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We shall assume the axiom of constructibility (‘ V=L’ see Godel [4])
throughout this paper.

In a former paper [17], we considered the class of ordinal numbers less
than a certain cardinal number (> w) and defined the notion of semi-recursive
and recursive functions. In this paper we shall consider the second number
class and define the notion of primitive recursive functions and predicates by
following Kleene’s definition of natural numbers (§ 1). We shall also define the
notion of recursive functions (sometimes called general recursive functions)
analyzing Kleene’s definition of natural numbers. The classes of both recur-
sive functions defined in and in this paper are seen to coincide (§2). We
can construct a model of set theory in the primitive recursive predicates (§ 3).
By restricting the usage of ‘ primitive recursion’ only to define functions nec-
cessary to construct the model, we obtain elementary functions (§4). Then a
predicate is general recursive if and only if it is expressible in both forms
consisting of a universal and existential quantifiers prefixed to elementary pre-
dicates (§5). The class of predicates expressible in a given form consisting
of a fixed succession of one or more quantifiers prefixed to a predicate is the
same whether the predicate is allowed to be general recursive or primitive
recursive (or elementary). We shall prove the enumeration theorem, the normal
form theorem and the hierarchy theorem for the predicates described above
(§6). Moreover we shall show that for 2=1 the predicate expressible in the
k-quantifier form in our sense is expressible in the k-1-function-quantifier
form in Kleene’s sense and vice versa. (This would also follow from the re-
sults of Kuratowski and Spector [14]) An analytic predicate is expres-
sible in both 2-function-quantifier forms in Kleene’s sense, if and only if it
can be expressible as a (general) recursive predicate in our sense (§§7-8). We
shall characterize hyperarithmetical predicates in our hierarchy of ordinal
numbers (§9). Let us call an ordinal number to be recursively expressible if
it is expressible by means of (general) recursive functions, 0 and w, and de-
note the least ordinal number not recursively expressible as w*. We shall
show the predicate @ < w* is not (general) recursive, i.e. not expressible in
both 2-function-quantifier forms in Kleene’s sense, but is expressible in X'}-form.
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Moreover for any (general) recursive function g(«) in our sense, we can find
a primitive recursive function p(a,b) and a recursively expressible. ordinal
number ¢* such that

g(a)=pla, c*) for ¢<w.

From the above arguments it seems that the investigation of properties of w*
and primitive recursive functions in our sense may throw light on the study
for finding 2'i I7} hierarchy (§ 10).

There are many trials (e. g. [127]) for extending Church-Kleene’s construc-
tive ordinals 3], [6] [9)). In each of these extensions the predicates repre-
senting that {e is a notation for an extended constructive ordinal} and {« is
less than b in the sense of notations for the constructive ordinals} are expres-
sible in both 2-function-quantifier forms. Then we see that the least® ordinal
not represented by notations in each of those systems is less than w*. It
seems very interesting to define a system of notations not expressible in both
2-function-quantifier forms and compare the least ordinal not represented in
the system to w*. For this, we shall give a candidate at the end of this
paper (§11).

In the following we shall sometimes state or prove a proposition or theorem
concerning functions or predicates only in the case that they are of one-argu-
ment, but it will be easily understood how to be extended to general cases.
When the axiom of constructibility is not needed for a proposition or theorem
or section, its number is marked with the symbol o.

The authors wish to express their indebtedness to Dr. T. Tugué for read-
ing this paper in manuscript, and for suggesting a number of improvements.

§1°. Primitive recursive functions.

We say simply ‘e« is an ordinal number’, if ¢ is an ordinal number in the
second number class. We use the concepts on ordinal numbers =, <, 0, o, &’
(successor of @) and max (e, b) as usual. We also use the functions defined as
follows:

0 if a<b,

1(=09) otherwise.

j(gl(a): gz(a» =a, gl(j(ar b)) =a, gz(j(a: b)) =b.
j(a, b) < j(c, d)ye2max (a, b) < max (c, d)
V(max (e, b)=max(c,d) N(b<dVb=dNa<c))).

the least x such that x< e« and

Iq(e, b)=

Mhgcaf @y o s an X)=1 flay, ,a,x)=0 if such exists,

0 otherwise.
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the least x such that f(ay, -, @n x)=0
uxfla,, -, a, )=+ 1if such exists,
0 otherwise.
(In the following we shall sometimes abbreviate ux,-.f(a@,, -+, as x) and
vxflay, -, an %) a8 ux, Alay, -+, an x) and uxAla,, -+, a,, x) respectively, if
Va, - Va Nx(f(ay, -, an, %) =0 Alay, -+, @y, X)).)

We can define the following functions by combining 0, , ¢/, Iq, max, j, g%,
g% and px,..(bounded minimum):

0 if 0<e,
N(a)z[

1 otherwise,
which is defined to be Iq(0, a).

0 if a=0 or =0,
Dia,6)=|
1 otherwise,

which is defined to be N(max (N(a), N(b))).
0 if a=b,
Eq(e,b)= [
1 otherwise,
which is defined to be max (NIq (e, b)), N(iq (b, @))).
b if a=b,
5(a) = {
a otherwise,
which is defined to be ux,...Dj(Eq(a, x"), Eq(a, x)).
fb, ay, -, an) if b<a,

0 otherwise,

Py, ey )= [

which is defined to be 4X,<;p,a1,-an Di{max(Eq(x, f(b, ay, -+, an), 140, @),
max (Eq(x, 0), N(1q(b, @)

(Note that in the definition of f* ¢ is compared only with the leftmost argu-

ment of f. F%b,a, -+ ,a,) is also written as

Con({x}f(x, Ayttt an)y a, b)
following the notation given in [17])
gl it fl@=0,

Ha) otherwise,

S(f, 8 h a)=

which is defined to be
ﬂxx<maX(g(a),h(a))' DJ (maX (f(a)r Eq (xr g(a))), max (N(f(a))7 Eq (x: h(d)») .
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DEFINITION. A function is called to be primitive recursive, if it can be de-
fined by a series of applications of the following schemata :
¢y fl@)y=a'.
an { f(@)=0.

flo)=w.
(11D) flay=a.
(Iv) fla,b)=1q(a,b).
Q%) f(a, b)) =max(a,b).
(VD fa,b)=74(a,b).
VID [ f (a):g‘(a)y-
fla)=g%a).
VD f a5 @) =May, -, @),
where % is a function variable. In (IX)-(XII) #4,, ---, A, are function variables.
IX) Sy, oy Bty @y, o5 )
=gy, s s 813y s oy @1y o @)y s &Py o By @y o @), S T
& CF gy o Py @y o s Gy @) =8By, o By @y 5 @) -
fUy s by @, @y, - @) =8By - Iy @y -y @) .
XD Sy b @y oy Gy @) = UXpca &Ny o Py @y - Wy X)
XID)  flhy, b a,ay @) =C(f % Ry, o By @,y o, @),
which is called ‘ primitive recursion’®,

DEFINITION. A function is called to be primitive recursive in the narrow
sense, if it can be defined by a series of applications of the schemata (I)-(VII),
(IX)-(X1D>.

DEFINITION. Let F(ky, +-, hm a1, =+, a@,) be a predicate. A function f(%,, ---,
By @y, ,ay) 1s called to be a representing function of F(hi, -+, bm, @y, -+ @) if
fhy, - hmy ay, -, @y) takes only 0 and 1 as values and

Vxl o Vxn(F(hh :hmy Xy o ,'xn)Hf(hl: Tty hm: X1y oo )xn):O)'

DEFINITION. A predicate is called to be primitive recursive, if it has a
primitive recursive representing function. A predicate is called to be primitive
recursive in the narrow sense, if it has a representing function primitive recur-
sive in the narrow sense.

We see easily the following propositions.

1) Consider a kind of function combination obtained from functions already defined
by applications of the schemata and containing function variables 24, 4, -, bn. We
write it as C(&, Ay, -+, Am). In application of (XII), C(&, Ay, -+, Am, @) is of this kind.

2) In this case, Ay, .-+, hm are, of course, void in the schemata (IX)—(XII). Thus
C(h,a,ay, -+, a,) in (XII) is a function combination containing only one function vari-
able 4. The function defined by an application of (XII) should not contain any func-
tion variable.
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PROPOSITION 1. Let F(f,:-,g, a, - ,b) be a predicate constructed from primi-
tive recursive predicates, propositional connectives (7, N\, V, ) and bounded
quantifiers. Then F(f,~,g a, -+ ,b) is primitive vecursive.

PROPOSITION 2. Let A,(a), -, A a) be primitive rvecursive predicates such
that Yx(A,(x)V -V A (x) and Nx 7 (Ax) N\ Ai(x) for i+j and fa), -, )
primitive recursive functions. Then there exists a primitive recursive function f(a)
such that

Va((A0) =) =LA - A (An) = f(X) = Ful)) -

ProrosITION 3. Let Ala), -, A a) be primitive recursive predicates such
that Nx(A,(x)V -V A (%) and Nx 77 (Ai(x) N A[x) for i 7 and f1(f, @), -, fo(f, @)
primitive recursive functions. Then there exists a primitive recursive function
g(@) such that

) Vx((A(x)—g@) =g DA - AN A2 —g@) =127 %) .
In this case we say that the function g(a) is defined by the predicate (1).

PROPOSITION 4. Let Ala), -, Ala) be primitive recursive predicates such
that Vx(A,(x)V -V A (x) and Yx 7 (Ax) \ A(x)) for i + 7 and B,(f,a),, B.(f,@)
primitive vecursive predicates. Then there exists a primitive recursive function
g(a) such that

V(A — (g =0—=B(g" DN A - AN(Ai0)— (g(®) =0 B,(g7, %)) .

§2°. General recursive functions.

We defined the notion of ‘recursive function’ in [17]. In this paper we
define ‘recursive function’ (which is also called ‘general recursive’ if we
consider them in connection with primitive recursive functions and want to
emphasize the circumstances) as follows. It is easily seen that a function is
recursive in this sense if and only if it is recursive in the sense defined in [17].

DEFINITION. A function is called to be (general) recursive, if it can be de-

fined by a series of applications of the schemata (I)-(XII) and the following
additional schema

(XIII) f(hly Tty hm; gy an) - ,ng(hl, Tty hm: X, Ay, an) ’
where g must satisfy the condition
Vxl o Vxn ax(g(hl’ ) hm: xlt Tty xn: x) - 0) .

DEFINITION. A function is called to be (general) recursive in the narrow
sense, if it can be defined by a series of applications of the schemata (I)-(VII),
(IX)-(XIID).

DEFINITION. A predicate is called to be (general) recursive, if it has a gen-
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eral recursive representing function. A predicate is called to be (general) re-
cursive in the narrow sense, if it has a representing function general recursive
in the narrow sense.

§3°. Construction of a model of the set theory.

In this section we shall show that we can construct a model of set theory
in the theory of primitive recursive functions analyzing the construction given

in [16]. In the following we shall use the notation {x} instead of the usual
notation Ax or %.

Let sup(f,a;b) be an abbreviation of

Uz V(¥ <a—f(y) < x).
a+b is defined by
a+0=a AV¥x(0 < x—a+x=sup({z} Con({u}(a+u), x, 2), x ; j(a, x)")).
g"(a) is defined to be g%(g’(a@)) where i=1,2; j=1,2. We define successively
0=11=2,2=3,3=4,4=55=6,6 =7 7=8,8=09.
J(a, b) is defined by
JO,0)=0AVx(0(x) < x+— J(x,b) =Con({u} J(#, b), x, 6(x))+b)
A V20 <x A x=08(x)—J(x, b)=sup({z} Con({u} J(u, b), x, 2), % ; j(b+', b)")).
j(c, @, b) is defined to be J(j(a, b), 9)-+c.
gol@) is defined to be gz, dxIy(x <’ Ay <a’ N a=7j(z,x,»)).
gi(a) is defined to be uz,.o IxTV(Xx <INy < a’ AN a=jlx,z, ).
g(@) is defined to be pz,«p, IxIY(x <INy <a’ A a=3x,v,2)).
Let <(f,b,¢) be b>cAf(Gb,c)=0;
=(f,0,0) be O=cAfGG,N=0)VB=cAf(c,b)=0);
<(f,b,c¢) be x(=(f, x,c) A <(f,b,%);
=(f:0;{c;d}) be Vx(x<b—(<(f, b, x) = =(f, x,¢) V =(f, %, d)))
ANx@<bA=, 2, )DANIxx<bN=(f,x4d);
<(f:b;{c;d}) be Ixx<bNA<(f,0,x)N=(:x;{c;d}));
=(f:b;<c;d>) be
P <OANy<OAN= b {x;9DA = x5 {e;eD A= 3;5{c;d});
<=(f:b;<c;d>) be Ixx<dbAN<=([,b,)N=:x;<c;d>));
=(f1b;<c;d;e>) be AE<OA=(1b; <c;x>)N=(f:1x;<d;e>));
=(f:b;<c;d;e>)be xx<bAN<=(f,b,)N=:2;<c;d;e>)).
Moreover let
H(f,a) be =(f,g%a), glg @)V =(f,g%a), gLg¥@)));
Hy(f,a) be <= (f, g1(g'(a)), g%(a))
ANTxPE <ga) Ny <gDN<,3,DN=(f:18%a); <x;5>));
Hy(f, a) be <(f, g(g% (@), g% @) \ 7 <<(f, £:g% (@), g%a));
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H(f, a) be <(f, g.(g"(@)), &%)
A FxFyx < ga) Ny < gl a) A =(f:8%a); <x;y>)N<(f, gg%(@)), y));

H{(f,a) be Ix(x <g(gaN N<(S:g(%@); <x;g(a)>));

H((f, a) be <(f, g.(g%a)), £%(@)) N\ FxTy(x < g,(gX (@) Ny < g &' (@)
AN<(f:88"@); <x;9>)N=(f:8%0a); <y;x>));

H(f, a) be <<(f, g(g" (@), g¥(@) N FxTyTFa(x < g(g (@) Ny < g% (@) N\ 2 < g{&"(@))
N<<(f:8g%@); <x;9;2>)N=(f:8%a); <y;2;x>));

H{f, a) be <(f, g.(g%@)), %)) A\ xTFyFz(x < g(g" (@) Ny < 28" (@) N\ 2 < (g% (a))
N<<(f:g(g¥a@); <x;9;2>)AN=(f:8%a); <x;2;y>);

Hy(f, @) be Yx(x < g¥a)— (<= (f, g¥a), x) =< (f, £%(a), X))

Then, according to there exists a primitive recursive function

Jn(a) with the following properties:

ga) > g%(a) N g(g(a)) = 0+ fn(a) =0,

&Xa) > g%a) N g g¥ (@) = 1 — (fnla) = 0= H,(fn? a)),

ga) > g¥(a) N g(g"(@) = 2+~ (fn(a) = 0 H(fn*, @),

gla) > g¥a) N g &' (@) = 3+ (fnla) = 0 — Hy(fn* a)),

g'a) > g%a) N\ g(g" (@) = 4 — (fnla) = 0 H(frn% a)),

&' (@) > g%a) N g(& (@) =5— (fn(a) = 0 — Hy(fn* a)),

&g (@) > g%a) N\ g((g¥ (@) = 6 — (fn(a) = 0+ Hy(fn% a)),

&' (@) > g%(a) N g(g' (@) =T (fu(a) =0 H(fn®, a)),

g (@) > g*(a) N &(g' (@) =8 — (fna) = 0+ Hy(fn*, @)),

ga) = g¥a) — (fnla) = 0— H(fr® a)).

We use the following abbreviations; c b for <(fn,b,¢); b=c for =(fn,b,c);
{b, ¢} for j(1,b,¢); <c,d> for {{c,c}, {c,d}}; <c,d,e> for <c, <d,e>>; Od(a)
for px,co(x=a); Cla) for ux,c(x € a); b—a for j(3,b,a); bnc for b—(b—c);a S b
for Vx(x<aAnxea—x<b); aCh for aS b N/ (@a=D).

Then we have the following properties: (For the proof, cf. [15, pp. 209-2147.)
) =0—(eeb—Ax(x=aNx<b);

de{bct—b=dVe=d,;

a=bNc=d—{a,ct=1{bd};

a=cNb=d—<a,b>=<c,d>;
as=bNc=dNe=fn<a,c,e>=<b,d, f>;
gD)=2+—(cebrceg®MNIxTyxcsyNc=<x9>));
as(b—c)—asbN/esc);

asbnc—acsbNacsc,

gW)=4—(ceb—ceg®NIxAlc=<xy> Nycgd);

&) =5—(ceb—Ix(<x,c><0));

g)=6—(ceb—ceg® TN <3, y> gO)Nc=<y,x2>));

g =T—(ceb—ceg®)IxTyIz(< x,3, 2> cgD)Nc=<y,2,5>));
gW)=8—(cebrcegb)IxTyFe(< x,9,2> EL)NCc=<%295>));
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Od@)=a;
a=b—0d@)=0b;
Jxxca)—Cla)ea ANVx(xsa—Ca)=x);
7(aEa);
OcoAVixsw—Ty(ysw AxCTy);
Va7 (x=0);
VaVy(yex Ax s a—y <50, a,0)).
Thus we can construct a model of set theory in our theory of primitive
recursive functions.

§4°. Elementary functions.

Let @ be an ordinal number in the model of the set theory corresponding
to the ordinal number 2. Then we see easily that ¢ <. Thus we can define
a primitive recursive function u(@) by u(0)=0A Va{x > 0+ u(x) = sz, V(v < %
Ay x—Con({p}u@), x,¥) < 2)). ulx)is a function by which an ordinal number
b in the model which corresponds to the ordinal number & is mapped to &.

DEFINITION. A function is called to be elementary, if it can be defined by
a series of applications of the schemata (I)-(XI) in §1 and the following
schemata :

X1V) fle,b)y=a+b.
XV)  fla,b)=J(a,b).
XVD  fl@)=rna).
XVID f(@)=ula).

DEFINITION. A predicate is called to be elementary, if it has an elementary
representing function.

Clearly the class of elementary functions is a proper subclass of the class
of primitive recursive functions and we can construct a model of set theory
in the theory of elementary functions.

We see easily the following proposition.

PROPOSITION 5. Let F(f,---,8,a,-+-,b) be a predicate constructed from ele-
mentary predicates, propositional connectives and bounded quantifiers. Then
F(f, - ,g a,-,b) is elementary.

§5. Relations among elementary, primitive recursive and general recursive
predicates and their quantified forms.

Consider the predicates constructed from elementary (or primitive recur-
sive or general recursive) predicates, propositional connectives and quantifiers.
For simplicity we call these predicates (er)- (or (pr)- or (gr)-, respectively) pre-
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dicates. Let P(f,--,g,a,--,b) be a predicate obtained from an elementary
predicate by using a sequence of alternating £ quantifiers. Then we call
P(f,-,g,a,-,b) a k-er-predicate. A k-er-predicate is called X¢- or II{-predicate
according as the outermost quantifier is existencial or universal. We define
k-pr-predicate, 27" and II)"-predicates by replacing ‘elementary’ by ‘primitive
recursive’ in the above definition and k-gr-predicate, X5"- and II§"-predicates by
replacing ‘elementary’ by ‘general recursive’. We use X} or II} to denote
the class of 3%¥- or IT¥-predicates (resp.) where = stands for er or pr or gr. If
a predicate is in both 2¥ and II¥ then it is called both k-x-predicate. A pre-
dicate is said to be expressible in Z¥-form if it is equivalent to a J}¥-predicate,
expressible in II¢-form if it is equivalent to a II¥-predicate, expressible in both
k-=-forms if it is equivalent to a both k-x-predicate, * being er, pr or gr. If we
consider the similar concepts concerning with predicates primitive recursive

or general recursive in the narrow sense, we write prn or gvm instead of pr or
gr respectively.

PROPOSITION 6. For each of (er)-, (pr)- and (gr)-predicates, an unbounded
quantifier can be advanced across a bounded quantifier of the opposite kind.

PROOF. Let a'b be uy,<.(<y,b> € a) (which is elementary). Then we have
Va(x < aw—yAlx, y)2IpVx(x < a— Alx, u(y%(0, x, 0)))),

where A(a, b) is any of (er)-, (pr)- and (gr)-predicates. The treatment is simi-
lar for the dual form.

PROPOSITION 7°. For each of (er)-, (pr)- and (gr)-predicates, we can contract
adjacent quantifiers of the same kind, i. e.

Y, Vo, Alx, 22) 2 V2 A(g'(x), 24(%)) ,
Jx, 3%, Alxy, x2) 2 3x A(2'(x), 8%(%)) -
PROPOSITION 8°. Ewery (er)-predicate is expressible in one of k-er-form for

some k=0. Every (pr)-predicate is expressible in one of k-pr-form for some k=0.
Every (gr)-predicate is expressible in one of k-gr-form for some k=0.

THEOREM 1°. If a predicate P(hy, -+, B, @4, -+ , @) 1S expressible in both 1-er-
Sorms (or both 1-pr- or both 1-gr-forms), then it is general vecursive.
ProOF. This is an analogy of Post’s theorem and is proved in the same
way as in Theorem VI, §57 of [6]. Suppose
P(/ll, Tty hmr Ay sy dn)23XQ(h1, :km: Ay * 3 A, x)
= VxR(hl; s s Ay, oty Apy x) )

where @ and R are elementary (or primitive recursive or general recursive).
‘Then
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P(hly R hm: ay,y - )an):Q(hly "')hmx Ayt y Ay ﬂy(Q(lzly Ty hm’ Ay oy anvy)
\Y% 7R(h1: <y R, ayy *, an:y))) .

THEOREM 2. Every general recursive predicate is expressible in both 1-ev-forms.

PRrROOF. Let f(&y, -, lm, ay, -, a,) be a general recursive function. We
define (b :f(hl, Tt hm: Ay o0ty an))* for b :f<h1’ Tty hmr Ay, -, an) by means of
course-of-values induction on the number of the steps to construct f. If fis
defined by one of the schemata (I)-(VIID), then (0 =f(k,, -+, fim, @1, =+, A))* 1S
defined to be the predicate b=f(h,, -, b, a1, -+, a,) itself. Let

f(hly “tty km: iyt an):g(hb Tty hm_,gl(hflr v )hm‘y /2T an), Tty
gl(hls ) hm" Ay o0y an))(m_ é m) .

Then O=1y, -+, Am, ay, -, @) is defined to be

3w, - (X =gl o By @1y o @VF N o A =glyy -+ By @1+ 5 @)

AN (b :g(hlx Ty hm‘» X1y xl))*)

and equivalently
Vxl ves Vxl((xl _—_gl(hl’ e, hm”‘; Ay, -, an))* ANEIAN (xl:gl(kl» vee ykm“y ay, an))*
"_(b :g(hlr ) hm‘: Xy ooy xl))*) .

Let f(klr R hm’ ayy v By, an) :g(hv Tty hmr gy 0y an—l)- Then (b :f(hlx Tt hmr
@y -, a))* is defined to be (b=g, - , i, @y, -+, anr)). Let

Ty ooy by @y ooy Qs @) = M€ (Pyy = oy @y oo 5 Gy, X)
Then (b=Fhy, -, by @y, -+, an))* is defined to be
gy -, Py @ay ++ Ay, b) = O)%
AYx(x <b—"T7(g(hy, -, Ay @1y -+ 5 Ay, ) =0 A b < a,))
V=0 A\Vx(x<an—"7(ghy, ) Iy @y, -+ 5 peyy %) = 0)F)) .

Let f(hp R hm» Ay, 0 ,an):,uxg(kl, Tty hm’ Ay, oy Ay, x) Then (b :f(hly :kmx»
a, - ,a,))¥ is defined to be

(g(hh R hm; A1y 5 Ay, b):O)*
A\ Vx(x< b— 7(g(h1; Tty hm’ A1y 5 Apy X):O)*) .

Let f(hy, -y hpy @y, @y, -+ 5 @n) =C(f%, Ry ooy By @1y @3y -+, @) and (c=C(, Ay, - »
h’rm Ay ey an))* be G(h, hl: ttty kmy Cy Ay, ", an)' TO deﬁne (b :f(hly tTt hm: ayy *
a,))*, we first define some auxiliary notions. Let O(e) be

VaVy(x<aNy<aAyExNxc€a—yEa)

AVaVyx<aANy<aeNhxsalNyEa—xEyVi=yVyER);
F(b,c) be
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YuVoVuw(u <bANv<bAw <A <v,u><SbA<w,u>cb—v=w)
AVx(x<c' =Ty <bANOW A <,50,x,0) > b);
S(a ; b, c) be
¢ <j4,b,50, a, 0))
AVx(x<ar— V(< 70,2 0)>cc— <70, x0)><b)).
Then (b=s5hy, -, bim, @y, -+, a,)* is defined to be
Fa(F(x, a) ANVYV2(z < a{ N\ S(z; x,9)
—G({o}u(y'5(0, 0, 00, A2y, ==+, P, (x50, 2, ), 2, @3, =+, @)
A b=u(x%(0, a,, 0))
and equivalently
Va(F(x, a) ANYyVz(z < af A S(z; %, )
= G{o}u%0, v, 00, 2, -+, A, u(x'5(0, 2, 0)), 2, @5, -+, @)
—b=u(x%(0, a;, 0))) .
For every general recursive function f, we can prove that
G=f(hy - hmyay, @) 2b=f(hy, - by ay,y -+, @)

and that (b=fly, -+, lim, @y, -+, @n)¥ is expressible in both 1-er-forms by induc-
tion on the number of steps to construct f. Since every general recursive pre-
dicate has a general recursive representing function, the theorem follows from
the above, q.e.d.

By Theorems 1 and 2 we have easily the following.

THEOREM 3. The class of general recursive predicates coincides to 2¢ N II¢.
For each k=1; 30 =30 =3¢ gnd ¢ =17 =IIE".

In the following we shall sometimes denote Z¢(=232"=22§") as 2¢g? and
g (=2 =117 as IIY? and say simply, a predicate is ‘ expressible in k-quanti-
fier forms’ instead of saying ‘expressible in X¢<-form or expressible in IIg?-
form’ for £=1.

COROLLARY. For each k=0; the class of Z&"-predicates containing no func-
tion variable coincides with the class 2§™ and the class of IIE -predicates contain-
ing no function variable coincides with the class II§™.

§6. The enumeration theorem and hierarchy theorem.

In this section we shall prove the enumeration theorem for elementary
functions, the normal form theorem for general recursive functions and the
hierarchy theorem for any of (er)-, (pr)- and (gr)-predicates.
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PROPOSITION 9°.  Let C be a class of functions of one variable satisfying the
Jollowing conditions :

1 .0, 0, a, lq(ga), g¥(a)), max(g'(a), g%(a)), g'(a)+g%(a), J(g'(a),g%a), fnla),
uw(a) belong to C.

2) If f(@) and g(a) belong to C, then f(g(a),i(fa),g(a), g(f(a), gXf(a),
Lxocgraf (G(&Y(@), x)) belong to C.

Then C contains all elemeniary functions of one vaviable.
PROOF. Let j.(ay, -+, a,) (m=1) be defined as follows:

Wae)=ai,

Fuii @y 5 @y @ns) =5, 0 5 @n)y Gnsr) -
To prove the proposition it is sufficient to prove that for every elementary
function f(a,, -+, @), there exists a function f of one variable such that 7(e)

belongs to C and f(ju(ay, =, @) =f(ay, - ,a,). We prove this by induction on
the number of steps to construct f. If f is an initial function it is clear. If

f(aly ) an):g(hl(aly tty an)’ o hm<aly Tty an)) s

then flay, -, @)= EUnl(Gulas, =+, @), , hu(iulas, -+ , a,))) by the hypothesis
of induction. Then put f(a)=ZUnh(a), -, An(@). If

flay, - an) =8y, -+, @u-y),
then put f(a)=g(¢¥a)). If

Slay, -, Gpeyy @n) = BXpcq, 8@y, s Ape1, %)

then f(ay, -, @n-1, @n) = UXpca, &(Ta(@y, -+ , @n_y, x)) by the hypothesis of induction.
Then put f(a) = #¥cy2wE(7(84(@), 8), q.e.d.

We can define a primitive recursive function 7'(x,y) with the following
properties :

T4, a)=a’,

T2,a)=0,

T2 a)=w,

T2 a)=ua,

T2, a)=1q(g" (@), g%a)),

7'(2°, @) = max(g'(a), £%(a) ,

T2 a)=g (a)+g%a),

@, a)y=J(g a), &),

T@% a)=sna),

T(2° @) =u(a),

TR -3,a)=TG, T, a)),

@ -3 -5a=§T3Ga), Ty o),

T@,a)=g(TG a),

T@ -5 a)=gTG,a),
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T3 - 5%, a) = 1y <gra TG 5(84(@), 3)) -
Then we have the following theorem.

THEOREM 4°. (The enumeration theorem on elementary functions.) For any

elementary function f(a,, -+, @) an ordinal number e less than @ can be found
such that

f(al: T an): T(eyjﬂ(al: Tty an)) .

ProOr. We have only to prove that for every function f(¢) in C an ordinal
number ¢ less than @ can be found such that

f@=1T(e,a).
It is easily proved by induction on the number of steps to construct functions
in C.
COROLLARY. (The enumeration theorem.) For any general recursive predicate
Rla,, -, an, x) ovdinal numbers e and f less than o can be found such that
ExR(all Ay x)zax(T(ey]‘n(alr Ay, x)) - O)
VXR(al, oy Ay, x)zvx(T(fx]n(ah Ay, x)) - O) .
Similarly with more quantifiers.

COROLLARY. (The normal form theorem.) Let f be a general recursive func-
tion. Then there exists an ovdinal number e less than @ such that

f(a)=g"(ux(T(e,ja, '), g ) .

PrOOF. For the general recursive predicate b =f(«), an ordinal number e
less than @ can be found such that

b :f(d) ‘:)Ey(T(e’j:%(a: b; y)) — O) )
by means of the enumeration theorem. Since Jx(x=f(a)),
Fx3y(T e, jsa, %, y))=10),
which is equivalent to 3x(T(e,ja, g'(x), £2(x)))=0). Then
uxT (e, ja, 8'(x), £ (x)))
is general recursive and b =g'(uxT'(e, j5(a, £'(x), g2(X)))).
THEOREM 5. (The hierarchy theorem.) To each class of 2g¢ and Iy (k= 1),
there exists a predicate which belongs to that class and is not expressible in the
dual form, a fortiori not in any of h-quantifier forms with h less than k.

PrOOF. The proof is similar to the proof of Theorem V, §57 of [6]. We
shall show that the I7g-predicate

Vxl e hxk(T(alxjk+n(x1’ s Xy Ayttt an)) 7+ 0)

is not expressible in J¢?-form, where Y stands for 3 or V according as k£ is
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even or odd. Suppose it is expressible in Z¢¢-form, say,
3w, - WaP(ay, -+ 5 @y X1, -+ %)

‘where B’ is V or 3 according as } isJor V and P is an elementary predicate
(cf. Theorem 3). Then by using Theorem 4, there exists a number e less than
® such that

P(al’ Tty an: xly Tty xl(‘)2 T<e)jk+n(xh *re oy X dly Tty an)) — 0 .
By the help of we have
Vxl ot hxk(T(alek-l—n(le Xy Ay 0ty an)) + O)
‘_'—)—axl o h/xk(T(e’jk-}-n(xl! ty Xgy Byy 0y an)) - 0) .
Substituting e for «,, -, a, in the above equivalence we have a contradiction.
Similarly for the dual form, q.e. d.
REMARK. We show here the enumeration and hierarchy theorems in the
case that predicates contain no function variable. But we can prove those

theorems in case that predicates contain a finite number of function variables
similarly as above.

THEOREM 6. The reduction principle holds for 2y (k=1).
PrOOF. Let X and Y belong to X¢¢ and
X=343xP(a, x)
Y=43xQ(a, x).
Then, as in [2], they are reduced to the following X, Y;:
X, = ad3x(Pla, x) ANVy(y < x— 7 Qa, )
Y, =3a3x(Qa, ) Ny <x'— 77 P(a,)) .
Since the newly occuring universal quantifiers are bounded, X; and Y, belong
to the same class as X and Y, q.e.d.
If a predicate P is expressible in the form A A B where A and B are pre-
dicates in the classes 3'¢¢ and I respectively, we call P to be expressible in

2y AN Ige-form. A set X is called a 2¢¢ A ITy%-set, if x= X is expressible in
2ue A IIye-form.

THEOREM 7. The uniformization of a X% or X% 1Y% set is obtained by
a set belonging to the same class. The uniformization of a II{%set is obtained
by a set belonging to ¢ A IIY,

PROOF. Let @bP(a,b) be a set to be uniformized. If P(a, b) belongs to I¢re,
it is of the form JxQ(a, b, x) where Q = IIZ"%. Then we give the following set as
a uniformizator of 4bP(a,bd):

3x(Q(a, b, x) A Yy(y < j(b, x)— 7 Q(a,.g* (), X))
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which is in Z¢¢ by means of the fact that Vy(y <j(, x)— 7 Qa, g'(»), £X(»)))
belongs to J¥¢ and by If P(a,b) belongs to IIy* or IJ¢¢ N Iy
the result of uniformization of the set 4bP(g,b) is given by db(P(a, bYA
Va(x < b+—"7 P(a, x))). Vx(x<b— "7 P(a, x)) belongs to X¢¢ or XyeIIY?, ac-
cording that P(a, b) belongs to IIg? or X ~IIZ% From this we see easily
the theorem.

Analyzing the table given in 4 of [1], we have the following table by us-
ing Propositions 5, 6, 7 and Theorem 6, where a stands for a list %, -, in,
ay, @, and k=1,

P adx(x < a N P(a, x)) uniformizator
I(;rd N Hzrd ,‘érd N H,(;rd I(zrd I8\ H’cc»rd
Z‘,‘;T’l EgTd ’t:rd
ngd l Hzrd Z'zrd A Hzrd

87. Expression of our k-quantifier forms in Kleene hierarchy.

Let C(ky, -, kjyay, -+, @,) be a function combination obtained from function
variables k,,---,k; and primitive recursive functions in the narrow sense. C
is composed by combining 0, w, variables of ordinal numbers, function symbols
(initial functions of primitive recursive functions, function symbols introduced
by the primitive recursion and %, -+, %;) and the bounded minimum #x;<q4.
"Thus it is one of the following forms:

g(kll Tty kj’ Cl(kl) Tty kj) Ayy =ty a'ﬂ)) Tty Cm(kIJ Tty kj: Ayt an))
with a function symbol g and

uxx<00(k1,m,kj, A1y s @) Cl(kh Tty kj: Ay 5 Apy x) .

{Note that the primitive recursion does not introduce new kind of objects to
the forms of primitive recursive functions.)

Let f be a function variable not contained in C and put f(ay, -, an)
=C(ky, -, kjyay, -+ ,a,). We define ‘a system of equations’ [f(a, -, as)
=C(ky, ++ , kj aq, -+, a,)] and its auxiliary functions. Auxiliary functions of
Lf(ay, -, a)=Cky, -+ , kyj ay, -+ a,)] are function variables different from f and
the function variables contained in C. The definition is given inductively as
follows :

1) Let Cl&y, -, kjay -+, a,) be of the form

g(kls Tty kj: C1<k1: Tty kj: Ay, ,an>: v rcm(klx 7ij Ay vty an))

where g is a function symbol. Then [f(ay, -+, an) =Clky, -, kjy @y, -+, an)] is
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f(alx Ty an):g(klx R kj’ }l1<d1, Tty dn)r ,hm(dv ) an))
A Vxl ot Vxn([hl(xh Tty xn): Cl(kly R kj: X1y ***y xn)])
/\ ves
AN Vxl Vxn([hm(xlr Tty xn) - Cm<k1: Tty kj: Xy =ty xn)]) ’
where auxiliary functions of [ f(a,, ==+, a,) =C(ky, -+, kj, @y, -+, @,)] are hy, -, hy
and auxiliary functions of [/4,(x, --+, %) =Ci(ky, =+, kjy %y, o+, %,)] G=1,2, -+, m).
2) Let C(ky, - ,kja,,a,) be of the form ux,coyay, - xj, ar,ranCilki o 5 By
Ay, 5 Apy x)' Then [f(aly Tty an):C<k1) Tty kj: Ay y an):l iS
(f(al: Tty an) < ho(dl’ Tty an) N hl(al: Tty an:f<aly "ty an)): O
AN Vx(x <f(a1’ I an)'_hl(alr Ay, x) + O))
\Y% (f(alx Tty an) =0A Vx(x< ho(dl: Tty an)"_hl(alf Tty Ay x) + 0)))
AN Vxl o Vxn(l:ho(xl; ] xn) - CO(klt Tty kj’ X1yttt xn)])
AN Vxl VanX([kl(xl, Tt Xpy x) :Cl(kll Tt kj: X1 0ty Xy x)]) ’
where auxiliary functions of [ f(a@,, -+, @) = Clky, -+ , kj, @y, -+, @n)] are hy, h, and
auxiliary functions of [/2,(xy, =+, %) = Co(ky, -+, By, %y, ==+, %,)] and [2,(xy, -+, Xpy X)
== Cl(kh Sty kj: Xis 5 Xy x)]
3) Let C be a function symbol, then [f(a, - ,a,)=Clky, -, kjay, ,a,)] is
flay, -, a,)=Cky, -, kyay, -+, a,) itself. 1t has no auxiliary function.

PROPOSITION 10. For each function combination C obtained from ki, -, k;
and primitive rvecursive functions in the narrow semnse, theve exists a system of
equations [ f(ay, -+, a,) =C(ky, ==, Ry, a1, -+, a,)).  This is unique in the sense that

[f(aly ttty an>:C(k1: Tty kjy Ayttt an)]——)f(ah ) an>:C(k1: Tty kj; gy oty an)

holds not depending on the choice of f and auxiliary functions.

DEFINITION. An ordinal number « is said to be closed with respect to func-
tions f4, -+, f» if the following conditions are satisfied:
) w<a.

2) e, <a, 0y, <a—flay, o, a)<a (=i n).

We can prove the existence of such an ordinal number for given fi, -+, fa.
Now let C(ky, -+, kj, @y, -+, @,) be primitive recursive and ¢, an ordinal number
closed with respect to the function symbols occurring in C(ky, -+, kj, @y, -+, Gn)-
We define a system [ f(ay, =, @n) =C(ky, -+ , kj, @y, - , @) 1% of equations restricted
by a, inductively as follows (and auxiliary functions similarly as above);

[f(aly o ,an):g(kly Sty kj, Cl(klr Sty kj’ Ay ety an)’ Tty cm(klx E) kj; gyt an))]ao is
(al < ay NN ay < @y '—f(al)'")an>:g(k1’ Tty kj: hl(ah Tty an); "':hm(av"'ran>>)
ANxy - V(L (X, -, 20) = Co(Ryy oo By 27, -0 %2)1%0)
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/\ e
N V":1 ot Vxn([hm<xlr ) xn) = cm<klr ) kj: X1y **y xn)]ao)'
[f(alx Tty an) - /f‘xx<co<k1,<--,kj, al,-»-,amcl(kl; Tty kj’ Ayy 5 Ay, x)]ao iS

(@, <ag N\ Nag<ag— (@, an) < hlay, -, ay)

A hl(ah Tty an’f(alx Ty an)) - O

AV < ag N x<flay, -, an)—hay, -, an, %) #0))

v(f(“lr :an)zo

AVx(x < ag ANx < hfay, -, a)—hlay, -, @y, %) 7+ 0)))

/\ Vxl o vxn([ko(xn Tty x’/l,):CO(kU Tty ij xl: Tty xn):lao)

ANz - V(LA - Xy %) = Ci(xy, -+, Xy 2)170)

[flay, -, an)=2gla,, -+, ay,)]* for a function symbol g is
ar<ag N\ Nag<ag—flay, -, a,) =gy, , a,) .

PROPOSITION 11. Let C be primitive vecursive and a, closed with respect to

the function symbols in C. Then
[f(al) Tty an): C(kls Tty kj; Ayttt an)]aoﬁf(dlr Tty an) < Q.

Let C(a,, -, a,) be a primitive recursive function in the narrow sense.
There exists an ordinal number ¢, closed with respect to j and the func-
tions in C defined by primitive recursions (It is easily seen that g, is closed
with respect to any functions in C.)) To translate Cla,,--,a,) in Kleene
hierarchy we shall first illustrate the outline: @, corresponds to a function «a

from natural numbers to natural numbers which gives a well ordering of
natural numbers, the order-type being «§. Each ordinal number 5 less than g,

corresponds to a natural number 5 such that it is in the domain of «, and
the order type of «, | b (ctf. below) is . Then we shall translate the system
of equations to a predicate of natural numbers in which x <y corresponds to
a (%, 9 =0. Next we define some auxiliary notions in Kleene’s theory.
Let D(a,a,b) be ala,b)=0V a(b,a)=0;
D(a, a) be axD(a) a, x) ’
W(a) be VavVy(D(«a, x) A D, y)— D(, %, 9))
AVxYy(a(x, ) =0 A a(y, ) = 0—x=y)
A VaVyVaz(alx, ») =0 A aly, 2) =0 — alx, 2) =0)
AV INa( P (y+1), ¥(9) # 0V Y (y+1) =y (),

which means that « is a well-ordering over a set of natural numbers and which
is expressible in 1-function-quantifier form with a universal quantifier as the
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outermost quantifier;
=(a, B) be I (Vx(D(a, x) — D(B, ¥(x)))
A YVx2(D(B, %) — Fy(D(e, 9) A Y (9) = x))
A Vx¥y(D(e, x) A\ D(«, ¥)
—(alx, ) =0 A x# y = B0P(), () =0 A () #= ¥(9))) 5

which means under the assumption of W(a) or W(8), that a« and 2 are isomor-
phic. Though the meaning of =(a, B) itself may not be clear, we always use
this notion in connection with W(«) or W(8) in practice and understand the
correct meaning ;

al a be Axy(alx, y)+alx, a)+a(y, a));
and Clle; 0, - ,0,) be
vxl vle(D(a: xl) VANEXEIVAN D(ar xil) = D(a’ el(xly Tty x’Ll)))

/\ ees
A Vxl vxzm(D(a: xl) VANRIEIVAN D(a: xim) = D(a, 0m(x1’ Tty xtm_))> ’
which means the domain of « is closed with respect to functions &, -, @p.

This notion is used only under the assumption that W(a).
We define further auxiliary notions which correspond to the definitions of
initial functions. The notions are used only under the assumption that W(a,):

A VDl ) A D(@y, )=y =P®) = ayx, ) =0 Ax#y

A Yulao(x, ) =0 A u # x— a(y, u) =0)))
A Vx(D(aty, %) — D(aty, ¥o(%)))

(abbr. M(«a,; ), where +r, corresponds to the successor function in the sense
of a,.

(L) Va¥s(Dlety 2) A Dlcta, 9)— (3 =Y+ 7 322, ) = 0 A 2 % 3))
A Vx(D(ey, ) — D(aty, () .
(abbr. M(«,;,), where yr,(x) stands for the first element of the domain of «,.
L) YaY(Dley %) A Dlcty, 3= (3 =¥ax) - 3ecta(2, 9) = 0 A 2 % 3)
ANV2(ay(z, ) =0 Nz # y—a(¥2), ) =0 Ayry(2) # )
AYu(@z(a(z, ) =0 N 2 + u)
AVz(ay(z, ) =0 A 2 # ur— a(Wo(2), ) =0 A P o(2) # )
= a(y, ) =0)))
AVx(D(ety, x) — D(aty, V(%))
(abbr. My(a,, Vo, ¥2), which is used only under the assumption that M (a,; V).
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r.(x) corresponds to w.
() VeVy(Dlcty, 1) A D(cty, )= (3= @) 1y =)

A Vx (D ey, x)— D(@g, ¥ox))
(abbr. M(«,,),)), where v, corresponds to the identity function.
AV)  Va¥yVa(Dlato, 2) A D(ay 5) A Dicty, 2)

=@ =9, 9) = (%) =0Ax#y A z=1,x))

V (@3, £) =0 A 2= (Y1 (0))))
N Vx¥9(D(aty, %) N\ Do, ) — Do, Yo%, 3)))

{abbr. MJa,y; ¥, ¥, ¥,), which is used only under the assumption that
Mya,, o) and M («y, yr,). +, corresponds to Iq.

) Va¥Va(D(cts, %) A Do, 3) A D(cy, 2)
(2= Y% 9) (X, ) =0N z2=y) V(a(y, x) =0 A\ 2 =x)))
N Y2Y9(D(ay, £) A D(@, y) — Do, (%, )
{abbr. My(a,;¥s). s corresponds to max.
T YadyVa(D(ets, £) A D(ctg, ) A Dt 2)
(2 = V(% ) — YP(VVo(R( o, 1, 0, %, ) V (=X A0 =)
— Juw(a(w, 2) =0 A p(w, u, v) =0))
A Ya(eto(u, 2) = 0— ToTFuw((Rato, v, w, %, ) V 0 =2 A w =) A ¢(u, v, w) = 0))
A NVPYsYEYuVoVuw(D(a,, ) A\ D{c,, s) A D(aty, £)
A D(ay, ) A\ D(ety, v) A\ D(o, w) A\ (7, s, ) =0 A ¢(u, v, w)=0
(a7, ) =0 A 7% u— Rlay, s, 2,0, w)))
N Yu(D(aty, 1) — P10, ¥ri(w), Y1) = 0) = ¢(z, %, y) = 0)))
AN2VY(D(ety, £) N\ Dlato, y) — D, Yo, 3)))
‘where ﬁ(ao, a,b,c,d) is the abbreviation of
D(aty, @) A\ D(aty, b) N\ D(cty, ¢) N\ D(cty, d)
A (Vx(D(ay, %) = (@, b), ¥rile, d)) = ri(x))
V (@, b) = yric, d) A Va(D(ay, 2) =000, ) =)V (& =d A la, c)=y,(x)))))

(abbr. M, ; ¥, Vi, Vo s, ¥6), which is used only under the assumption that

Myety ;o) My ; Vo), My ; Vo, ¥y, ¥y) and My(a, ;¥5). e corresponds to j.
Instead of the above predicate we sometimes use the predicate obtained from
this by replacing the underlined logical symbols V¥ and — by 3 and A respec-
tively as My, ; Vo, Vi, Vo Vs, V). We use them under the presupposition by
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which we can consider them to be equivalent.
(VIL)  Vadp(D(aty, 2) A D@y, 9) = (3 = Vo) = 32 = Vl3, 2))

A Va(D(ety, x) — D{aty, Y(x)))
(abbr. My(ay; Ve, Vi, Ve sy Ve, V7)), Which is used only under the assumption
that My, ; ¥o), Mi(ay; ¥y, Mi(ay; Vo, Vi, Vo), Ml s ¥s) and Moo ; Vo, Vi, Vs
Y, o). Yr, corresponds to g
(VIL)  Va¥y(Dlay s 2) A Dlcty s 9 (3 = Yry(n) = 2 = Yz )

AY2(D(ey 5 %)= D(ay 595(x)))
(abbr. My(ay; Vo, Vi, Vo, ¥s, Ve, W), which is used only under the assumption
that My(ao; Vo), My(ay; Vo), Mido; ¥o, ¥, Vo), Mi(aty ;) and My(a s Vo, ¥i, ¥

Vi, Yre). rg corresponds to g?.
We see easily that M(«,; ¥, -+, V) is expressible in both I1-function-

quantifier forms for each { (0 <:{<28).

Let Cla,, -+, a,) be a primitive recursive function in the narrow sense.
We define ‘a system of equations [ f(a,, -, a,) = Cla, - ,an)]ao with respect
to «a,’ in Kleene’s theory corresponding to [ f(a,, -, @) =Ca,, -+, a,)]*® where
W(w,) is presupposed and the order-type of «, is @f. The definition is given
under the presupposition that W{(a,), Mo(ao;xfo), My ;¥D), -, Mg(ao; Yo, Y1,
Vo ¥s Ve, We). In the definition, functions f,3,--- from natural numbers to
natural numbers and number variables 4,,---,d, correspond to f,g, --- and
ay, -, a1 Clay, -+, a,) is of the form g(Clay, -+, an), -+, Culay, =+, @y)) Where
g is a function symbol, then [f(ay, -+, an) =Clay, - , an)]% is

(D@, BN = A Do, @)= F (8, -+, 82) = &Ry, -+, 82), -+, hBy, -+, @)

AVE, - Y[y, oy ) = Ci(ty, e, 2, 1%

ANy - V& Ty, -+, %) = Co, -+, £)17),
where & is Y, 0=ZiZg) or b, (0ZI<j). If Clay, - ,a,) is of the form
Hpcoyiar,anCi(@y -+, @n %), then [f(ay, -+, @) =Clay, -+, ax)]% is

(Dlatg, @) A =+ A D@, d) = (@(f @, =+, @), Ry, -+, ) =0
AN @y s @) F Ay -+, 8 A Ry, -+ s @ (B, oo, 820 = V(@)
AVED(y, R) A a(#, f(dy, -, 8D =0 A &£ (@, -, 8,)
R IR S VN CN))
V(F @y ) =ri(a)
AVR(D(aty, £) A ao(®, by, =, @) =0 A % # ho(dy, -+, d,)
b8y, -+ 80y B) # Y (@D))
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ARy VT 5 %) = Coly, -, %,)1%0)
N V'fl ot V}env;e(l:hl(xly Tty Xy x) - Cl(xly sty Xpy x):]&()) .
{(fay, -, a,)=g(a, -, an)]?”o for a function symbol g is D(«,, d,) A -+ A D(y, d,)

r—f(dl, e, d,) =284y, -+, 4,), Where g is yr; or k, according as g is introduced
by one of (ID-(VII) or (XII).

Now let C(a,, -+, a,) be a primitive recursive function in the narrow sense.
We define the result of the translation of b=C(a,, - ,a,) (write this as
Alay, -+, a,, b)) in Kleene hierarchy which is denoted by (b=Clay, -, a,)” or

A(gpl, o, @u, @) (Where @, -+, @, ¢ correspond to ay, -+, @, b). This has two
forms (b= Clay, -+, a)¥ (A¥(gy, =+, @u @) and (0 = Clay, -+, @)} (AXpy, -, 9, P))-
AY(@y, -, Pny @) S
Yty ¥a, -+ ¥a, Yo Yfrg Yy -+ Yoprg Yy -+ Yhon Yhy - Y, ¥
(W) A D(@ty, 8) A -+ A D(@y, dn) A D(cty, )

A=(pyay ] GIA = A=(Pu | d) A=(p,t, | b)

A Mo, W) A -+ A Mo, Vor Vi Vs Vs Yor V)

A CKety ;s oy o BY AT, -+, @) = Ca, -+, @)1,

=b=7(d, -+, )

where £, ---, A, are auxiliary functions of [ f(ay, -+, a,) =Clay, -+, a,)] and ky, -+,
k; are functions introduced by primitive recursions (XII) applied in the construc-

tion of C. A3(¢1, -, @, @) is obtained from AV(gol, -+, @,, @) by replacing the
underlined ¥’s and — by F's and A respectively. From the definition we have

PROPOSITION 12. A primitive rvecursive predicate in the marrow semse is
expressible in both 2-function-quantifier forms in Kleene hievarchy.

Let P(a,, -+, a,) be a predicate expressible in the k-pr-quantifier form and
contain no function variable. There exists a primitive recursive function
Clay, -+, Qn, X1, -+, %) such that it contains no other variable than ay, -, @,
Xy, , 4 and contains function symbols f;, -+, f» besides initial functions and

P(aly Tty an)zl:xl’ Tty xlc:Kc<al: sty Apy Xy o ’xlc):o)

where [x,, -+, ] stands for a sequence of alternate quantifiers. Then A(a,, -,
an, %1, -+, %) Standing for Clay, -+, @y, %4, -+, %) =0, P(a,, -+ ,a,) is translated in

[EFGD ... EFETAY @y, , @y &1, o0, 1)
or [EWED ... gFE] Aa(%, e O EL ey ER)

{where ¢,, -+, ¢, &, -+, & are function variables corresponding to ay, -, a@n,
Xy, o, % and EFEY in [ 1 means VE(W(E;)— ) or IE(W(EH A )



220 G. TakeuT! and A. KiNo

according as the appearence of x; in [x,,---,x;] is of the form Vx; or x;
(1=£i<k)) according as innermost quantifier of P is universal or existential.

We shall denote it as (Play, -+, @w)" or P(¢y, -+, @)

THEOREM 8. Each predicate containing no function varviable and expressible
in the k-pr-quantifier form (k=1) is expressible in the k+1-function-quantifier
form keeping the outermost quantifier in the same kind.

Proor. Let P(ay,---,a,) be a predicate expressible in the following form:
[xlr Tty xk:]A(ah ty Opy Xyy xk)
where [x,,---, %] is a sequence of alternate quantifiers and Aa,, -+, @n, %1, ***

%) stands for Cla,, -, @y, %1, -+, %) =0 with a primitive recursive function C
in our sense. Then (Play, -, a,)" is

[E}V(el) e E}CV(E/G)] A*(?’p Tty S'Dm El) Tty Ek);

where * stands for V or 3 according as the innermost quantifier is universal
or existential. Since A*?(qol,-",%, £, -, &, is expressible in the 2-function
quantifier form with a universal or existential quantifier as the outermost one
according as * stands for V or 3, which is of the same kind as the innermost
quantifier of [x,---,x;], these quantifiers are contracted by Proposition 7.
Thus we see that (P(a,, -, a,)" is expressible in the k+1-function-quantifier
form keeping the outermost quantifier in the same kind as that in the expres-
sion of the k-pr-quantifier form of P(ay, ---, a,).

§ 8. Expression of the k+1-function-quantifier forms in our theory.

In this section we shall show that an analytic predicate in the k41-func-
tion-quantifier form is expressible in the k-quantifier form in our sense keep-
ing the outermost quantifier in the same kind.

For this purpose we first define several auxiliary functions. Let P(f,x)
be defined by the following :

P(£,0)=1AV¥x(0 <x A x <o+ P(f, x) = J(f(0(x)), Con({z} P(f, %), x, 3(x))))
A Vx(x = o — P(f, x) =sup{{z} Con({u} P(f, u), %, 2), x ; w)).

Moreover, let m(z) be #x,<,(u(x) =1); f™ be uy,c.(< m(y), m@) > € f A my) € w);
£~y be P({x}pL'™, 3).

Now we define #-operation from analytic predicates to predicates of ordinal
numbers, by which a variable and a function variable turn a variable of ordinal
number < ® and a variable of ordinal number being a function in the model
constructed in §3. If ¢ is a recursive function in Kleene’s sense, then there
exists a primitive recursive function ¢ in our sense such that ¢ is equal to



Hierarchies of predicates of ordinal numbers 221

@ on the domain of natural numbers. The same assertion is true for recur-
sive predicates. Without loss of generality we may assume each function
variable is of one variable.

Let F(f) be

Vi(x<fAxef—Fun(<u,v>=2xANu<oN0<OANUEDNVE W)
AVuVoVuwu < o ANv<o ANw<oA<v,u>cSfA<wu>Sf—v=w)
AVx(x<o—Fp(y<o A <m(y),mx) > s NDAVxx<f—T7x=f).

By means of the enumeration and hierarchy theorems for both arithmeti-
cal and analytic predicates, 2 of and the relativization of of
[14], we define #-operation by induction on the number of prenex quantifiers
of numbers and of functions respectively.

=a@)f is F(ON=fMNj<oNi<w.

Each recursive function ¢ of m function variables «,, .-+, a,, and # number

variables ¢, ---, @, can be expressible as

m

—~A— . .
Ulpy Ty ay (), -+, @u(¥), €, a1y -+, @0y 9))

for some number e. (cf. [7]).) Then we define (b =9¢(ay, -+, &p, ay, -+, @) as

b= Ultyyco T3S0, s Smds € a5 @G YD NFFON == NF(fm).

which is primitive recursive in our sense.
Let R(ay, -, &m, @y, -+, @,) be a recursive predicate with the representing

function ¢(ay, -+, ap, @y, -+, @,). Then (Rlay, -+, &y, a1, -+, @y))t is defined as
(0 == 50(“1, e, &y Ay 0y an))a'
Let Al«ay, -+, an, ay, - @,) be an arithmetical predicate expressible in j+1

prenex quantifiers such as
xAfay, -y Ay Ayy 0y Ay X)
(or VxAaty, =+, Qp,y @y, -+, @ny X))
and assume (A Ay, =+, QAp, @y, =+, @, x))F is defined. Then (Alay, -, &m ay, -,
ay)t is ’
x(x <o A (A, = Apy @y, -+ 5 Ay X))
(or Va(x < wr— (A, +* s Ay @y, 5 Ay X))

Let v (fy, -+, fm, ¢, @, b) be the primitive recursive function

U(,uyy<w(Té"l(f?y’ o ’f'r;y, ¢ a, b.- J’))) ‘

We define a primitive recursive function B(fi, ***, fm, ¢, £) in the following (for
simplicity we shall abbreviate a list f,, -,/ as 1):
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B(,¢,0) = pz,co(¥r(, ¢, 2,2) =0 AVx(x <@ A¥(f, c, %, ) =0
Ax#z—vY(, ¢, 2z, 2)=0AV¥({, ¢, x,2) #0))

A2 < x—B(, ¢, ) = #2,<(¥({, ¢, 2,2)=0
AYY(y < x—z =+ B{, ¢, »)
AVu(u < o ANVy(y < x—u+ BG, ¢, ) AN, ¢, u,u)=0
Au+z—y, ¢, 2z, w)=0 AV, c, u,2) #0)).

Then (c & Worem) is Vady(x <o AV(, ¢, x, ) =0—x=B(, ¢,y)) where the
scope of the quantifier is primitive recursive. Let A(a,, -, ay, @) be an ana-
lytic predicate of the form VAIxR(«y, -, &m, @, B, x) With recursive R. Then
this is expressible in the form

77111.~--,dm(a) e Wer%m

where #%»%n is a function recursive uniformly in «,--,a,. We define
(Alay, =+, ap, @) as

Ir(x <oA= 77“1""'“""((1»* A (x = Wa1,..-,am)#) s

which is expressible in the form JxB(f,, -, fm» @, x), Where B is primitive re-
cursive in our sense and f,, -+, fn are variables of ordinal numbers correspond-
ing to a,, -, an.

Let A(ay, -+, an, @) be an analytic predicate expressible in the form

hﬂl i HBkVBExR(all e, &, 4, .Blr Tty .Bk’ B: x) ’

where Y is a quantifier, R is recursive and

(V:BaxR(ali e, O, @, ﬂl: Tty Bk: ﬂ: -x»t

is expressible in the form 3xB(f, -+, fmr &1 *** » & @, X) With primitive recursive
B (in our sense). Then we define (A(a,, -+, &y, @)} as

hgl agkzaxB(flr o :fm:gh 86 4, x) .
The other cases are treated by the method of duality in logic.

THEOREM 9. An analytic predicate expressible in the k+1-function-quantifier
form is expressible in the k-quantifier form in our sense keeping the outermost
Sunction-quantifier in the same kind.

PRrOOF. It is easily seen from the definition of #-operation and Proposi-
tion 7.

Now let us consider the classical hierarchy. In this case predicates are
considered to be obtained from predicates recursive in some function from
natural numbers to natural numbers by quantification similar to the above (cf.
[2]. If a predicate is of the form

hﬁl o aﬁnvﬁaxRp(ab e, Oy, 4, ﬂl’ Tt ﬂm .8: x) )
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where §1 is V or 3 and p is a specified function from natural numbers to natu-
ral numbers, it is expressible as

hﬁl Eﬁn 7/0,d1.~~',a’m,ﬁ1.-'-,8n(a) = Wp,a1,~--,wm,31,-~.ﬁn ,

where 7f@1»@mbB158n is g function recursive in p and recursive uniformly in
&y, vy U, By, -+, B In the translation given above, we took a variable of
ordinal numbers with some conditions as a counterpart of a function variable.
Besides this we take an ordinal number p as a counterpart of o such that F(p)
and j= p(i) implies j =p'" for each natural number i. Thus

770,6!1,---,am,ﬂl,-u,ﬁn(a) = vaali'”sdm’ﬂl,“',ﬂn

can be expressible in the form 3xB(p,f1, s fm &1 »&n &, X), Where B is a
primitive recursive predicate in our sense and p is a parameter of an ordinal
number in our hierarchy. So similarly as above,

THEOREM 10. A predicate expressible with the k-+1-quantifier form in the
classical hievarchy is expressible in the k-quantifier form in our semse with an

ordinal number as a parameter and keeping the outermost quantifier in the same
kind.

£9. On hyperarithmetical predicates in connection with our hierarchy.

In this section we shall characterize hyperarithmetical predicates ([8]) in
our hierarchy.

THEOREM 11. Let P(x,, -, %,) be a primitive recursive predicate in the nar-
row sense and contain no function variable and c,, - ,c, elements of W. Then
P{cil, - 1ca D) is expressible in both 1-function quantifier forms.

ProoF. In §7 we defined several notions and notations, e.g. a system of
equations for a primitive recursive function in our sense, an ordinal number
closed with respect to some functions, D(«, a,b), =(«, f) and so on. We shall
use them freely in this section and identify the Gédel number of a recursive
function to the function itself in Kleene hierarchy.

LEMMA. Let ay, -, a, be ordinal numbers less than Church-Kleene's w,. Then
there exists an ordinal number a, satisfying the following conditions:
Q) a<agy -, a.<a,,
@) a<w,
3) a, is closed with respect to j,
@ flay - ,a,)<a, for any primitive recursive function f in our sense.

PRrROOF. Since the constructive ordinals are closed with respect to the
operation corresponding to j (cf. [3]), the existence of ¢, satisfying (1)-(3) is
easily seen. Then by induction on the number of stages to construct f, we
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see that such ¢, satisfies (4).
We call a, the closure of ay, -, a,.

Let C(xy, -+, x,) be a primitive recursive function in the narrow sense,
a; < w,, for 1 =i=#n and ¢, the closure of a,, -, a, Let us consider a system
Cflay -, an)=Clay, -, a,)]* of equations restricted by a,.

To translate Clay, -+, a@,) in Kleene hierarchy, let @, correspond to an ele-
ment f, of Spector’s W such that

|f0i__—aéy
and each ordinal number ¢ less than ¢, to a natural number 4 such that it is

in the domain of f; and |f, | d|=4«’. where f, | @ is a G6del number of the
recursive function

Axy(fo(x, V) +folx, &)+fo(y, 4)) .

Let M(fo; ¥, - »¥:) be the predicate obtained from Mi(a,; ¥y, -+, V) defined
in §7 by replacing every occurrence of «, by f, for each i (0=<i<8) and
Mi(fo; Yo ¥, Vo Vs, V) the predicate obtained from My(fy ;¥ o, ¥, ¥ o ¥s V), DY
removing ‘ A VaVy(D(fy, x) A\ D(fo, ) — D(fo, ¥s(x,5)))’, Moreover let M(¢; «, f)
be

Va(D(e, x)— D(B, p(x)))
A Vavv(D(a, x) N\ D{a, )
—(alx, =0 A x %y ple(x), () =0 A ¢(x) # ¢()))
N V2YY(B(, () = 00— F2(D(a, 2) Ny = ¢(2))) ;
= («, 5) be
W(a) N W(B) ANNVe(M(g ; &, B)— Yx3y(D(B, x) — 2= () A\ D(a, )))
which means « and A are isomorphic and is in II} (cf. Corollaire 1 of [13, p.
1817]). We define ‘a system [ f(ay, -, a,) =Clay, -, an)]fo ’ to be the predicate
obtained from [ f(ay, -, a,) =Clay, - ,a,)]% in §7 by replacing every occur-

rence of «a, by f,, Now we define each of the following predicates as the
result of the translation of »=C(e,, -+, ,) in Kleene hierarchy:

3f,3a, -+ 38,36(f, € W
A V‘POV%V%V%V%(M(UO ’ 11”0) VANREEIVAN Ms(fo ’ 1:”5) A Mé(fo; ‘po: ] ’1106)

—Cl(fo; Vo)
A D(fo, 8) A =+ A D(fo, &) A D(fo, b)

AZ(@nfol BN - A= (Pufol ) AN=(@,fo ] B)
AN - N Vhy o VAV Ey - YENF (M fo; V) A o A M(for o -+, ¥s)
ALflay @) =Clay, -+, a)Fo—b=F(d, -, 8));
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Vfo¥a, -+ V. Yb(fo & W
ANV N Y Y P (M for Vo) A oo A M{(fo;¥s) A Mi(for Vo= s ¥e)

= Cl(fo ’ 1p(;))

AD(fo, &) A -+ A D(fo, @a) A D(f, b)

ANZ(@yfol BN AZ(Pnfo ! EIAZ(@5fo 1 D)

3y -+ Y 3hy - 30,3k - FRAFDLS VI A o AMLFo5 V0 -+ ¥

ANb=F(ds, -, @) N[ fas, -+, an)=Clay, -+, @)},

where A4, -, h,, are auxiliary functions of [ f(a,, -, a,) =C(a;, -+ , ay)land &y, -+,
k; are functions introduced by primitive recursions applied in the construction
of C.

It is easily seen that they are II! and J!-predicates (resp.). Thus |cl|
=C(c. ), ,lc. D With primitive recursive C in our sense and ¢, ,cp,cE€EW
is expressible in both 1-function-quantifier forms in Kleene hierarchy. From
this follows the theorem, q.e.d.

COROLLARY. Let P(a,b) be a predicate primitive rvecursive in the narrow
sense. Then for each b < w,, d(a <w A\ P(a, b)) is hyperarithmetical.

PROOF. Let b < w, and f be a Godel number of the representing function
of £9(x<y Ay <n). P(fl,b)is expressible as a hyperarithmetical predicate.

THEOREM 12. Let Alay, -+, a,) be a hyperarithmetical predicate. Then there
exist a primitive vecursive predicate P(x,x,, -+, %,) in the narrow sense and an
ovdinal number b less than Church-Kleene's w, such that Ala,, -+, ay) is expressed
by P(b,ay, -+ ,a,) in the hierarchy of predicates of ovdinal numbers.

Proor. It is sufficient to show that every predicate H,(a) for y=O is
expressible in the form P(b, @) where P is primitive recursive in our sense
and b < w,.

Let C(a, b) be Ix(x < o A Vg, b, x)) (cf. [5 or 9] for V(a, b, x)). C(a, b) is primi-
tive recursive in our sense. A function E(b, x) is defined as follows:

E,0)= #2,<,(C(z, 0)) ANV (y <w A z+y NC(y,b)—C(z,))
A V20 < x— E(b, x) = p2,<,(C(2, b)
AYY(y < x—z+ E®,)
AVulu <o ANy < x—u+ E®, y)) A Clu, b)) A\ u+ z2+—C(z, n)))) .
Let M(b,c) be Va(x<c—F200<zNz2< 0 N\ E(, x)=2))
ANE®,¢c)=0
and ¢(e, @) be Uy, <o T:(e, a, »)).

Let b=0. Then |b|<w,. We can define a function H possessing the fol-

lowing properties by means of the primitive recursion
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Vax=1[b|—
(x=0—VYu(u < w+— (H(x, u) =0 2 = n)))
NO<x—(0&) < x—Voulu <w—H(x,u)=0

— 32z < o A TIPUplp HO@D | 2) u, u, 2)))))
A O)=x—Yu(u < w+— (H(x, u)=0
—3z(z < w A M(z, x)
N H(u9yio MIP((2)s (1), 3), (1)e) = 0))))) -

Then Hy(a) in Kleene hierarchy is expressible by H(|6|,¢)=0 in our hierarchy,
where H is primitive recursive and |b|<w,, q.e.d.

COROLLARY. Let @ be a function from natural numbers to natural numbers
and the predicate ¢(a)=2> is hyperavithmetical. Then there exist a primitive recur-
sive function pla,b) and an orvdinal number c, less than w, such that pla, c,) is the
value of @(@) for a < w.

PrOOF. By there exist a primitive recursive predicate P(x, @, b)
and an ordinal number ¢, less than w, such that ¢(e)=0> is expressed by
P(cy, a,b). Let pla,c) be ux,,P(c,a,x). Then pla,c,) supplies the value of
o(a) for a < w.

§10°. Recursively expressible ordinal numbers.

« is called to be recursively expressible, if a is expressible by using recur-
sive functions, 0 and w. Let o* be the least ordinal number which is not
recursively expressible. Since the class of recursive functions in the present
sense coincides the class of recursive functions in [17], we shall follow the
definition in in the discussion concerning the recursively expressible
ordinal numbers.

Let ®={f(@)]f is a recursive function of one variable and ¢ < w*} and ¢
be a one to one mapping from R to {x|x <t} satisfying

aERNaGERNa <a,—¢la;) < ¢la,) .

Moreover let B = {{x}f(x,2)|f is a recursive function of two variables and ¢ € R}.
If fe®B and ¢(f(a))=g(p(a)) for every a = R, then we say ‘g is an /.

PrOPOSITION 13. If a =R and b =R, then
pla")=¢(a) ,
»(0)=0,
pw)=w,
v(Ilg(a, b)) = Ig(p(a), p(b)),
p(max (a, b)) = max(e(a), (b)),
@(5(a, b)) = j(p(@), )) ,
(g'(a)) = g'(¢(a)), i=1,2.
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PROPOSITION 14. If g is an f% and pxf(x) is recursive, then
p(uxf(x)) = nxg(x) .
PrOOF. Let ¢ be uxf(x). ThenaeR and f(e¢)=0, which implies g(¢(a))

=0. Suppose that there exists b such that » < ¢(¢)and g(b)=0. Then there
exists ¢ such that c € R and ¢(c)=b. Then 0=g(p(c))=¢(f(c)). Hence f(c)=0

and ¢ < a, which is a contradiction.
PrROPOSITION 15. If g is an f° and a = R, then
P(yy<aS (9) = 1yy<rar&(Y) .

ProOF. If dx(f(x)=0A x<a), the proof is performed in the same way as
above. Let Vx(x<a—0<f(x). Then uy,f(y)=0. We have only to prove
that uy,<x0g(¥)=0. Let b be uy,cong(y) and 0<b. Then b< ¢(a) and
g(®) =0. Therefore there exists ¢ such that ce®, b=¢(c) and ¢<a. Then

e(f(e)=g(plc)=g®B)=0
whence follows f(¢) =0, which is a contradiction.

THEOREM 13. If f(fy, - s fm X1y =+ » Xp) IS Vecursive, g; is an fi{ for each i
AZi<m) and a; €N for each § 1 =j5=<n), then

gp(f(fly e ’fmy gty an)): f(gli o 8me §0(d1), tty ?(dn)) .

Proor. We prove this by induction on the number of stages to construct
f. If the outermost function of f is not Rec, then the theorem is clearly pro-
ved by Propositions 13-15 and the hypothesis of induction. Then we have
only to prove it in the case when £ is of the form

ReC<{f, x}hl(f:fly s ;fm: Xy Qyy ey an)’ hz(flr R :fm, Ay ey an)) .
Let b be &,(fi, *, fm> @1, ,@y). Then, by the hypothesis of induction,
¢(b):h2(gly t 8mo @(dl), T 9)(0'7,,)) .
Therefore, we have only to prove

gD(ReC({f, x}hl(f’fl, ot ;fm’ Xy @&yt dn): b))
— ReC({f, x}hl(fr 81 8me X, go(al): Tty go(an))) gD(b)) .
We prove this by transfinite induction on b = ®. Let f(y) be

COH({Z} ReC({f, x}hl(ﬂflx ot :fm) Xy Ay °t s dn); Z)) b:y) .
Then f, =B and

Rec({f’ x}hl(f,fl; ot yfm! X, 1yt an)y b):hl(fmfl: i yf'm.r b, Ay oy an)'
Let ce R, Then

gD(ReC({f’ x}hl(f:fh ,fm: Xy Qyy 0 an); C)) ’ if ¢ <b
P(foled) =

otherwise,
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by the hypothesis of induction on » & %R,
ReC({f, x}h‘l(f’ 1 s 8mr X ¢(al)» Tty ‘P(an)), §0(C)) if c < b ’

0 otherwise.

Now let g,(y) be

COH({Z} REC({f, x}hl(f: &1 8me X @(dl), Tt @(dn», Z): ?(b): y) .
Then

gip(e))=Con({z} Rec({ f, 2} (S, &1, =+ » 8 %, 9(a)), -+, P(a@n)), 2), 9(B), P(c))
for ce R
Rec({f, x}hl(f) g1 7t s ms Xy go(dl)’ Tty ¢(an))’ ¢<C>)
— it ele)<o®) (c<b),

0 otherwise.

Thus we see g, is an fg.
From this and the hypothesis of induction,

@(hl(fo,fl, o fme 0, @1, an)) :hl(gmgl’ y 8m ';D(b): @(dl), Tt @(d,))
- Rec({f, x}lzl(f’ & s 8me X 90(01); R ?)(an))l gﬂ(b)) .

THEOREM 14. If f(x,, -+« , %) is vecursive and a; = R for each i 1 Zi = n), then

‘;D(f(dl, ) dn)) :f(go(dl)’ Tt g)(an))'

THEOREM 15. If b<a and a is recursively expressible, then b is also recur-
sively expressible, that is, an ovdinal number is recursively expressible if and only
if it is less than w*.

Proor. We have only to prove that

ol@)=a for every a<=R.
Let a=®. Then a=f(b) for some recursive function f and b such that » < w*.
b < w* implies ¢(b)=20.
Thus we have
(@)= (f ()
= f(p(b)) (by Theorem 14)
=s()

=a.

THEOREM 16. The predicate a < w* is not expressible in both 1-quantifier forms.
Proor. If ¢ < w* is expressible in both l-quantifier forms, it is general
recursive by Theorem 1. Then the function

pra(7 a < w¥) (which is w*)

is general recursive, i.e. ¥ is recursively expressible, which is a contradiction.
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THEOREM 17. The predicate a < w* is expressible in Z{-form.
PROOF. «a < w* if and only if there exists a general recursive function f
such that f(0)=«. Then, by means of the normal form theorem,

a<w*23Jele <o A Fx(T(e, 30, g'(x), g2(x)) =0 A a = g'(x)
AN V(y <x—"7T(e,i0,8'(»), gy =0)),

where the right side of this equivalence can easily be expressible in X¢?-form.

THEOREM 18. The predicate a =w* is not expressible in Z{-form, but is
expressible in X9 N IT{%-form.
PROOF. Since
a<w*2Vrx(xr=0*—a <x),

a < w* should be expressible in I{?-form, if ¢ =w* were expressible in X9¢-
form. This contradicts Theorem 16. On the other hand,

a=w*2Vx(x<a—x <o) AVx(x <o¥—x<a),
which implies that ¢=w* is expressible in X2¢{¢ A [I¢{¢-form by means of
We see that both predicates ¢ < w* and ¢ < w* are expressible in J¢¢-form

and both predicates ¢ > w* and ¢ = w* are expressible in I7{%-form. But it
remains open if the predicate ¢ =w* is expressible in II¢¢-form or not.

THEOREM 19. For every gemeral recursive function g(a), theve exist a primi-
Zive vecursive function pla, b) and a vecursively expressible ordinal number c* such
that

gla)=pa,c*) for each a<w.

PrROOF. Let p(a,b) be a function obtained from g(e¢) by replacing every
occurence of recursive ux in g(@) by #x,c. Then pla,b) is clearly primitive
recursive,

Vala < w — g(@) = p(a, b))
is general recursive and
JoVala < w— gla) =pla, b)).

Let ¢* be wyVx(x <w+— g(x)=p(x,»)), which satisfies the required conditions.

§11°. Additional note concerning constructive ordinals.

In the preceding section we defined w* to be the least ordinal number not
recursively expressible and showed that the predicate ¢ < w* is not expressible
in the both 1-quantifier forms in our sense.

There are many trials for extending Church-Kleene’s constructive ordinals
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(cf. [3]). In these the predicates representing that {z is a notation for an ex-
tended constructive ordinal} and {« is less than b in the sense of notations for
extended constructive ordinals} are expressible in both 2-function-quantifier
forms in Kleene’s sense. Among them there are systems of notations C and
¢ given by Kreider and Rogers [12] If @, is the first ordinal not in the
segment represented by C (or 6), then wy; < w*. Because, since the predicate
a<¢b (or a <gb) is expressible in both 2-function-quantifier forms in Kleene’s
sense, it is expressible in both l-quantifier forms in our sense by
and then it is general recursive by [Theorem 1. Thus we can find a general
recursive function v in our sense such that (e, b) =0 means a <gb (or a <zb).
In the same way as in of [16], using ¥ (a,b) in place of ¢(c,a,b)
there, we can represent w, as a recursively expressible ordinal number i.e.
we < w*.

In this section we shall show the definition of our candidate of a system
of notations not expressible in both 2-function-quantifier forms using Putnam’s
notation. In the definition of the candidate small Greek letters stand for or-
dinal numbers and we denote a (partial) recursive function by its Godel
number. An ordinal number « is called to be constructively accessible if N,
can be defined to satisfy the following conditions.

(i) There exist two functions recursive uniformly in functions (or predicates)
of one variable and two variables respectively, (we denote the uniform Godel
numbers as d and e respectively) satisfying the following condition ().

(x) If Ais a set and =, is a well-ordering on A, then Axy{e}*=4(x,y) gives
a well-ordering on the set £({d}4=4(x)=0).

(ii) There exist partial recursive functions, (let the Godel numbers be p and g).
(iii) To state the definition of N, we use the following auxiliary definitions:

n=¢,m, if and only if {there exist ordinal numbers « and f less than r such
that me N, ne Ng and « = B}. {f is an o.p.c.m. (to read: order preserving

cofinal mapping) from Cg into C,} if and only if the following conditions are
satisfied :

(@) If neCg, then f(n) € Ca.

(b) If neCy and m e G, then n=¢ym if and only if f(m) =g, f(m).

(¢) For every n €C,, there exists m such that m e Cy and n = ¢,/ (m).

@iv) of Ng:

Case 1. N,={l}.

Case 2. Ny ={2%| x = N,}.

Case 3. « is a limit number and there exists an ordinal number 3 satisfying
the following conditions: # < a; there exist a number ¢ and a partial
recursive o.p. c.m. g from Cg into C, such that ¢ & Ny and p(a, g) does
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not belongs to C,. Then

No={pla,f)| a = Ng, where B, is the least ordinal number B satisfy-
ing the above conditions, ¢ is the least number re-
quired to exist for B, in the sense of =y, and f is a
partial recursive o.p.c.m. such that p(e,f) <« Cs.}

Case 4. « is a limit number and there exists no S satisfying the conditions

in Case 3. There exists a number ¢ satisfying the following condi-

tions : {d}» =ca(a¢)=0; there exists a partial recursive o. p.c.m. g from

C. to C, such that g(e,g) does not belong to C,. Then

N,={q(a> f)| a is the least number satisfying the above conditions
in the sense of Axy{e}C» =ca(x,y)=0 and f is a partial
recursive o.p.c.m. from C, to C, such that ¢(e, f) & C,.}

It remains open if the predicate ‘a is a constructively accessible ordinal
number’ can be expressible in both 2-function-quantifier forms. But we sus-
pect that the condition () for 4 and e is not expressible in both 2-function-
quantifier forms.
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