-
valent cusps of $G_{1}$ are contained in the inequivalent cusps of $G$ , we have the
required. This parabolic cocycle $\mathfrak{x}$ is determined only upto a coboundary, for,
if we change $f(z)$ by an additive constant, $L(\sigma)$ changes by a coboundary.
Hence to every vector form $\omega$ , we have associated the class $\overline{\mathfrak{x}}\in H^{1}(M, G_{1})$ in a
unique manner. We shall show that this map $\varphi$ : $\omega\rightarrow\overline{\mathfrak{x}}$ is surjective $i.e$ . for
every class $\overline{\mathfrak{x}}\in H^{1}(M, G_{1})$ , there exists $\omega\in s_{n,R}^{\alpha}(G_{1})$ such that $\varphi(\omega)=\overline{\mathfrak{x}}$ . Now,

$\overline{\mathfrak{x}}$ induces a class $\ell(g-)\in H^{1}(M, G)$ and since $H^{1}(M, G)=\sum_{1i=}^{m}H^{1}(M_{n}, G)$ ($m$ copies),

to the class $\ell(\overline{\iota\vee})$ by Theorem 1 in [6] corresponds a vector $(f_{i})$ of cusp forms
of degree $n+2$ with respect to $G$ , i. e. $f_{i}\in S_{n+2}(G)$ . We shall show that
$(f_{i})\in S_{n+2,R}(G_{1})$ so that the associated vector form $\omega$ (from Proposition (1)) is
in $s_{n,R}^{\alpha}(G_{1})$ with $\varphi(\omega)=\overline{\mathfrak{x}}$ .

If $\omega_{i}$ is the vector form in $s_{n}^{\alpha}(G)[5]$ associated to $f_{i}\in S_{n+2}(G)$ , then $\omega=(\omega_{i})$

$(1\leqq i\leqq m)$ . Consider now the vectors $\eta=(E\otimes M_{n}(\tau^{-1}))\omega\circ\tau$ and $\eta^{*}=(R(\tau)\otimes E)\cdot\omega$ ,
with $\tau\in G_{1}$ . If $\eta=(\eta_{i})$ and $\eta^{*}=(\eta_{i}^{*})(1\leqq i\leqq m)$ , then $\eta_{i},$

$\eta_{i}^{*}\in s_{n}^{\alpha}(G)$ , for, $\eta_{i}\circ\sigma$

$=M_{n}(\tau^{-1})\omega_{i^{o}}\tau\sigma=M_{n}(\tau^{-1})M_{n}(\tau\sigma\tau^{-1})\omega_{i^{o}}\tau=M_{n}(\sigma)\cdot\eta_{i}$ and $\eta^{*}0\sigma=(R(\tau)\otimes E)(E\otimes M_{n}(\sigma))\omega$

$=(E\otimes M_{n}(\sigma))(R(\tau)\otimes E)\omega$ implies that $\eta_{i}^{*}\circ\sigma=M_{n}(\sigma)\eta_{i}^{*}$ .
If $\overline{x}_{i},\overline{y}_{i}$ and $\overline{y}_{i}^{*}$ denote the cohomology classes in $H^{1}(M_{n}, G)$ attached to the

vector forms $\omega_{i},$ $\eta_{i}$ and $\eta_{i}^{*}$ respectively, denote by $\overline{x}=(\overline{x}_{i}),\overline{y}=(\overline{y}_{i})$ and $\overline{y}^{*}=(\overline{y}_{i}^{*})$

$(1\leqq i\leqq m)$ . Then, from the definition, it follows that $\overline{y}(\sigma)=(E\otimes M_{n}(\tau^{-1}))\overline{x}(\tau\sigma\tau^{-1})$
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and $\overline{y}^{*}(\sigma)=(R(\tau)\otimes E)\overline{x}(\sigma)$ . We shall now prove that $\overline{y}(\sigma)=\overline{y}^{*}(\sigma)$ for every
$\sigma\in G$ , for,

$x(\tau\sigma\tau^{-1})=(R\otimes M_{n})(\tau)x(\sigma\tau^{-1})+x(\tau)$

$=(R\otimes M_{n})(\tau)[(E\otimes M_{n}(\sigma))x(\tau^{-1})+x(\sigma)]+x(\tau)$

so that $y(\sigma)-y^{*}(\sigma)$ is cohomologous to

$(E\otimes M_{n}(\tau^{-1}))x(\tau\sigma\tau^{-1})-(R(\tau)\otimes E)x(\sigma)$

$=(R(\tau)\otimes M_{n}(\sigma))x(\tau^{-1})+(E\otimes M_{n}(\tau^{-1}))x(\tau)$

$=(E\otimes M_{n}(\sigma)-E)(R(\tau)\otimes E)x(\tau^{-1})=(E-E\otimes M_{n}(\sigma))\cdot b$

where $b=-(R(\tau)\otimes E)x(\tau^{-1})$ . In other words $\overline{y}(\sigma)=\overline{y}^{*}(\sigma)$ . From Theorem 6 in
[5], this means that the vector forms $\eta_{i}-\eta_{i}^{*}$ lie in $\mathfrak{S}_{\nu}^{n}(G)$ for $\nu<n+2$ . But,
by definition they lie in $\mathfrak{S}_{n+2}^{n}(G)$ and since these spaces are orthogonal, $\eta_{i}=\eta_{i}^{*}$

or $\eta=\eta^{*}$ in other words $\omega\circ\tau=(R(\tau)\otimes M_{n}(\tau))\omega$ or $\omega\in s_{n,R}^{\alpha}(G_{1})$ , and in fact
$\omega\in \mathfrak{S}_{n+2,R}^{n}(G_{1})$ . If $\downarrow 1-=\varphi(\omega)\in H^{1}(M, G_{1}),$ $f(\overline{\mathfrak{x}}_{1})=\overline{x}=\ell(\overline{\{\mathfrak{x}})$ and $f$ being injective (\S 2),
$\overline{\mathfrak{x}}_{1}=_{t}\overline{s}$ .

From the decomposition of $s_{n,R}^{\alpha}(G_{1})$ in Proposition 2 and from the fact that
for $\nu<n+2,$ $\omega\in G5_{\nu,R}^{n}(G_{1})$ are exact differentials ($\omega=df$ for a cusp $R\otimes M_{n}$

vector f) we have (
$b-=0$ for classes -&=\varphi (\mbox{\boldmath $\omega$}). Hence we have in fact a surjec-

tive homomorphism $\varphi$ : $S_{n+2,R}(G_{1})\rightarrow H^{1}(M, G_{1})$ . We shall prove later in \S 4, that
$\varphi$ is also one-one, so that $\varphi$ will then be an isomorphism. We have then

THEOREM 1. The homomorphism $\varphi:S_{n+2,R}(G_{1})\rightarrow H^{1}(M, G_{1})$ is an isomorphism.

If $R$ is irreducible and if $\kappa$ is the multiplicity of the representation $R$ in the re-
presentation of $G_{1}/G$ in $S_{n+2}(G)$ , then from Theorem 1, we have $\dim_{R}H^{1}(M, G_{1})=2\kappa$ .

From Theorem 1, we can further deduce the following
PROPOSITION 3. If $\mathfrak{R}_{n,R}(G_{1})$ denotes the space of form vectors in $s_{n,R}^{\circ}(G_{1})$

whose associated cocycles are coboundaries, then $s_{n,R}^{\alpha}(G_{1})/\mathfrak{R}_{n,R}(G_{1})$ is canonically
isomorphic to $S_{n+2.R}(G_{1})$ .

PROOF. We need only to show that $\mathfrak{R}_{n,R}(G_{1})$ is isomorphic to $\sum_{\nu=2}^{n}S_{\nu,R}(G_{1})$ ,

for, then from Proposition 2, it would follow that $as_{n,R}(G_{1})/\mathfrak{R}_{n,R}(G_{1})$ is canoni-
cally isomorphic to $S_{n+2.R}(G_{1})$ . Now if $\omega\in s_{n,R}^{\alpha}(G_{1})$ with $\varphi(\omega)=0$ , then from
Theorem 1, in the decomposition (as in Proposition 2) of $\omega$ , the $(n+2)^{th}$ com-
ponent is zero, so that $\mathfrak{R}_{n,R}(G_{1})\subset\sum_{\nu=2}^{n}\mathfrak{S}_{\nu,R}^{n}(G_{1})$ . But $\sum_{\nu=2}^{n}\mathfrak{S}_{\nu,R}^{n}(G_{1})\subset \mathfrak{R}_{n,R}(G_{1})$ , since

$\omega\in\sum_{\nu=2}^{n}\mathfrak{S}_{\nu,R}^{n}(G_{1})$ implies that $\omega=c$ . $df$ with a non zero constant $c$ and a cusp

$R\otimes M_{n}$-vector $f$. Hence $\mathfrak{R}_{n.R}(G_{1})=\sum_{\nu=2}^{n}\mathfrak{S}_{\nu,R}^{n}(G_{1})$ which in turn is canonically iso-

morphic to $\sum_{\nu=2}^{n}S_{\nu,R}(G_{1})$ .
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\S 4. Petersson Metric.

We observe that there exists a positive symmetric matrix $H$ with the
property that $R(\sigma)^{\prime}HR(\sigma)=H$ for all $\sigma\in G_{1}$ . (We can take for example
$H=\sum_{\overline{\sigma}\in G_{1}/G}R(\overline{\sigma})^{\prime}R(\overline{\sigma}))$ . We have further a matrix $P_{n}$ with $M_{n}(\sigma)^{\prime}P_{n}M_{n}(\sigma)=P_{n}[6]$ ,

so that we have if $M(\sigma)=(R\otimes M_{n})(\sigma),$ $(M(\sigma))^{\prime}(H\otimes P_{n})M(\sigma)=H\otimes P_{n}$ .
Now, if $f=(f_{i})\in S_{n+2,R}(G_{1})$ and $g=(g_{i})\in S_{n+2,R}(G_{1})$ , we can define $(f,g)$

$=\sum_{i,j}\int_{\Im_{1}}f_{i}h_{ij}\overline{g}_{j}y^{n+2}dv$ . Then $(f,g)=\overline{(g,f)}$ and $(f,f)\geqq 0$ and $=0$ if and only if

$f=0$ , since $H$ is positive definite.
On the otherhand, if $\omega$ and $\eta$ are the vector forms in $s_{n,R}^{\alpha}(G_{1})$ associated

to $f$ and $g$ respectively, we have $\omega^{\prime}\cdot H\otimes P_{n}\circ\eta=-(2i)^{n+1}\sum_{i.j}f_{i}\cdot h_{ij}\overline{g}_{j}y^{n+2}dv$ so that

if we define as in [6], $\Lambda(f,g)=2^{n-1}i[(f,g)-(g,f)]$ , then $(f,g)$ is skew sym-
metric R-bilinear and $\Lambda$ ($f$, if) is positive definite hermitian. Further one sees
that

$\Lambda(f,g)=(-1)^{n/2+1}\int_{\Im_{1}}(Re\omega)^{\prime}(H\otimes P_{n})(Re\eta)$ .

If $ f(z)=\int_{z_{0}^{z}}Re\omega$ and $\mathfrak{g}(z)=\int_{z_{0}}^{7}Re(\eta)$ , then we have $\Lambda(f,g)=(-1)^{n/2+1}\int_{\partial\Im_{1}}f^{\prime}(H\otimes P_{n})d\mathfrak{g}$

and from (19) of [6] this can be expressed in terms of the parabolic cocycles
$x$ and $y$ associated to $\omega$ and $\eta$ .

We can now prove that $\varphi:S_{n+2.R}(G_{1})\rightarrow H^{1}(M, G_{1})$ is one-one, for, if
$f\in S_{n+2,R}(G_{1})$ whose associated class is zero, we can choose $f$ such that the
parabolic cocycle itself is zero, which means that $\Lambda(f, g)=0$ for every
$g\in S_{n+2.R}(G_{1})$ and in particular, $\Lambda(f, if)=0$ , but this implies that $f=0$ .

\S 5. Abelian varieties attached to $S_{n+2,R}(G_{1})$ .
For defining abelian varieties associated with the representation $M=R\otimes M_{n}$ ,

we assume that $G_{1}$ satisfies the integrality assumption (A) of [6], namely that
there exists a non-singular real matrix $U$ such that $U^{r-1}P_{n}U^{-1}$ and $UM_{n}(\sigma)U^{-1}$

are integral for all $\sigma\in G_{1}$ . We may assume without loss of generality that
$P_{n}$ and $M_{n}(\sigma)$ are integral for all $\sigma\in G_{1}$ (for, if $f$ is an $M_{n}$-form, $Uf$ is an
$UM_{n}(\sigma)U^{-}$ -form). For example, this is satisfied if $G_{1}\subset SL(2, Z)$ . We shall
further assume that $R(\sigma)$ is rational for all $\sigma\in G_{1}$ . Then $R(\sigma)$ being the re-
presentation of a finite group, has an equivalent representation $R_{0}(\sigma)$ with in-
tegral elements [7]. On taking $R$ to be this $R_{0}$ we have $(R\otimes M_{n})(\sigma)$ integral
for all $\sigma\in G_{1}$ .

Under this hypothesis, we define integral cocycles and we denote the group
of parabolic integral cocycles as $\tilde{Z}^{1}(M, G_{1})$ and the integral coboundaries as
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$\tilde{B}^{1}(M, G_{1})$ . Then the group $\tilde{Z}^{1}/\tilde{B}^{1}=\tilde{H}^{1}(M, G_{1})$ is a lattice in $H^{1}(M, G_{1})$ of maxi-
mal rank. Under the isomorphism $\varphi:S_{n+2,R}(G_{1})\rightarrow H^{1}(M, G_{1})$ the inverse image
$\varphi^{-1}(\tilde{H}^{1}(M, G_{1}))$ is a lattice in $S_{n+2,R}(G_{1})$ and from (19) of [6], the Petersson
metric takes rational values for form vectors in this lattice so that $\lambda\Lambda(f, g)$

(for a constant $\lambda$ ) gives a Riemann form on this torus and hence it is an
abelian variety, which we denote by $A_{n+2.R}(G_{1})$ . From Theorem 1, we see that
the dimension of this abelian variety is $\kappa$ , where $\kappa$ is the sum of multiplic-
ities $\kappa_{i}$ of the irreducible representations $R_{i}$ (contained in $R$) in the represen-
tation of $G_{1}/G$ by cusp forms of degree $n+2$ with respect to $G$ .

\S 6. Applications.

We shall obtain in this section, a decomposition of the abelian varieties
$A_{m^{}}(H)$ associated with an even integer $m^{\prime}$ and a subgroup $H$ with $G\subset H\subset G_{1}$

in terms of the abelian varieties $A_{m}(G_{1})$ of \S 5.
We have now the following relation between induced characters of sub-

groups and rational characters namely, that if $G\subset H\subset G_{1}$ and if $\psi_{1}$ denotes
the identity character of $H$ and $\chi_{\psi_{1}}$ , the induced character of $G_{1}/G$ , then

$x_{\psi_{1}}=\sum_{j=1}^{t}c_{j}\chi_{j}=\sum_{i=1}^{8}c_{i}\Xi_{i}$ , where $\Xi_{i}$ are rational characters (composed of conjugate

characters $\chi_{j}$) and $c_{i}$ , non-negative integers, and in fact, the same is true of
the induced representation $R_{x\psi_{1}}$ , namely that it is equivalent to a direct sum
of the rational representations $R-$ each with multiplicity $c_{i}$ .

We have then the following decomposition of the cohomology groups;
$H^{1}(R_{\gamma_{\psi_{1}}}, G_{1})=\sum_{i=1}^{s}c_{i}H^{1}(R_{\Xi_{i}}, G_{1})$ and the same holds good also for the lattices, so
that we have an isogeny

$H^{1}(R_{\gamma_{\psi_{1}}}, G_{1})/\tilde{H}^{1}(R_{\gamma_{\psi_{1}}}, G_{1})\cong\prod_{i=1}^{s}(A_{m^{\prime},R_{-i}}-(G_{1}))^{c_{i}}$

(meaning thereby $c_{i}$ copies of $A_{m}(G_{1})$).
We shall see that $H^{1}(R_{x\psi_{1}}, G_{1})$ and $H^{1}(R\psi_{1}, H)$ are isomorphic and the same

holds for the lattices, so that it would follow from the above that there is an
isogeny

$A_{m^{\prime}}(H)\cong\prod_{i=1}^{8}(A_{m^{l},R}\Xi_{i}(G_{1}))^{c_{i}}$ .

PROPOSITION 4: $H^{1}(R_{x\psi_{1}}, G_{1})$ and $H^{1}(R\psi_{1}, H)$ are isomorphic.
PROOF: From the Theorem 1, there corresponds to a class $\overline{x}\in H^{1}(R\psi_{1}, H)$

an automorphic form $f$ of degree $m^{\prime}$ belonging to $H$ Let $G_{1}=\bigcup_{i=1}^{p}H\sigma_{i}$ be a coset de-

composition of $G_{1}$ modulo $H$ Then the vector of forms $(f\circ\sigma_{i})J(\sigma_{i}, z)^{m\prime}$ belongs to
the induced representation $R_{x\psi_{1}}$ so that it corresponds to a class $\overline{y}\in H^{1}(R_{x\psi_{1}}, G_{1})$ .
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This is a monomorphism, for if $\overline{\gamma}=0$ , then from the isomorphism theorem,
$f\circ\sigma_{i}=0$ which implies $f=0$ or $\overline{x}=0$ . We shall prove that it is an epimorphism

by showing that they are of the same dimension. Now, from $\chi_{\psi_{1}}=\sum_{i\Leftarrow 1}^{s}c_{i}\Xi_{i}$

we have

$\dim_{R}H^{1}(R_{x\psi_{1}}, G_{1})=\sum_{i=1}^{8}c_{i}\cdot\dim_{R}H^{1}(R_{\Xi_{i}}, G_{1})$

$=\sum_{i=1}^{s}c_{i}2\kappa_{i}$ where $\kappa_{i}$ is the sum of

multiplicities $\rho_{j}$ of the primitive characters $\chi_{j}$ (contained in $\Xi_{i}$) in the repre-

sentation $M$ of $G_{1}/G$ by $S_{m^{f}}(G)$ . If $\mu$ is the character of $M$, then $\mu=\sum_{j=1}^{t}\rho_{j}\chi_{j}$ and

$\kappa_{j}=\sum_{\chi_{j\llcorner}-}.\rho_{j}$
. Let $\chi_{j}/H=\sum_{k=1}^{\iota}\lambda_{jk}\psi_{k}$ , where $\psi_{k}$ are ali the primitive characters of

$H/G$ and $\psi_{1}=1$ , so that $\mu/H=\sum_{j\Rightarrow 1}^{t}\rho_{j}\chi_{j}/H=\sum_{j=1}^{t}\rho_{j}(\sum_{k=1}^{/}\lambda_{jk}\psi_{k})$ . Now, dilr $Rff^{1}(R_{l_{1}})H)$

$=2$ (multiplicity of 1 in $\mu/H$) $=2\sum_{j\Rightarrow 1}^{t}\rho_{j}\lambda_{j1}$ , and $\lambda_{j1}=multiplicity$ of $\psi_{1}$ in $\chi_{j}/H$

$=multiplicity$ of $\chi_{j}$ in $\chi_{\psi_{1}}=c_{j}$ and is the same for all conjugate $\chi_{j}$ . Hence

$\dim {}_{R}H^{1}(R\psi_{1}, H)=2\sum_{j=1}^{t}\rho_{j}\lambda_{j1}=2\sum_{i=\perp}^{s}c_{i}(\sum_{-i}.\rho_{j})\chi_{j\subset}-$

$=2\sum_{i=1}^{8}c_{i}\kappa_{i}$

$=\dim_{R}H^{1}(R_{x\psi_{1}}, G_{1})$

COROLLARY 1. 1) If $H=G$ , then $c_{i}=\chi_{i}(1)$ so that there is an isogeny

$A_{m^{\prime}}(G)\cong\prod_{i=1}^{\epsilon}(A_{m^{\prime},R}\Xi_{i}(G_{1}))^{\chi_{i^{(t)}}}$ .

When $m^{\prime}=2,$ $G_{1}=\Gamma(1),$ $G=\Gamma_{1}(7)$ , we have $s=1$ and $\chi(1)=3$ , so that $A_{2}(G)$ is
isogenous to a product of three copies of the elliptic curve corresponding to $Q(\sqrt{-7})$ .

2) In the case $G=\Gamma_{1}(q),$ $H=\Gamma_{0}(q),$ $G_{1}=\Gamma(1)$ we have $\chi_{\psi_{1}}=\chi_{1}+\chi_{q},$ $\chi_{q}$ being

the character of the q-dimensional representation of $\Gamma(1)/\Gamma_{1}(q)$ . Then there is an
isogeny:

$A_{m^{\prime}}(\Gamma_{0}(q))\cong A_{m^{\gamma}}(\Gamma(1))\times A_{m^{\prime},R\chi_{q}}(\Gamma(1))$ .

When $m^{\prime}=2,4,6,8,10,$ $A_{m},(\Gamma(1))=0$ , so that $A_{m}(\Gamma_{0}(q))\cong A_{m}(\Gamma(1))$ and for
$q=11,17,19$ , they are elliptic curves without complex multiplications [4].

NOTE. If $H/G$ is a cyclic subgroup of order $t$ , generated by $\rho\in G_{1}/G$ then
in the decomposition,

$\chi_{\psi_{1}}=\sum_{i=\downarrow}^{s}c_{i}\Xi_{i},$ $c_{i}=\frac{1}{tp_{i}}\sum_{\nu=1}^{t}\Xi_{i}(\rho^{\nu})$

where $p_{i}$ is the order of the primitive characters contained in $\Xi_{i}$ .
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\S 7. Examples.

In the following, we shall restrict our attention to the case $G_{1}=\Gamma(1)$ and
$G=\Gamma_{1}(q)$ . Then the absolutely irreducible representations of $G_{1}/G$ are of

dimensions 1, $q$ , $\frac{q+1}{2}\frac{q-1}{2}$ , $q+1$ and $q-1$ . All of them are real except

those of dimension $\frac{q-1}{2}$ (when $q\equiv 3(mod 4)$) in which case the two complex

representations are conjugates [3].

There is only one representation of dimension 1 and only one of dimen-

sion $q$ and both are rational. The representations of dimension $\frac{q+1}{2}$ are 2
in number, which are conjugate to each other over $Q(\sqrt{q})$ so that the direct
sum of these two representations is rational. The representations of dimension
$\frac{q-1}{2}$ (when $q\equiv 3(mod 4)$) are conjugates over $Q(\sqrt{-q})$ and their direct sum is

again rational. About dimension $q+1$ , for every divisor $t/\frac{q-1}{2}(t>2)$ there

are $-2-\varphi(t)1$ conjugate representations over the real field $Q(\rho+\rho^{-})$ ( $\rho$ being a
primitive $t^{th}$ root of unity) so that the direct sum of these is again a rational
representation. The same is true of dimension $q-1$ , but $t$ runs over divisors

of $\underline{q}\underline{+1}2(t>2)$ .
In all the above mentioned cases, associated with these rational represen-

tations, we obtain abelian varieties $A_{m’.R}(\Gamma(1))$ of the appropriate dimension.
$\ln$ the case $m^{\prime}=2$ , these have been indicated by Hecke [4].

\S 8. Endomorphisms of the abelian varieties $A_{n+2,R}(G_{1})$ .

We shall continue to consider the case when $G_{1}=\Gamma(1)$ and $G=\Gamma_{1}(q)$ . Then
every element $\tau\in G_{1}$ induces an endomorphism of $A_{n+2,R}(G_{1})$ as follows: If
$\overline{x}\in H^{1}(M, G_{1})$ , we define $\overline{y}=\overline{x}^{r}$ where $\overline{\gamma}(\sigma)=M(\tau^{-1})\overline{x}(\tau\sigma\tau^{-})$ . It is easily seen
that if $\overline{x}$ is associated to a vector $(f_{i})\in S_{n+2,R}(G_{1})$ , then $\overline{y}$ is associated to
$R(\tau^{-1})((f_{\dot{t}})\circ\tau)J(\tau, z)^{n+2}\in S_{n+2,R}(G_{1})$ . The map $\overline{x}\rightarrow\overline{y}$ takes $\tilde{H}^{1}(M, G_{1})$ into itself so
that $\tau$ induces an endomorphism of $A_{n+2,R}(G_{1})$ .

Now, we shall consider the Hecke operators. Let $\rho$ be a $(2, 2)$ integral
matrix of determinant $r$ prime to $q$ . Then we can decompose $G\rho G=\bigcup_{\mu}G\rho_{\mu}$

where the representatives $\rho_{\mu}$ can be chosen in a canonical way.
We may then define, after Shimura [6], for $(f_{i})\in S_{n+2,R}(G_{1})$

$(g_{i})=((f_{i})\cdot\tau_{r})=r^{n+1}\sum_{l\mu=}^{l}(f_{i}(\rho_{\mu}(z))J(\rho_{\mu}, z)^{n+2}$ $(i=1, \cdots, m)$ .

It can then be shown that $g_{i}\in S_{n+2}(G)$, but $(g_{i})\oplus S_{n+2,R}(G_{1})$ . On the other hand,
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for $\sigma\in G_{1}$ ,
$(g_{i})\circ\sigma=(f_{i})\circ\tau_{r}\sigma=(f_{i})\circ\sigma_{r}\tau_{r}=R(\sigma_{r})((f_{i})\circ\tau_{r})J(\sigma, z)^{=(n+2)}$

where $\rho_{/1}\sigma=\sigma_{r}\rho_{\kappa(\mu)}$ and $\sigma_{r}\in G_{1}$ is independent of $\mu$ and $\mu\rightarrow\kappa(\mu)$ is a permuta-
tion of $($1, $\cdots$ , $s)$ .

Then, under our hypothesis on G. $G_{1}$ and $R$ , it follows from [3] that $R(\sigma_{\gamma})$

is equivalent to $R(\sigma)i$ . $e$ . $R(\sigma_{r})=A_{r}R(\sigma)A_{r}^{-1}$ with $A_{r}$ rational. If we denote by
$(h_{i})=B_{r}(f_{i})\circ\tau_{r}$ where $B.=\lambda A_{r}^{-1}$ is integral (for a suitable integer $\lambda$ ), and if $x$

is a cocycle attached to $(f_{i})$ and $y$ , to $(h_{i})$ , it can be verified as in [6] that

$y(\sigma)=r^{n}(\sum_{\mu}B_{\gamma}\otimes M_{n}(\rho_{\overline{\mu}^{1}})x(\sigma_{r}))+l(\sigma)$ ,

where $t(\sigma)=(M(\sigma)-E)\cdot b$ with $b=r^{n}\sum_{\mu}(B_{r}\otimes M_{n})\rho_{\overline{\mu}^{1}}(f_{i}(\rho_{\mu}(z_{0})))$

( $f_{i}$ being the integral attached to $x_{i}$ and $z_{0}$ is a fixed point of $\mathfrak{X}$), $t(\sigma)$ is a
coboundary. Hence the map $\overline{x}\rightarrow\overline{y}$ gives an endomorphism of $A_{n+2,R}(G_{1})$ , since
it takes $\tilde{H}^{1}(M, G_{1})$ into itself. Consequently, we have the following

PROPOSITION 5. The characteristic roots of $\tau_{r}$ as an endomorphism of
$A_{n+2,R}(G_{1})$ are algebraic integers belonging to a field of degree $\leqq 2\kappa$ (where rc
$=\dim A_{n+2,R}(G_{1}))$ .

One can also define the transpose endomorphism $\tau_{r}^{*}$ as in [6] and then
show that $\tau_{r}$ and $\tau_{\gamma}^{*}$ are conjugate with respect to the Riemann form and if
$\tau_{r}=\tau_{r}^{*}$ , the characteristic roots of $\tau_{r}$ are totally real and belong to a field of
degree $\leqq\kappa$ .
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