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Let $M,$ $N$ be closed subgroups of a linear algebraic group. It is mentioned
in [1], that D. Hertzig proved that the commutator group $[1\psi, N]$ is closed
if $M,$ $N$ are normal. (A proof is given in [2] 3-04 Proposition 1. This fact
brings about some simplification of Borel’s arguments as noted in [1].) We shall
give in this paper a necessary and sufficient condition for $M,$ $N$ to the effect
that $[1\psi, N]$ be closed, (Theorem 8 below,) from which the result of Hertzig
easily follows (cf. [2], 3), and which will have also some interesting conse-
quences. (Corollaries 9, 10, 11, below.)

In this paper we use the following conventions:
The subgroup generated by $G_{1},$ $G_{2}$ is denoted by $G_{1}\vee G_{2}$ , and the connected
component of the identity of an algebraic group $G$ is denoted by $G_{0}$ .

The authors owe a great deal to M. Nagata, who gave us many useful
suggestions. We offer our cordial thanks to him.

LEMMA 1. Let $G$ be an algebraic group and let $S_{1},$ $\cdot\cdot i$ , $S_{m}$ be its closed irre-
ducible subsets. Let $f_{\lambda}(x_{1}, \cdots , x_{m})(\lambda\in\Lambda)$ be words with $x_{i}\in S_{i}$ , such that for suit-
able $(a_{1}^{\lambda}, \cdots , a_{m}^{\lambda})\in S_{1}\times\cdots\times S_{m},f_{\lambda}(a^{\lambda_{1}}, , , a_{m}^{\lambda})=1$ for each $\lambda\in\Lambda$ . Then the subgroup
$H$ of $G$ generated by $f_{\lambda}(x_{1}$ , $\cdot$ .. $x_{m})$ , where $(x_{1}$ , $\cdot$ . $x_{m})$ ranges over $S_{1}\times\cdots\times S_{m}$ and
$\lambda$ ranges over $\Lambda$ , is closed and connected.

PROOF. For each $\lambda\in\Lambda$ , let $C_{\lambda}$ be the set of all $f$, $(x_{1}$ , $\cdot$ .. $x_{m})$ with $x_{i}\in S_{i}$ .
Then the set $C_{\lambda 1}\cdots C_{\lambda_{t}}$ of products $y_{1}\cdots y_{t}(y_{i}\in C_{)_{i}})$ is the image of a rational
map from $(S_{1}\times\cdots\times S_{m})\times\cdots\times(S_{1}\times\cdots\times S_{m})$ (t-ple product) into $G$ , whence
$C_{\lambda_{1}}$ ... $C_{)_{t}}$ is a thick set (‘ ensemble \’epais’ cf. [1]), i. e. the closure $C(\lambda_{1}, , \lambda_{t})$

of $C_{\lambda_{1}}\cdots C_{\iota}$, is irreducible and $C_{\lambda_{1}}\cdots C_{\lambda_{t}}$ contains a non-empty open subset of
$C(\lambda_{1}, \cdots , \lambda_{t})$ . Since $1\in C_{\lambda}$ , we see that $C_{\lambda_{1}}\cdots C_{\lambda_{t}}\subseteqq C_{\lambda_{1}}\cdots C_{\lambda_{t}}C_{\lambda_{t+1}}$ , whence $C(\lambda_{1},$ $\cdots$ ,
$\lambda_{t})\subseteqq C(\lambda_{1}, \cdots , \lambda_{t}, \lambda_{t+1})$ . By the fact that $C(\lambda_{1}, \cdots, \lambda_{t})$ are irreducible subvarieties
of $G$ , we see that there is a $C(\lambda_{1}$ , $\cdot$ .. $\lambda_{t})$ , say $C(\lambda_{1}$ , $\cdot$ .. $\lambda_{u})$ , such that every
$C(\lambda_{1}^{\prime}, \cdots , \lambda_{s}^{\prime})$ is contained in $C(\lambda_{1}, \cdots , \lambda_{u})$ . ($C(\lambda_{1}, \cdots , \lambda_{t})$ which has maximum dimen-
sion is a required one). Then $C_{\lambda_{1}}\cdots C_{J_{u}}\subseteqq H\subseteqq C(\text{{\it \‘{A}}}_{1}$ , $\cdot$ .. $\lambda_{u})$ . $C(\lambda_{1}$ , $\cdot$ .. $\lambda_{u})$ is the
closure of $H$, hence is a group. Since $H$ contains a non-empty open subset of
$C(\lambda_{1}$ , $\cdot$ .. $\lambda_{u})$ (because $C_{\lambda_{1}}\cdots C_{\lambda_{u}}$ does), we see that $H=C(\lambda_{1}$ , $\cdot$ .. $\lambda_{u})$ . This com-
pletes the proof.

PROPOSITION 2. Let $1\psi$ and $N$ be closed subgroups of an algebraic group $G$ ,
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whose connected components of the identity are $M_{0}$ and $N_{0}$ respectively. If
$j\psi N=Nj\psi,$ $MN$ is a closed subgroup of $G$ with connected component of the
identity $1\psi_{0}N_{0}=N_{0}1\psi_{0}$ .

PROOF. We can express $1\psi$ and $N$ as the union of a finite number of
cosets of $M_{0}$ and $N_{0}$ respectively. Then we see by a trivial calculation that
the group $j\psi N$ can be expressed as the disjoint union of a finite number of
subsets of the type $mM_{0}N_{0}n$ . We want to show that $M_{0}N_{0}$ is equal to the
subgroup $M_{0}\vee N_{0}$ generated by $M_{0}$ and $N_{0}$ . As a subgroup of $j\psi N,$ $M_{0}\vee N_{0}$

can be expressed as the disjoint union of a finite number of subsets of the
type $mM_{0}N_{0}n$ . On the other hand, $mM_{0},$ $N_{0}n$ are closed and irreducible, and
the multiplication in $G$ as a mapping $mj\psi_{0}\times N_{0}n\rightarrow m1\psi_{0}N_{0}n$ is a rational map-
ping. So $mM_{0}N_{0}n$ is a thick set, whence it follows easily that $M_{0}\vee N_{0}=j\psi_{0}N_{0}$ .

REMARK: A. Borel proved in [1] (Proposition 5.5 p. 38) a special case of
our Proposition 2 where $N$ is in the normalizer of $M$. For later use in this
paper, this special case will suffice.

LEMMA 3. Let $H$ be a closed connected subgroup of an algebraic group $G$ .
Then the smallest normal subgroup $H^{*}$ of $G$ containing $H$ is closed and connected.

PROOF. We know that $H^{*}=_{g\in G}\vee g^{-1}Hg$. By direct application of Lemma 1
to the words $f_{g}(x)=g^{-1}xg$ on $H(g\in G)$ , we get the desired result.

We will see in Corollary 9, which will be proved at the end of this
paper, that $H$ need not be connected. (Of course in that case $H^{*}$ is not neces-
sarily connected.) But we can not prove it directly.

LEMMA 4. Let $G$ be an algebraic group, $M$ a closed connected subgroup of
$G$ and $N$ a subset of G. Then the commutator group $[1\psi, N]$ is closed and con-
nected.

PROOF. $f_{n}(x)=x^{-1}n^{-1}xn(n\in N)$ are words on $M$, which take the value 1
for $x=1$ . By direct application of Lemma 1, we easily obtain the result.

LEMMA 5. If an algebraic group $G$ is finitely generated, it is a finite group.
PROOF. Let $\{g_{i}, i=1,2, \cdots , r\}$ be generators of $G$ , and let $k$ be a field of

definition for $G$ . Then $K=k(g_{1}, \cdots , g_{r})$ is again a field of definition for $G$ ,
while $G$ contains only K-rational points. Hence $\dim G=0$ and $G$ is a finite
group.

When $A$ is an automorphism group of an abstract group $G$ , we denote by
$G^{-1+A}$ the set $\{g^{-1}g^{a}|g\in G, a\in A\}$ and by $[A, G]$ the subgroup of $G$ generated
by the set.

LEMMA 6. If $G^{-1+A}$ is .finite, $[A, G]$ is a finite group.
This lemma is due to R. Baer. For the proof we refer the reader to his

paper [3], Satz 3.
LEMMA 7. Let $M$ and $N$ be subgroups of an abstract group G. Then [tlf,

$N]$ is a normal subgroup of $M\vee N$.
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PROOF. By the formulas

$x^{-1}[m, n]x=[mx, n][x, n]^{-1},$ $y^{-1}[m, n]y=[m,y]^{-1}[m, ny]$ ,

we get the result immediately.
THEOREM 8. Let ]$\psi$ and $N$ be closed subgroups of an algebraic group $G$ .

Then $[M, N]$ is a closed subgroup of $G$ , if and only if the subgroup $M\vee N$ of $G$

generated by $M$ and $N$ is closed.
PROOF. Suppose $[M, N]$ is closed. Then by Lemma 7 it is normal in

$M\vee N$. Hence $M$ is contained in the normalizer of $[M, N]$ and $M[M, N]$ is
closed by Proposition 2. $j\psi[M, N]$ is normal in $l\psi N$, and therefore we see
by the same reason that $(M[M, N])N$ is closed. On the other hand, $(M[M$,

$N])N$ is generated by $M$ and $N$ as easily shown. Then we have $(M[M, N])N$

$=MVN$, namely $j\psi N$ is closed. Conversely suppose $L=M\vee N$ is closed.
By Lemma 4 $[1\psi, N_{0}],$ $[1\psi_{0}, N]$ and $[[M, N],$ $N_{0}$] are closed, connected and con-
tained in $[l\psi, N]$ . Then $K=[M, N_{0}]\vee[M_{0}, N]\vee[[M, N],$ $N_{0}$] is closed, con-
nected and contained in $[M, N]$ , since we can apply Lemma 1 to the word
$f=xy$, where $x\in[M, N_{0}],$ $y\in[M_{0}, N]$ . Hence by Lemma 3, the smallest normal
subgroup $K^{*}$ containing $K$ is closed and connected, and it is contained in $[M$,

$N]$ , for $[M, N]$ is normal in $L$ . We want to show that $K^{*}$ has a finite index
in $[l\psi, N]$ . As $[M, N]/K^{*}=[MK^{*}, NK^{*}]/K^{*}=[MK^{*}/K^{*}, NK^{*}/K^{*}]$ , we can
reduce our problem to the special case where $K^{*}=1$ . Therefore we assume
$K^{*}=1$ and shall prove that $[l\psi, N]$ is finite. By our assumption $M_{0}$ and $N_{()}$

are normal in $L$ . Let $\hat{L}=L/M_{0},\hat{M}=M/M_{0},\hat{N}=NM_{0}/M_{0},\hat{N}_{0}=N_{0}M_{0}/M_{0}$ . Then
$\hat{L}/\hat{N}$ is finite, because $\hat{L}/\hat{N}\cong L/M_{0}N_{U}$ and $L/M_{0}N_{0}$ is a finitely generated alge-
braic group, and so finite by Lemma 5 (as to quotient algebraic groups, see
[4]). We consider $1\hat{\psi}$ as a transformation group of $\hat{K}=[\hat{M},\hat{N}]\hat{N}$. We know
that $\hat{K}/\hat{N}_{0}$ is finite because it is a subgroup of $\hat{L}/\hat{N}_{0}$ . Let $\{k_{i}, i=1,2, , \alpha\}$

be the representatives of $\hat{K}$ modulo $\hat{N}_{0}$ . For every $n_{0}\in\hat{N},$ $m\in\hat{M}$, we have
$[n_{0}k_{i}, m]=k_{i}^{-1}n_{0}^{-1}m^{-1}n_{0}k_{i}m=[k_{i}, m]$ , since the elements of $\hat{M}$ and those of $\hat{N}_{()}$

commute by our assumption. Since ]$\hat{\psi}$ is finite, $\hat{K}^{-1+\hat{M}}$ is finite, and therefore
by Lemma 6 $[1\hat{\psi},\hat{K}]=[\hat{M},\hat{N}]=[M, N]M_{0}/M_{0}$ is a finite group. Since $[M,N]M_{fy}$

has a finite index in $[M, N]M,$ $[M, N]M/M_{0}$ is also a finite group. To apply
Lemma 6 again we consider $N$ as a transformation group of $[M, N]M$. Let
$\{g_{i}, i=1,2, \cdots , \alpha\}$ be representatives of $[M, N]M$ modulo $M_{0}$ , and $\{n_{j},j=1,2$ ,

$\beta\}$ be representatives of $N$ modulo $N_{0}$ . Then for every $m_{0}\in M_{0}$ and $n_{0}\in N_{0}$ ,

$[m_{0}g_{i}, n_{0}n_{j}]=g_{l}^{-1}m_{0}^{-1}n_{j}^{-1}n_{0}^{-1}m_{0}g_{i}n_{0}n_{j}=[g_{i}, n_{j}]$ ,

since by our assumption the elements of $M_{0}$ and those of $N$ commute, and
since the elements of $[M, N]M$ and those of $N_{0}$ commute. This shows that
$\{[M, N]M\}^{-1+N}$ is finite, consisting only of $[g_{i}, n_{j}](i=1,2, \cdot.. \alpha,j=1, , \beta)$ .
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Hence $[N, [M, N]M]$ is a finite group and therefore $[M, N]$ is finite, which
completes the proof.

COROLLARY 9. Let $H$ be a closed subgroup of an algebraic group G. Then
the smallest normal subgroup $H^{*}$ of $G$ containing $H$ is closed.

PROOF. An elementary calculation shows that $H^{*}=[G, H]\vee H$ Our
theorem implies that $[G, H]$ is closed. However we know that $[G, H]$ is also
normal in $G$ . This implies that $H^{*}$ is equal to the product of $H$ and $[G, H]$ .
Hence by Proposition 2, $H^{*}$ is closed.

COROLLARY 10. Let $G$ be an algebraic group and let $M$ and $N$ be its closed
subgroups. $JfMN=NM$, hence in particular if $N$ is contained in the normalizer
of $M$, then $[M, N]$ is closed.

The proof is evident by Proposition 2.
COROLLARY 11. Let $G$ be an algebraic group, $M$ its closed subgroup and $N$

its closed connected subgroup. Then $M\vee N$ is a closed subgroup.
PROOF. By Lemma 4 $[M, N]$ is closed. Hence by our theorem $M\vee N$ is

closed.
Kyoto University and

Kyoto Prefectural University
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