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Let $F$ be an algebraic extension of a field $C$ and let $(F^{n})^{*}$ be the multi-
plicative group of all invertible elements of the ring $F\otimes_{C}\cdots\otimes_{\sigma}F$($n$-times).

The author has introduced in [1] a complex structure $C^{*}(F/C)$ on the groups
$(F^{n})^{*}$ whose homology groups $H^{n}(F/C)$ were shown to be a generalization of
the notion of the cohomology groups $H^{n}(G;F^{*})$ for normal fields $F$ with
Galois groups $G$ . This has been extended and simplified by Rosenberg and
Zelinsky in [5].

In the present paper we introduce homology groups $H_{n}(F/C)$ for arbitrary
commutative rings $F$ which are finitely generated C-free modules. These
again are obtained by a complex $C_{*}(F/C)$ obtained by the groups $(F^{n})^{*}$ with
a derivation $\mathfrak{R}:(F^{n})^{*}\rightarrow(F^{n-1})^{*}$ . The map $\mathfrak{R}$ is defined with the aid of the $n$

different norms of the elements of $F^{n}$ with respect to $F^{n-1}$ . These groups
are again isomorphic with the classical homology group $H_{n}(G;F^{*})$ for normal
field $F$ with Galois groups $G$ .

In section 2 we carry the notions of restriction, transfer and lift to the
cohomology and homology groups of arbitrary fields which again is the gener-
alization of the respective notion of the classical case.

These notions are used to prove that if $(F:C)=k$ then the order of the
elements of $H^{n}(F/C)$ and $H_{n}(F/C)$ is a divisor of $k$ . This together with the
fact that $H^{2}(F/C)$ is isomorphic with the Brauer groups of all C-separable
simple algebras ([5]) split by $F$, yields the result that the exponent of the
algebras split by $F$ divides $k$ . The special feature of this proof is that it
does not depend on the existence of normal separable splitting fields but rather
on $F$ itself.

A new notion of cohomology groups for two C-algebras $F,$ $K$ is introduced.
This is done by considering the multiplicative groups $(F^{n}\otimes_{c}K^{m})^{*}$ as a double
complex. The first two cohomology groups of this complex are zero and
$H^{2}(F, K)$ is isomorphic with the Brauer groups of all algebra split both by $F$

$*)$ Part of this research has been done while the author was a member of a Sum-
mer Conference of the University of Chicago.
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and $K$ In case $K\supseteqq F$, these groups coincide with cohomology groups $H^{n}(F/C)$

introduced above. These groups have generalizations to any finite number
$F_{1},$

$\cdots,$
$F_{r}$ of C-algebras.

The double complex is then used to prove the fundamental exact sequence
([4]) for arbitrary field. It was shown in ([5]) that our groups $H^{n}(F/C)$ are
naturally isomorphic with Adamson’s cohomology groups for separable not
necessarily normal extensions $F$ of $C$ . Now recently, the fundamental exact
sequence has been shown to hold also for these groups (Nakayama $[6, 7]$ and
in a more general form by Hattori $[8])^{*)}$ , it seems probable that our exact
sequence (Theorem 4.2) coincides with Adamson-Nakayama’s exact sequence.
No attempt has been done to prove this fact in this paper; nevertheless, this
has been carried out only for the classical case of normal separable fields and
normal subfields. Namely it is proved that the Hochschild-Serre’s exact se-
quence ([4]) coiSncides with the exact sequence of Theorem 4.2 under identical
epnditions.

$T$he rest of the paper is devoted to show that the basic tools for the
classical homology groups exist and work as well for our groups.

1. Homology groups.

Let $C$ be a commutative ring with a unit, and let $F$ be a commutative
C-algebra containing $C$ as a subalgebra (both $F$ and $C$ have the same unit).

Put $F^{n}=F_{c}^{n}=F\otimes_{c}\cdots\otimes_{c}F$ (n-factors) and for $n=0$ set, $F^{0}=C^{1)}$ .
Following [1] and [5] we define the homomorphism $\epsilon_{i}$ ; $F^{n}\rightarrow F^{n1}\perp(n\geqq 1)$

by setting:
$\epsilon_{i}(a_{1}\otimes\cdots\otimes a_{n})=a_{1}\otimes\cdots\otimes a_{i-1}\otimes 1\otimes a_{i}\otimes\cdots\otimes\alpha_{n}$ .

These homomorphisms satisfy the relation:

(1.1) $\epsilon_{i}\epsilon_{j}=\epsilon_{j+1}\epsilon_{i}$ for $i\leqq j$ .
If $R^{*}$ denotes the multiplicative groups of all invertible elements of a

ring $R$ , then the set of all groups $(F^{n})^{*}$ form a cochain complex:

(1.2) $ F^{*}\rightarrow(F^{2})^{*-}\cdots\rightarrow(F^{n})^{*}\rightarrow(F^{n+1})^{*}\rightarrow\cdots$

with respect to the derivation $\Delta=\Delta^{n}=\sum_{i=1}^{n\neq 1}(-1)^{i-1}\epsilon_{i}$ (written additively) and to

which we add the augmentation $\epsilon;C^{*}\rightarrow F^{*}$ which is the injection of $C^{*}$ in $F^{*}$ .
Thus:
(1.3) $\Delta(a)=[\epsilon_{1}(a)\epsilon_{3}(a)\cdots][\epsilon_{2}(a)\epsilon_{4}(a)\cdots]^{-1}$ .

$*)$ The author is thankful to the referee for the remark.
1) All tensor product, henceforth, without a subscript will be with respect to $C$

unless stated otherwise.
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We denote this complex by $C^{*}(F/C)$ and its cohomology groups by $H^{n}(F/C)$

and $H^{*}(F/C)=\Sigma H^{n}(F/C)$ .
To define homology groups we use a similar procedure with the help of

the Norm:
Let $K$ be an arbitrary commutative ring and $A$ be a finitely generated

free K-algebra; the norm “ Norm $(A/K;a)$ “ for $a\in A$ is defined to be
determinant of the endomorphism: $a_{R}$ : $x\rightarrow ax$ of $A$ , when considered as a
K-free module (e. g. [2, p. 133]). It is known (ibid) that if $PC(a;\lambda)=$

$\lambda^{n}+c_{n-1}\lambda^{n-1}+\cdots+c_{0}$ is the characteristic polynomial of the endomorphism $a_{R}$

then Norm $(A/K;a)=(-1)^{n}c_{0}$ .
We assume, henceforth, that $F$ is a finitely generated free C-module as

well as a commutative ring. Thus, $F^{n}$ is also a free $\epsilon_{i}F^{n-1}$ -module, so for all
$x\in F^{n}$ we set
(1.4) $\nu_{i}(x)=\epsilon_{i^{-1}}$ Norm $(F^{n}/\epsilon_{\dot{t}}F^{n-1} ; x)$ ,

and we obtain a homomorphism $\nu_{i}$ : $(F^{n})^{*}\rightarrow(F^{n-1})^{*}$ . (For $\nu_{1}$ : $(F^{1})^{*}\rightarrow(F^{0})^{*}$ , we
also write $\nu.$) Finally let $\mathfrak{R}:(F^{n})^{*}\rightarrow(F^{n-1})^{*}$ be the homomorphism given by:

\langle 1.5) $\mathfrak{R}(x)=[\nu_{1}(x)\nu_{3}(x)\cdots][\nu_{2}(x)\nu_{4}(x)\cdots]^{-1}$ .

That is: $\mathfrak{R}=\mathfrak{R}^{n}=\sum(-1)^{i-1}\nu_{i}$ (writing it additively), and note that $\mathfrak{R}^{1}$ : $F^{x}\rightarrow c*$

is the ordinary Norm $(F/C;^{*})$ map.
This procedure leads to a chain complex:

(1.6) $ C^{*}=F^{0*}-F^{*-\cdots-}(F^{n-1})^{*-}\cdots$

which we shall denote by $C_{*}(F/C)$ . To this we add the augmentation $\mathfrak{R}^{0}$ : $C^{*}\rightarrow 1$ .
It will be shown that $C_{*}(F/C)$ is a chain complex, $i$ . $e$ . $\mathfrak{R}^{2}=0$ and we then call
its homology groups–the homology groups of the extension $F$ over $C-$ and
denote it by $H_{n}(F/C)$ and $H_{*}(F/C)=\sum H_{n}(F/C)$ .

We remark that $H_{0}(F/C)=C^{*}/NF^{*}$ where $NF^{*}$ is the subgroup of $C^{*}$

containing all elements which are Norms of elements of $F$.
Furthermore, we can connect the complexes $C^{*}(F/C)$ and $C_{*}(F/C)$ to one

complex $C(F/C)$ by setting: $F_{n}=(F^{*})^{n+1}$ for $n\geqq 0$ and $F_{-n}=(F^{*})^{n}$ for $-n<0$,

then we get a complex

$-F_{-n}\rightarrow F_{-(n-1)}\rightarrow\cdots\rightarrow F_{-1}\rightarrow F_{0}\rightarrow F_{2}\rightarrow\cdots\rightarrow F_{n}\rightarrow\cdots$

with the derivation $d^{n}=\Delta:F_{n}\rightarrow F_{n+1}$ for $n\geqq 0$, and $d^{n}=9t:F_{n}\rightarrow F_{n+1}$ for $n<0$

and $d^{0}(x)=\epsilon \mathfrak{R}^{0}(x),$ $i$ . $e$ . the Norm $(F/c, *)$ followed by the injection of $C^{*}$ into $F^{*}$ .
The procedure is the same adopted for finite groups ([3]) as we shall note

later for the case of finite normal Galois extensions.
To prove that $C_{\star}(F/C)$ is a complex we need the following lemma :
LEMMA 1.1. The $n+1homomot^{\prime}phisms\nu_{i}$ : $(F^{n+1})^{*}\rightarrow(F^{n})^{*}$ satisfy the rela-

tions:
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(1.7) $\nu_{i}\nu_{j}=\nu_{j}\nu_{i+1}$ for $i\geqq j$ .
Indeed, using the transitivity property of the Norm ( $e$ . $g$ . $[2$ , p. 142]); we get:

$\nu_{i}\nu_{j}(x)=\epsilon_{i^{-}}$‘[Norm $(F^{n}/\epsilon_{\dot{t}}F^{n-}$ ; $\epsilon_{j}^{-1}$ Norm $(F^{n+1}/\epsilon_{j}F^{n}$ ; $x)$]

$=\epsilon_{i^{-1}}\epsilon_{j}^{-1}$ Norm ($F^{n+1}/\epsilon_{j}\epsilon_{i}F^{n-1}$ ; x)

and the rest follows from the relation among the $\epsilon_{i}$ given in (1.1).

To complete the proof that $C_{*}(F/C)$ is a complex we observe that: (writing
the homomorphisms involved additively):

$\mathfrak{R}^{2}=\Sigma(-1)^{i}\nu_{i}(-1)^{j}\nu_{j}=\sum_{i\triangleleft}(-1)^{i+j}\nu_{i}\nu_{j}+\sum_{c\geqq J}(-1)^{i+j}\nu_{i}\nu_{j}$

$=\sum_{i\triangleleft}(-1)^{i+j}\nu_{i}\nu_{j}+\sum_{i\geqq j}(-1)^{i+j}\nu_{j}\nu_{i+1}=0$

by replacing in the last sum $i+1,$ $j$ by $j$ and $i$ respectively. For $n=1$ , we get
SJI2 $=\nu\nu_{i}-\nu\nu_{2}=0$ , since

$\nu\nu_{1}(x)=Norm$ [ $F/C;\epsilon_{1}^{-}$ Norm $(F^{2}/\epsilon_{1}F;x)$] $=Norm(F^{2}/C;x)=\nu\nu_{2}(x)$ .
The identification of these groups with the classical homology groups of

normal fields will be dealt with in the last section.
We begin with introducing the idea of ” restriction ‘ and ” transfer ” in

the (co-) homology group for arbitrary $F$ which will correspond to their
classical counterpart.

2. Restriction, transfer and splitting of cycles.

If $F$ is not C-free or not finitely generated then the results to follow will
still hold, but only for the complex $C^{*}(F/C)$ and for the cohomology groups
$H^{*}(F/C)$ .

In addition to $F$ and $C$ dealt with above, we consider an arbitrary com-
mutative ring $R$ which is a C-algebra, and denote by $C(F/C)\otimes R(C^{*}(F/C)\otimes R$ ,
$C_{*}(F/C)\otimes R)$ the complex

$\rightarrow(F^{n}\otimes_{c}R)^{*}\rightarrow(F^{n+1}\otimes_{C}R)^{*}\rightarrow\cdots$

with the derivation $\Delta_{F}=\sum(-1)^{i-1}(\epsilon_{i}\otimes 1)$ (written additively) and $\mathfrak{R}_{F}=\sum(-1)^{i}\nu_{Fi}$

with $\nu_{Fi}=(\epsilon_{i}\otimes 1)^{-1}$ Norm $(F^{n+1}\otimes R/(\epsilon_{i}\otimes 1)(F^{n}\otimes R);*)$ . Clearly $C(F/C)\otimes R$ is
again a complex and one readily establishes the isomorphism:

THEOREM 2.1. $C(F/C)\otimes R\cong C(F\otimes R/R)^{2)}$ .
Indeed, $C(F\otimes R/R)$ consists of the groups and the morphisms: $[(F\otimes R)_{R}^{n}]^{*}\rightarrow$

$[(F\otimes R)_{R}^{n+1}]^{*}$ . The isomorphism of the theorem is given by the map:
$(a_{1}\otimes\cdots\otimes a_{n})\otimes r\rightarrow[a_{1}\otimes 1]\otimes_{R}\cdots\otimes_{R}[a_{n}\otimes r]$ for $a_{i}\in F,$ $r\in R$

whose inverse is given by:

2) Similar results hold for $C_{*}(F/C)\otimes R$ and $C^{*}(F/C)\otimes R$ .
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$[a_{1}\otimes r_{1}]\otimes_{R}\cdots\otimes_{R}[a_{n}\otimes r_{n}]\rightarrow(a_{1}\otimes\cdots\otimes a_{n})\otimes(r_{1}r_{2}\cdots r_{n})$ .
It follows readily that these maps commutes with the $\epsilon_{i}$ and consequently,
that they form a complex isomorphism.

Now let $\rho=\rho^{n}$ ; $F^{n}\rightarrow F^{n}\otimes R$ be the isomorphism given by $\rho(x)=x\otimes 1$ . As
$\rho$ will be shown to be a complex isomorphism of $C(F/C)$ into $C(F\otimes R/R)$ one
obtains:

THEOREM 2.2. $\rho$ induces a morphism $\rho^{*};$ $H(F/C)\rightarrow H(F\otimes R/R)$ .
The proof for the cohomology groups is evident since $\rho\epsilon_{i}=(\epsilon_{i}\otimes 1)\rho$ . For

the homology case, let $a_{1}$ , $\cdot$ .., $a_{m}$ be a C-base of $F$ then (for $i=1$) $a_{1}\otimes 1$ , $\cdot$ .. ,
$a_{m}\otimes 1$ will be $\epsilon_{1}F^{n-1}$ -base of $F^{n}$ as well as an $(\epsilon_{1}\otimes 1)(F^{n-1}\otimes R)$-base of $F^{n}\otimes R$.
Consequently, one readily observes that for $a\in F^{n}$ , one gets $(\det a_{R})\otimes 1=$

$\det[(a\otimes 1)_{R}]$ in $\epsilon_{1}F^{n-1}\otimes R$, where $a_{R}$ is the endomorphism: $x\rightarrow ax$ in $F^{n}$ and
$(a\otimes 1)_{R}$ : $x\rightarrow(a\otimes 1)x$ in $F^{n}\otimes R$, from which we conclude, in view of definition
of Norm $(F^{n}/\epsilon_{1}F^{n-1} ; *)$ and Norm $(F^{n}\otimes R/(\epsilon_{1}\otimes 1)(F^{n-1}\otimes R);*)$ , that $\rho$ commutes
with the respective $\nu_{i}’ s$ and, therefore, it is a complex morphism.

DEFINITION 2.1. We shall refer to $\rho^{*}$ as the restriction homomorphism;
and a cycle $a\in H(F/C)$ will be said to be split by $R$ if $\rho^{*}(a)=1$ in $H(F\otimes R/R)$ .

It will be shown that the restriction map defined above, though not
exactly the known restriction homomorphism for the cases where these
cohomology groups coincide with the classical ones, nevertheless, it seems
that this definition is more appropriate and its relation with the classical
definition will be pointed out later.

To justify the definition of the splitting of cycles we prove the following:
A homomorphism $\tau;H^{2}(F/C)\rightarrow \mathscr{D}(F/C)$ was defined in [5], where $\mathscr{D}(F/C)$

is the Brauer group of all equivalent central separable C-algebras. Now the
correspondence $\mathfrak{A}\rightarrow \mathfrak{A}\otimes R$ defines a homomorphism $\sigma;\mathscr{D}(F/C)\rightarrow \mathscr{D}(F\otimes R/R)$,
and we wish to show that:

THEOREM 2.3. If $R$ is C-free then $\sigma\tau=\tau\rho^{*}$ .
Indeed, recall the definition of $\tau$ ;

Let $\eta_{i}(i=2,3)$ be the two possible maps of End $ 1\otimes F(F\otimes F)\rightarrow End_{1\otimes F^{2}}(F\otimes$

$F\otimes F)^{3)}$ , and for $teF^{3}$ let $L(t)\in End_{1\otimes F^{2}}(F\otimes F\otimes F)$ be the endomorphism
defined by multiplication by $t$ . Consider the algebra $\mathfrak{A}(t)=\{a\in End_{1\otimes F}(F\otimes F)$ ;
$L(t)\eta_{2}(a)L(t)^{-1}=\eta_{3}(a)\}$ , then $\tau$ is given by: $\tau(\overline{t})=\mathfrak{A}(t)$ , where $\overline{t}\in H^{2}(F/C)$ is the
class of cocycles determined by $t$ .

Now we get $\sigma\tau(t)=\mathfrak{A}(t)\otimes R=\tau(\rho^{*}t)$ , as we show that
$\mathfrak{A}(\rho t)=\{a\in End_{1\otimes F\otimes R}(F\otimes F\otimes R), L(\rho l)\eta_{2}(a)L(\rho t)^{-1}=\eta_{3}(a)\}\cong \mathfrak{A}(t)\otimes R$ .

Indeed, first note that $\rho:F^{n}\rightarrow F^{n}\otimes R$ is actually a $1\otimes F^{n-1}$ -linear injection
and clearly it induces an injection $\rho;End_{1\otimes^{p^{n-1}}}(F\otimes F^{n-1})\rightarrow End_{1\otimes F^{n-1_{\otimes R}}}(F\otimes$

$F^{n-1}\otimes R)=[End_{1\otimes F^{n-1}}(F\otimes F^{n-1})]\otimes R$ ; namely, $\rho(a)=a\otimes 1$ . It is now not

3) $End_{R}(V)$ denotes the ring of all R-endomorphism of an R-module $V$.
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difficult to show that $\rho\eta_{i}=\eta_{i}\rho$ . Consequently, $21(\rho t)\supseteqq\rho \mathfrak{A}(t)\cong 9t(t)$ since for
$a\in \mathfrak{A}(t),$ $L(\rho t)\eta_{2}(\rho a)L(\rho t)^{-1}=\rho[L(t)\eta_{2}(a)L(t)^{-1}]=\rho\eta_{3}(a)=\eta_{3}(\rho a)$ .

It remains now to show that $\rho \mathfrak{A}(t)$ and $R$ are in tensor product relation
in $\mathfrak{A}(\rho t)$ (cf. [5, p. 336]). Now $\rho \mathfrak{A}(t)\subseteqq End_{1\otimes F}(F\otimes F)\otimes 1$ Hence, $\rho?I(t)\otimes R\subseteqq$

$End_{1\otimes F}(F\otimes F)\otimes R$ which yields that $\rho \mathfrak{A}(t)$ and $R$ are in tensor product
relation in $End_{1\otimes F\otimes R}(F^{2}\otimes fl)$ and clearly in $\mathfrak{A}(\rho t)$ . To conclude the proof we
show that $\rho \mathfrak{A}(t)\otimes R=\mathfrak{A}(\rho t)^{}\dagger$ : Indeed, let $a\in \mathfrak{A}(\rho t)\subseteqq End_{1\otimes F}(F\otimes F)\otimes R$ , so $a=$

$\sum a_{i}\otimes r_{i}$ for a C-base $\{r_{i}\}$ of $R$, with $a_{i}e$ End $(F\otimes F)$ . Since $a\in \mathfrak{A}(\rho t)$ , we
have $\eta_{3}(a)=L(\rho t)\eta_{2}(a)L(\rho t)^{\leftarrow 1}=L(\rho t)(\Sigma\eta_{2}(a_{i})\otimes r_{i})L(\rho t)^{-1}=\sum L(t)\eta_{2}(a_{i})L(t)^{-1}\otimes\gamma_{i}=$

$\sum\eta_{v}9(a_{i})\otimes r_{i}$ Consequently, $L(t)\eta_{2}(a_{\dot{t}})L(t)^{-1}=\eta_{3}(a_{i})i$ . $e$ . $a_{i}\in \mathfrak{A}(t)$ .
REMARK. If $R$ is not C-free we know only that $\mathfrak{A}(t)R\subseteqq \mathfrak{A}(\rho t)$ .
An immediate consequence of Theorems 2.3 is the fact that a cycle

$t\in H^{2}(F/C)$ is split by $R$ if and only if the corresponding algebra $\mathfrak{A}(t)$ is split
by $R$ , which is the justification for the notion of splitting a cocycle.

Next we deal with the transfer: To this end we consider a finitely gen-
erated free C-algebra $R$ and a homomorphism $\tau^{*}:$ $H(F\otimes R1R)\rightarrow H(F/C)$ which
replaces the transfer homomorphism.

Let $\tau^{n}$ ; $F^{n}\otimes R\rightarrow F^{n}$ be given by $\tau^{n}(x)=Norm(F^{n}\otimes R/F^{n} ; x)$ .
THEOREM 2.4. $\tau;C(F\otimes R/R)\rightarrow C(F/C)$ is a complex isomorphism and lhus

induces a homomorphism $\tau^{*}H(F\otimes R/R)\rightarrow H(F/C)$ .
PROOF. For arbitrary $F,$ $\tau$ commutes with $\epsilon_{i}$ : Indeed, let $r_{1},$ $\cdots,$ $r_{m}$ be a

C-base of $R$, and let $x\in F^{n}\otimes R$ then since $\{1\otimes r_{i}\}$ is an $F^{n}$-base of $F^{n}\otimes R$,
it follows that $x(1\otimes r_{i})=\Sigma t_{ik}\otimes r_{k}$ and $\tau(x)=\det(t_{ik})$ . Now $\epsilon_{j}(1\otimes r_{i})=1\otimes\gamma_{i}$

and $\epsilon_{j}$ is an isomorphism; hence we get $(\epsilon_{j}x)(1\otimes r_{i})=\sum\epsilon_{j}t_{ik}\otimes r_{k}$ so that
$\tau(\epsilon_{j}x)=\det(\epsilon_{j}t_{ik})=\epsilon_{j}\det(t_{ik})=\epsilon_{j}\tau(x)$ . $qe$ . $d$ .

This leads to the fact that $\Delta\tau=\tau\Delta$ . To prove the relation $\mathfrak{R}\tau=\tau \mathfrak{R}$ we
show that $\tau$ commutes with each $\nu_{i}$ . Indeed, by the transitivity of the Norm
one gets,

$\tau\nu_{i}(x)=Norm$ [ $F^{n}\otimes R/F^{n}$ ; $(\epsilon_{i}\otimes 1)^{-1}$ Norm $(F^{n+1}\otimes R/(\epsilon_{i}\otimes 1)(F^{n}\otimes R);x)$]

$=\epsilon_{i}^{-1}$ Norm $[F^{n+1}\otimes R/\epsilon_{i}F^{n} ; x]$

$=\epsilon_{i}^{-1}$ Norm [ $F^{n+1}/\epsilon_{i}F^{n}$ ; Norm $(F^{n+1}\otimes R/F^{n+1}$ ; $x)$] $=\nu_{i}\tau(x)$ ,

from which the rest of theorem follows.
DEFINITION 2.2. The map $\tau^{*}$ will be called the transfer map.
An immediate consequence of the definition of $\tau^{*}$ and $\rho^{*}$ is the fact that:
COROLLARY 2.5. $\tau^{*}\rho^{*}=dimension$ of $R$ over $C$ .
Comparing these definitions with classical definitions of restriction and

transfer as will be given in Section 4, one would wish that for a subalgebra
$R\subset F$ the restriction should be a map: $H(F/C)\rightarrow H(F/R)$ and the transfer a
map $H(F/R)\rightarrow H(F/C)$ . The first can be easily achieved whereas the latter
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can be obtained only in special cases which cover the known ones.4)

To deal with the first case we start from a subalgebra $R\subseteqq F$, and here
let $\mu;F\otimes R\rightarrow F$ be the homomorphism: $\mu(a\otimes r)=ar$. Then $\mu$ clearly induces
a homomorphism $\mu=\mu^{n}$ ; $(F\otimes R)_{R}^{n}\rightarrow F_{R}^{n}$ and we have:

THEOREM 2.6. $\mu$ is a complex homorphism: $C(F\otimes R/R)\rightarrow C(F/R)$ and thus
induces a homomorphism $\mu^{*};$ $H(F\otimes R/R)\rightarrow H(F/R)$ .

PROOF. Clearly $\mu$ commutes with the $\epsilon_{i}$ , hence it commutes with the
derivation $\Delta$ . To prove that it commutes with $\nu_{i}$ and therefore, with $\mathfrak{R}-$ we
note first that for $a\in(F\otimes R)_{R}^{n+1})^{*}$

$\nu_{j}(a)=\epsilon_{j}^{-1}$ Norm $[(F\otimes R)_{R}^{n+1}/\epsilon_{j}(F\otimes R)^{n} ; a]=\epsilon_{i^{-1}}\det(u_{ik})$

with $u_{ik}\in\epsilon_{i}(F\otimes R)^{n}i$ . $e$ . $u_{ik}=\epsilon_{j}v_{ik}$ so that $\nu_{i}(x)=\det(v_{ik})$ . Now $\mu$ is a homo-
morphism, hence $/\ell\nu_{j}(a)=\det(\mu v_{ik})=\nu_{j/}u(a)$ . Since $\det(u_{i\kappa})$ was the deter-
minant of the endomorphism $a_{R}:x\rightarrow ax$, but $\mu(a)_{R};\mu(x)\rightarrow\mu(a)\mu(x)$ and as
$\mu((F\otimes R^{n+1}))=F^{n+1}$ it follows that the determinant of $\mu(a)_{R}$ is $\det(\mu v_{ik})$ as
required.

One readily verifies that the composite map $\sigma^{*}=\mu^{*}\rho^{*};$ $H(F/C)\rightarrow H(F/R)$

is simply the induced morphism of the map $\sigma(a_{1}\otimes_{C}\cdots\otimes_{C}a_{n})=a_{1}\otimes_{R}\cdots\otimes_{R}a_{n}$ .
We do obtain a similar result for the transfer, only if we restrict ourself

to cohomology groups and even then only under certain conditions:
Let $\psi,$ $\Phi:F\rightarrow K$ be a C-homomorphism of $F$ into a commutative C-algebra

$K$ preserving the unit: Let $\Phi=\varphi\otimes\cdots\otimes\varphi,$ $\Psi=\psi\otimes\cdots\otimes\psi$ the complex
homomorphism: $C^{*}(F/C)\rightarrow C^{*}(K/C)$ given by:

$\Phi(a_{1}\otimes\cdots\otimes a_{n})=\Phi(a_{1})\otimes\cdots\otimes\varphi(a_{n})$ and $\Psi(a_{1}\otimes\cdots\otimes a_{n})=\psi(a_{1})\otimes\cdots\otimes\psi(a_{n})$

induced by the injections $F\rightarrow K$ Then:
LEMMA 2.7. $\Phi$ and $\Psi$ are homotopic and thus $\Phi^{*}=\Psi^{*}:$ $H(F/C)\rightarrow H(K/C)$ .
PROOF. Define $u_{i}$ : $(F^{n})^{*}\rightarrow(K^{n-I})^{*},$ $i=1,2,$ $\cdots n$ , by setting $\iota t_{i}(a_{1}\otimes\cdots\otimes a_{n},)=$

$\varphi(a_{1})\otimes\cdots\otimes\varphi(a_{i-1})\otimes\varphi(a_{i})\psi(a_{i+1})\otimes\psi(a_{i+2})\otimes\cdots\otimes\psi(a_{n})$ .
Writing the morphism additively we define

$u=u^{n}=\sum_{\Rightarrow?1}^{7l-1}(-1)^{i}u_{i}$

and we add a homomorphism $u^{0}$ : $F^{*}\rightarrow C^{*}$ by setting $u^{*}(a)=1$ .
Considering the complex $C^{*}(F/C)$ and $C^{*}(K/C)$ we show that

$\Psi-\Phi=u\Delta+\Delta u$ .
Indeed, first one verifies that

$u_{i}\epsilon_{j}=\left\{\begin{array}{l}\sigma_{j} for i=j,j-1\\\epsilon_{j}u_{i-1} for i>j\end{array}\right.$

$\epsilon_{j-1}u_{i}$ for $i<j-1$

4) Noting that $F$ is C-free.



8 S. A. AM $I^{\prime}\Gamma$ SUR

where $\sigma_{i}(a_{1}\otimes\cdots\otimes a_{n})=\varphi(a_{1})\otimes\cdots\otimes\varphi(a_{i-1})\otimes\psi(a_{i})\otimes\cdots\otimes\psi(a_{n})$ . In particular
$\rho_{1}=\Psi$ and $\rho_{n+1}=\Phi$ .

Thus for $n\geqq 1$ :

$u\Delta=\sum_{i=1}^{n}\sum_{j=1}^{n+1}(-1)^{i+j}u_{i}\epsilon_{j}\sum_{i<J-1}+\sum_{\dot{x}>j}+\sum_{?=\iota}^{n}u_{i}\epsilon_{i}-\sum_{?=1}^{n}u_{j}\epsilon_{i+1}$

$=\sum_{i\triangleleft-1}(-1)^{i+j}\epsilon_{j-1}u_{i}+\sum_{i>j}(-1)^{i+j}\epsilon_{j}u_{i-1}+\sigma_{1}-\sigma_{n+1}=\Delta u+\Psi-\Phi$ .

For $n=0$ , we have only $ u\Delta=u_{1}(\epsilon_{1}-\epsilon_{2})=\sigma_{1}-\sigma_{2}=\Psi-\Phi$ . $q$ . $e$ . $d$ .
REMARK. This last result enables us to define $H^{n}(F/C)$ for infinite ex-

tensions of $C$ as $\rightarrow^{\lim}H^{n}(K/C)$ where $K$ ranges over all C-finitely generated

C-subalgebras $K$ of $F$, since for $K\subset K^{\prime}$ the map $H^{n}(K/C)\rightarrow H^{n}(K^{\prime}/C)$ does not
depend on the embedding of $K$ in $K^{\prime}$ .

Our extension for the transfer can be stated as follows:
THEOREM 2.8. Let $R\subseteqq F$, if there exists a homomorphism $\theta:F\rightarrow F\otimes R$ such

that $\theta(r)=1\otimes r$ for $r\in R$, then $H^{*}(F/R)\cong H^{*}(F\otimes R/R)$ .
REMARK. In this case, we shall refer to the composite map

$H^{*}(F/R)\rightarrow H^{*}(F\otimes R/R)\rightarrow H^{*}(F/C)$ as the transfer map.
PROOF. Consider the two morphisms $\mu\theta:F\rightarrow F$, and $\theta\mu;F\otimes R\rightarrow F\otimes R$.

The first is an R-homomorphism, and the latter is an $1\otimes R$-homomorphism.
Indeed, $(\mu\theta)(r)=u(1\otimes r)=r$ and $\theta\mu(1\otimes r)=\theta(r)=1\otimes r$, by the property of
$\theta$ . Now, both induce homomorphism $(\mu\theta)^{*}:$ $H^{*}(F/R)\rightarrow H^{*}(F/R)$ and $[\theta\mu]^{*}:$

$H^{*}(F\otimes R/R)\rightarrow H^{*}(F\otimes R/R)\rightarrow H^{*}(F\otimes R/R)$ . But by the previous theorem it
follows that $\mu^{*}\theta^{*}=(\mu\theta)^{*}=identity$ and similarly $\theta^{*}\mu^{*}=[\theta\mu]^{*}=identity$.
Consequently, $\mu^{*};$ $H^{*}(F\otimes R/R)\rightarrow H^{*}(F/R)$ is an isomorphism, as required.

An example where this situation exists will be given in the last section.
The justification of the “ splitting “ is given in the following result which

may be simply stated that the cocycles $H^{n}(F/C)$ are split by all $R\supseteqq F$. More
precisely.

THEOREM 2.9. If $F\subseteqq R$ then $H^{*}(F\otimes R/R)=0$ .
PROOF. Let $u:F^{n+1}\otimes R\rightarrow F^{n}\otimes R$ be given by: $u(a_{1}\otimes\cdots\otimes a_{n+1}\otimes r)=$

$a_{1}\otimes\cdots\otimes a_{n}\otimes a_{n+1}r$ which is well defined since $a_{n+1}r\in R$ .
One readily verifies that $u\epsilon_{i}=\epsilon_{i}u$ for $i=1,$ $\cdots$ , $n$ , but $u\epsilon_{n+1}=identity$ . Thus,

$u\Delta=\sum_{i=\perp}^{n+1}(-1)^{i}u\epsilon_{i}=\sum_{i=1}^{n}(-1)^{i}\epsilon_{i}u+(-1)^{n+1}u\epsilon_{n+1}=\Delta u+(-1)^{n+1}1$

from which one readily shows that the identity of $C^{*}(F\otimes R/R)$ is homotopic
with zero.

The ’‘ lift“ map is quite evident: Let $C\subseteqq F\subset K$, then the injection
$\lambda:F\rightarrow K$ yields a complex homomorphism $\lambda$ : $C^{*}(F/C)\rightarrow C^{*}(K/C)$ . Namely $\lambda$ :
$\langle F^{n})^{*}\rightarrow(K^{n})^{*}$ and one readily verifies that $\epsilon_{i}\lambda=\lambda\epsilon_{i}$ . Consequently $\lambda$ induces a
homomorphism $\lambda^{*}:$ $H^{*}(F/C)\rightarrow H^{*}(K/C)$ .
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DEFINITION 2.3. $\lambda^{*}$ will be called the lift morphism.
We note that Lemma 2.7 implies that $\lambda^{*}$ depends only on $F$ and $K$ and

not on the different embeddings of $F$ and $K$ Furthermore the lift map is
defined only for the cohomology groups.

We conclude with the result that:
THEOREM 2.10. If $F$ is C-free and of dimension $m$ then the groups $H(F/C)$

are torsion groups consisting of elements of orders dividing $m$ .
PROOF. Consider the isomorphism $\delta:(F^{n})^{*}\rightarrow(F^{n})^{*}:$ (written additively)

$\delta=\Delta\nu_{n}-\nu_{n+1}\Delta=\sum_{i=1}^{n}(-1)^{i}\epsilon_{i}\nu_{n}-\sum_{i=1}^{n+1}(-1)^{i}\nu_{n+1}\epsilon_{i}$ .

Now to compute $\nu_{n+1}\epsilon_{i}$ we choose a base $c_{1}$ , $\cdot$ .. , $c_{m}$ of $F$ over $C$ and denote
by $c_{\lambda^{(n+1)}}=1\otimes\cdots\otimes c_{\lambda}\in F^{n+1}$ . Thus, $\nu_{n+1}\epsilon_{i}(x)=\epsilon_{n+1}^{-1}$ Norm $(F^{n+1}/\epsilon_{n+1}F^{n} ; \epsilon_{i}x)=$

$\det(\alpha_{\lambda\rho}^{\prime})$ where $\epsilon_{i}(x)c_{\lambda}^{(n+1)}=\Sigma\rho(\epsilon_{n+1}\alpha_{\lambda\rho}^{\prime})c_{\beta}^{(n+1)}$ .
For $i\leqq n,$ $c_{\lambda^{n+1)}}^{(}=\epsilon_{i}c_{\lambda}^{(n)}$ , so to compute $\alpha_{\lambda\rho}^{\prime}$ we can start with $xc_{\lambda}^{(n)}=\Sigma(\epsilon_{n}\alpha_{\lambda\rho})c_{\rho}^{(n)}$

and applying $\epsilon_{i}$ on both sides and we get: $(\epsilon_{i}x)c_{\lambda}^{n+1}=\Sigma(\epsilon_{\dot{t}}\epsilon_{n})(\alpha_{\lambda\rho})c_{p^{n+1)}}^{(}=$

$\sum(\epsilon_{n+1}\epsilon_{i}\alpha_{\lambda\beta})c_{\rho}^{(n+1)}$ so that $\epsilon_{n+1}\alpha_{\lambda\rho}^{\prime}=\epsilon_{n+1}\epsilon_{i}\alpha_{\gamma\rho}$ and, therefore

$\nu_{n+1}\epsilon_{i}(x)=\det(\epsilon_{i}\alpha_{\lambda\rho})=\epsilon_{i}\det(\alpha_{\lambda\rho})=\epsilon_{i}\nu_{n}(x)$

which yields: $\Delta\nu_{n}-\nu_{n+1}\Delta=(-1)^{n+1}\nu_{n+1}\epsilon_{n+1}=(-1)^{n+1}m$ . For, $\nu_{n+1}\epsilon_{n+1}(x)=x^{m}$ from
which one readily proves that the elements of $H^{*}(F/C)$ satisfy $\overline{x}^{m}=1$ .

Next consider the isomorphism $d:(F^{n})^{*}\rightarrow(F^{n})^{*}$ (written additively):

$d=\mathfrak{R}\epsilon_{n+1}-\epsilon_{n}\mathfrak{R}=\sum_{\dot{x}=1}^{n+1}(-1)^{i}\nu_{i}\epsilon_{n+1}-\sum_{i=1}^{n}(-1)^{i}\epsilon_{n}\nu_{i}$ .

To compute $\epsilon_{n}\nu_{i}(x)$ for $x\in F^{n}$ we choose a C-base $\{c_{i}\}$ of $F$ and denote $c_{\lambda^{t)}}^{(}=$

$1\otimes\cdots\otimes c_{\lambda}\otimes 1\otimes\cdots\otimes 1$ where $c_{\lambda}$ stands in the i-th place. Then $\nu_{\dot{t}}(x)=\det(\alpha_{\lambda\rho})$

where $xc_{\lambda}^{(i)}=\Sigma\epsilon_{i}\alpha_{\lambda\rho}c_{\rho}^{(i)}$ .
Apply $\epsilon_{n}$ , and we get $(\epsilon_{n+1}x)(\epsilon_{n+1}c_{\lambda}^{(i)})=\Sigma(\epsilon_{n+1}\epsilon_{\dot{t}}\alpha_{\lambda\rho})(\epsilon_{n+1}\rho)$ . But for $i=1,2\cdots,n$

$\epsilon_{n+}{}_{1}C_{\lambda^{i)}}^{(}=c_{\lambda}^{(i)}$ and $\epsilon_{n+1}\epsilon_{i}=\epsilon_{i}\epsilon_{n}$ . So that $\nu_{i}(\epsilon_{n+1}x)=\det(\epsilon_{n}\alpha_{\lambda\rho})=\epsilon_{n}\det(\alpha_{\lambda\beta})=\epsilon_{n}\nu_{i}(x)$ .
Thus $\mathfrak{R}e_{n+1}=\epsilon_{n}$SJI $=(-1)^{n+1}\nu_{n+1}\epsilon_{n+1}=(-1)^{n+1}m$ since $\nu_{n+1}\epsilon_{n+1}(x)=x^{m}$ for $x\in F^{n}$,

and the proof is concluded.
Since $H^{2}(F/C)\cong B(F/C)$ where $B(F/C)$ is the Brauer group of $F$ over $C$,

we have:
$CoROLLARY$ . The index of the central separable algebras split by $F$ divide

the dimension of $F$ over $C$ .
We would like to point out that the present proof of the finiteness of the

index of simple algebras does not depend on the existence of separable
splitting fields as the classical proof does.
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3. Double complexes.

Let $F$ and $K$ be two C-algebras. We define a double complex $\{A^{m,n}=$

$(F^{m}\otimes K^{n})^{*}\}m,$ $n\geqq 0$ , and its two derivations: $\Delta_{\Gamma}:A^{m,n}\rightarrow A^{m+1,n}$ given by

$\Delta_{F}=\Delta_{F}^{n,m}=\sum_{i=1}^{m+1}(-1)^{i}(\epsilon_{i}\otimes 1)$ , and $\Delta_{K}$ : $A^{m,n}\rightarrow A^{m,n+1}$ given by $\Delta_{K}=\Delta_{K}^{n,m}=$

$\sum_{i=\perp}^{n+1}(-1)^{m+i}(1\otimes\epsilon_{i})$ with the $\epsilon_{?}\cdot=6_{?}^{?^{\iota}}$ acting on $K$ In the first case $\epsilon_{i}=\epsilon_{i}^{F}$

’ acts

really only the $F^{m}$ part of $(F^{m}\Theta K^{n})^{\sim}\backslash $ and in the second case only on the $K^{n}$

part.
Our first result is:
THEOREM 3.1. The groups $\{A^{m,n}\}$ constilute a double complex with respect

to derivation $\Delta=\Delta_{F}+\Delta_{K}$ .
In view of [3, p. 60] it suffices to show that $\Delta_{F}^{2}=\Delta_{K}^{2}=0$ and $\Delta_{F}\Delta_{K}+\Delta_{K}\Delta_{F}=0$ .

The first two have been proved, and for the last relation we have:

$\Delta_{F}\Delta_{K}=\sum_{i=1}^{m+}n1\sum_{J=l}(-1)^{7\gamma\iota+i+j}(\epsilon_{j}^{F}\otimes 1)(1\otimes^{\text{\v{c}}_{j}^{K}}’)=-\Delta_{K}\Delta_{F}$ ,

since one readily observes that $(\epsilon_{i}^{F}\otimes 1)(1\otimes\epsilon_{j}^{K})=(1\otimes\epsilon_{j}^{K})(\epsilon_{i}^{F}\otimes 1)$ . but $(1\mathfrak{G}\epsilon_{i}^{K})$ acts
now on $(F^{m+1}\otimes K^{n})^{\dot{\backslash }}$ .

The double complex obtained by $F$ and $K$ will be denoted by $C^{*}(F, K/C)$

and its cohomology group by $H^{n}(F, K/C)$ .
For the interpretation of the cohomology groups we show.
THEOREM 3.2. If $K$ and $F$ are C-free and let $H^{1}(F/C)=H^{1}(K/C)=$

$H^{1}(F\otimes K^{2}/K^{2})=H^{1}(F\otimes K/K)=0$ then $H^{0}(F, K/C)=H^{1}(F, K/C)=0$ and $H^{2}(F$,
$K/C)\cong H^{1}(C^{*}(F/C)\otimes K/C^{*}(F/C)),$ $(\cong H^{1}(C^{*}(F/C)\otimes K/C^{*}(K/C)))$ and the cohomology
group of the quotient complex is isomorphic wilh $B(F/C)\cap B(K/C),$ $i$ . $e$ . with the
Brauer group of all algebras split both by $F$ and $K$

PROOF. To compute the first cohomology groups of the complex $C^{*}(F$,

$K/C)$ we have to consider the sequence

$(C^{*}\rightarrow)F^{*}\otimes K^{\times}\rightarrow[(F^{2})^{*}\oplus(F\otimes K)^{*}\oplus(K^{2})^{*}]\rightarrow\sum_{m+n=3}(F^{m}\otimes K^{n})^{*_{\backslash }}\rightarrow$ .

Let $a_{m,n}$ denote an element in $(F^{m}\otimes K^{n})^{\backslash }$ so that $a_{r}=\sum a_{m,n}$ is a cocycle if
and only if the following relations are valid:
(3.1) $(\Delta_{K}a_{m,n})(\Delta_{F}a_{m-1,n+1})=1$ , $1\leqq m<r$

$\Delta_{F}a_{r0}=\Delta_{K}a_{0r}=1$ .
REMARK 3.3. It is interesting to note that for the elements $ a_{r0}\in$

$(F^{r}\otimes K^{0})^{*}=(F^{\gamma})^{*},$ $\Delta_{F}$ is actually the derivation in the complex $C^{*}(F/C)$ , while
$\Delta_{K}a_{r0}=a_{ro}\otimes 1$ which means that $\Delta_{K}$ is the restriction map defined in the
previous section.

Thus, $H^{0}(F, K/C)=0$ , for $\Delta a_{1}=1$ , with $a_{1}=a_{10}+a_{01}$ . In this case $a_{10}\in F^{*}$ ,
$a_{01}\in K^{*}$ , so $\Delta_{F}a_{10}=1,$ $\Delta_{K}a_{01}=1$ yields $a_{10}$ and $a_{01}\in C^{*}$ . Finally, one readily
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observes in view of the last remark that $(\Delta_{K}a_{10})(\Delta_{F}a_{01})=1$ yields $a_{10}=a_{01}=c\in C^{*}$

since $\Delta_{K}a_{10}=a_{10}^{-1}$ and $\Delta_{F}a_{01}=a_{01}$ .
To compute $H^{1}(F, K/C)$ , we start with $a_{2}=a_{20}+a_{11}+a_{02}$ which represents a

cocycle. By (3.1) it follows that $\Delta_{F}a_{20}=1i$ . $e$ . $a_{20}$ represents a cocycle in $H^{1}(F/C)$

but the latter $=0$ , so $a_{20}=\Delta_{F}a_{10}$ . Similarly, $a_{02}=\Delta_{K}a_{01}$ . By considering the
$a_{2}\Delta(a_{10}^{-1}+a_{01}^{-1})$ which is homologous to $a_{2}$ we may assume that $a_{20}=a_{02}=1$ .
Then (3.1) will yield

$1=(\Delta_{K}a_{20})(\Delta_{F}a_{11})=\Delta_{F}a_{11}$ ; $1=(\Delta_{F}a_{02})(\Delta_{K}a_{11})=\Delta_{K}a_{11}$ .

Now $\Delta_{F}=\mathscr{S}_{1}-\epsilon_{2}^{F}$ (additively written); hence $\epsilon_{1}^{F}(a_{11})=\epsilon_{2}^{F}(a_{11})$ . Since $\Delta_{K}=-\epsilon_{1}^{K}+\epsilon_{2}^{K}$

we get $\epsilon_{1}^{K}(a_{11})=\epsilon_{2}^{K}(a_{11})$ .
Now $K$ is C-free, so let $\{k_{i}\}$ be a C-base and let $a_{11}=\sum f_{i}\otimes k_{i}$ . Thus

$\epsilon_{1}^{F}(a_{11})=\sum(1\otimes f_{i})\otimes k_{i}=\sum(f_{i}\otimes 1)\otimes k_{i}=\epsilon_{2}^{\Gamma}(a_{11})$ . Consequently, $f_{i}\in C$ and, there-
fore, $a_{11}\in(1\otimes K)^{*}$ . From the second relation we now obtain that actually
$a_{11}\in(F\otimes 1)^{*}$ . Hence, $a_{11}=c\in C^{*}$ .

But in this case, one verifies that $a_{1}=1\oplus c\oplus 1=\Delta(c\oplus 1)$ . $i$ . $e$ . $a_{1}\sim 1$ . $q$ . $e$ . $d$ .
We turn now to $H^{2}(F;K/C)$ and choose a representative $a_{3}$ of a cocycle

and let:
(3.2) $a_{3}=a_{30}+a_{21}+a_{12}+a_{03}$ .

From the relation (3.1) in view of Remark 3.3 we get that $a_{80}$ is a represen-
tative of a cocycle in $H^{2}(F/C)$ and $a_{03}$ of $H^{2}(K/C)$ .

Now to compute the first cohomology group of the quotient complex
$[C^{*}(F/C)\otimes K]/C^{*}(F/C)$ we have to consider the sequence of quotient groups.

$...\rightarrow(F\otimes K)^{*}/F^{*}\rightarrow(F^{2}\otimes K)^{\mathfrak{k}}/(F^{2})^{*}\rightarrow^{\Delta_{F}}(F^{3}\otimes K)^{*}/(F^{o}\circ)^{\vee:_{\backslash }}\rightarrow\cdots$ .
First we obtain the map $\alpha:H^{2}(F, K/C)\rightarrow H^{1}[(C^{*}(F/C)\otimes K)/C^{*}(F/C)]$ as

follows:
To the $a_{3}$ given above in (3.2), $\alpha(a_{3})$ will be cocycle generated by $a_{21}$ ,

and it is trivial to show that $\alpha(a_{3}b_{3})=\alpha(a_{3})\alpha(b_{3})$ . $\alpha$ is well defined: since
$a_{21}\in(F^{2}\otimes K)^{*}$ and from (3.1) it follows that $(\Delta_{K}a_{30})(\Delta_{F}a_{21})=1$ . Noticing that
$\Delta_{K}a_{30}\in(F^{3})^{*}=(F^{3}\otimes 1)^{*}$ we get $\Delta_{F}a_{21}\in(F^{3})^{*}$ which means that $a_{21}$ represents
a cocycle in $H^{1}[C^{*}(F/C)\otimes K)/C^{*}(F/C)]$ .

Furthermore, let $b_{3}=a_{3}(\Delta a_{2}),$ $a_{2}=a_{20}+a_{11}+a_{02}$ ; then

$b_{3}=[a_{30}+a_{21}+a_{12}+a_{03}][\Delta_{F}a_{20}+(\Delta_{K}a_{20}\cdot\Delta_{F}a_{11})+ ]$

so that $b_{21}=a_{21}(\Delta_{F}a_{11})(\Delta_{K}a_{20})$ . Note that $\Delta_{K}a_{20}e(F^{2})^{\times}$ which means that $b_{21}$

and $a_{21}$ represent the same cocycle in the cohomology group of the quotient
complex.

To prove that it is an isomorphism we define an inverse map $\beta$ :
Let $x_{21}e(F^{2}\otimes K)^{*}$ represent a cocycle in cohomology group of the quotient

complex. This implies that $\Delta_{F}x_{21}=y_{30}$ for some $y_{30}\in(F\cdot)^{*}$ . Put $y_{30}^{-1}=x_{30}$
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and we get the first relation: $(*)(\Delta_{K}x_{30})(\Delta_{F}x_{21})=1$ since $\Delta_{K}|F^{3}$ is actually the
injection $(F^{3})^{*}\rightarrow(F^{3}\otimes 1)^{*}\subseteqq(F^{3}\otimes K)^{*}$ . Furthermore, applying $\Delta_{F}$ we get
$1=(\Delta_{F}\Delta_{K}x_{30})(\Delta_{F}^{2}x_{21})=(\Delta_{K}\Delta_{F})x_{30}^{-1}$ since $\Delta_{K}\Delta_{F}+\Delta_{F}\Delta_{K}=0$ . But as $\Delta_{K}$ is an injection
we get the second relation $\Delta_{F}x_{30}=1$ .

Next applying $\Delta_{K}$ on $(*)$ we obtain: $(\Delta_{K}^{2}x_{30})(\Delta_{K}\Delta_{F}x_{21})=1^{5)}$

Consequently, $\Delta_{F}(\Delta_{K}x_{21})=1$ . This means that $\Delta_{K}x_{21}\in(F^{2}\otimes K^{2})^{*}$ represent
a cocycle in $(F^{2}\otimes K^{2})^{*}$ . But $H^{1}(F\otimes K^{2}/K^{2})=0$ hence $\Delta_{K}x_{21}=\Delta_{F}y_{12}$ with
$y_{12}\in(F\otimes K^{2})^{*}$ or equivalently we obtain the third relation: $(***)(\Delta_{K}x_{21})(\Delta_{F}x_{12})=1$ ,

where $x_{12}=y_{12}^{-1}$ .
To determine $x_{03}$ , we apply $\Delta_{K}$ on the last relation. The fact that $\Delta_{K}^{2}=0$

implies that $\Delta_{K}\Delta_{F}x_{12}=\Delta_{F}(\Delta_{K}x_{12})=1$ . Consequently, $\Delta_{K}x_{12}\in(F\otimes K^{3})^{*}$ represents
a cocycle in $H^{0}(F\otimes K^{3}/K^{3})$, but the latter is zero so that $\Delta_{K}x_{12}\Delta_{F}x_{03}=1$ for
some $x_{03}\in(F^{3})^{*}$ . Applying $\Delta_{K}$ we get $\Delta_{K}\Delta_{F}x_{03}=\Delta_{F^{\prime}}\Delta_{K}x_{03}=1$ . Hence again
$\Delta_{F}(K^{3})^{*}$ is an injection so the last relation yields $\Delta_{K}x_{03}=1$ as required.

We now define $\beta(x_{21})$ to be the cocycle of the double complex represented
by $x_{3}=x_{30}+x_{21}+x_{12}+x_{03}$ which were chosen above.

$\beta$ is a well defined homomorphism: since one readily observes that
$\beta(x_{21}y_{21})=\beta(x_{21})\beta(y_{21})$ ; and it suffices, therefore, to show that if $x_{21}$ is a
coboundary then $\beta(x_{21})$ is the zero cocycle.

Indeed, $x_{21}$ a coboundary in the quotient complex is equivalent to $x_{21}=$

$z_{20}(\Delta_{F}z_{11})=\Delta_{K}z_{20}\Delta_{F}z_{11}$ . Let $x_{3}$ be any representative obtain from $x_{21}$ , then
another representative of the same cocycle will be:

$y_{3}=x_{3}\Delta(z_{20}^{-1}+z_{11}^{-1})=y_{30}+1+y_{12}+y_{30}$ .
And it remains to show that a cocycle represented by $y_{3}$ is the zero

cocycle. To this end we observe that the relation (3.1) yields first that
$(\Delta_{K}y_{30})(\Delta_{F}1)=1$ but since $\Delta_{K}|F^{2}\otimes K$ is an injection, it follows that $y_{30}=1$ .

Next $(\Delta_{K}1)(\Delta_{F}y_{12})=1$ , so $y_{12}$ represents a cocycle in $H^{0}(F\otimes K^{2}/K^{2})^{6)}$, but
the latter is zero so $y_{12}=\Delta_{F}z_{02}$ . Thus $y_{3}\Delta(1+1+z_{02}^{-1})=1+1+1+c_{03}$ is another
representative of the same cocycle. The rest of the proof follows by showing
as avove that $c_{03}=1$ which is a simple consequence of the fact that $\Delta_{F}c_{03}=1$

and $\Delta_{F}$ is an injection on $c_{03}$ .
The conclusion of the proof will be obtained by establishing the iso-

morphism: $H^{1}[C^{*}(F/C)\otimes K/C^{*}(F/C)]\cong B(F)\cap B(K)$ . To this end consider the
exact sequence:

$\rho$

$1\rightarrow C^{*}(F/C)\rightarrow C^{*}(F/C)\otimes K\rightarrow C^{*}(F/C)\otimes K/C^{*}(F/C)\rightarrow 1$

which yields the exact sequence

5) Sincc $\Delta_{K}^{2}=0$ .
6) Note that since $F$ is C-free, it follows that $H^{0}(F\otimes R/R)=0$ for arbitrary $R\supseteqq C$ .
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$ 0=H^{1}[C^{*}(F/C), \otimes K]\rightarrow H^{1}[C^{*}(F/C)\otimes K/C^{*}(F/C)]\rightarrow$

$\rho$

$\rightarrow H^{2}(F/C)\rightarrow H^{2}[C^{*}(F/C)\otimes K]$ .
Thus, our cohomology group is isomorphic with $Ker(\rho^{*})$ . From the remark

given prior to Theorem 2.3 it follows readily that $Ker(\rho^{*})$ is isomorphic with
the subgroup of $B(F/C)$ of all algebras which are split by $K$ ; and this com-
pletes the proof of the theorem. To prove the second isomorphism one has
to assume that $H^{1}(F\otimes K/F)=H^{1}(F^{2}\otimes K/F^{2})=0$ .

In one case we can determine the group $H(F;K/C)$ :
THEOREM 3.3. Let $F\supseteqq K$, then $H^{n}(F, K/C)\cong H^{n}(K/C),$ $n\geqq 0$ .
PROOF. First we observe that Theorem 2.9 yields $H^{n}(F^{\nu}\otimes K/F^{\nu})=0$ for

$\nu\geqq 1$ .
Let $a_{n}=a_{0n}+a_{1.n-1}+\cdots+a_{n0},$ $a_{ik}\in(F^{i}\otimes K^{k})^{*}$ , represent a cocycle in $H^{n}(F$,

$K/C)$ then it follows by (3.1) that $a_{0n}\in(K^{n})^{*}$ represents a cocycle $\overline{a}_{0n}\in H^{n}(K/C)$ .
We obtain the isomorphism required by mapping: $\overline{a}_{n}\rightarrow\overline{a}_{0n}$ .

Indeed, the map is onto. For, let $\overline{a}_{on}\in H^{n}(K/C)$ , which means $\Delta_{K}a_{0n}=1$ .
Define $a_{i,n-i}$ stepwise to obtain an element $a_{n}=\sum a_{i,n-i}$ for which $\Delta a_{n}=1$ .
This is carried out as follows: $\Delta_{K}^{0n}:K^{n}\rightarrow F\otimes K^{n}$ is an injection. Since
$1=\Delta_{F}\Delta_{K}a_{0n}$ and the latter $=\Delta_{K}\Delta_{F}a_{0n}$ it follows that $\Delta_{K}a_{0n}eF\otimes K^{n}$ is a cocycle
in $C^{*}(F\otimes K/C)$ . But as remarked above $H^{n}(F\otimes K/F)=H^{n}(C^{*}(K/C)\otimes F)$ conse-
quently, $\Delta_{F}a_{on}=\Delta_{K}a_{1,n-1}^{-1}$ for some $a_{1,n-1}\in F\otimes K^{n-1}$ . Now $1=\Delta_{F}^{2}a_{0n}=\Delta_{F}\Delta_{K}a_{1,n-1}^{-1}$

$=\Delta_{K}\Delta_{F}a_{1,n-1}$ , which implies that $\Delta_{F}a_{1,n-1}\in F^{2}\otimes K^{n-1}$ is a cocycle. Again
$H^{n-1}(F^{2}\otimes K/F^{2})=0$ yields $\Delta_{F}a_{1,n-1}=\Delta_{K}a_{2,n-2}^{-1}$ and clearly this procedure can be
continued to yield the required $a_{n}$ . Furthermore, the method of choosing the
$a_{i.n-i}$ proves the validity of the relations (3.1) and hence $\Delta a_{n}=1$ , as required.

Now suppose $a_{0n}=\Delta_{K}b_{0,n-1}$ i. e. $a_{0n}$ is a coboundary; we wish to show
the corresponding $a_{n}$ is also a coboundary. Indeed, $a_{n}\Delta(b_{0n+1}^{-1}+1+\cdots+1)=$

$1+a_{1,n-1}^{\prime}+\cdots+a_{n,0}^{\prime}=a_{n}^{\prime}$ is homologous to $a_{n}$ . Our proof will be obtained by
showing that if we can find an element $b_{n}=1+\cdots+1+b_{i,r\iota-i}+\cdots+b_{n0}$ homolo-
gous to $a_{n}$ then we can find $b_{n}^{\prime}=1+\cdots+1+b_{i+1,n-i-1}^{\prime}+\cdots+b_{n0}^{\prime}$ of the same class.
Indeed, (3.1) yields that $\Delta_{K}b_{i,n-i}=\Delta_{F}1=1$ so $b_{i,n-i}$ is a cocycle in $C^{*}(F\otimes K/F)$

but the latter is zero, hence $b_{i,n-i}=\Delta_{F}c_{i+1,n-i-1}$ and the element $ b_{n}^{\prime}=b_{n}\Delta(1+\cdots$

$+c_{i+1,n-i-1}^{-1}+1+\cdots+1)$ will satisfy our requirements. The rest follows now
easily.

Actually the preceding proof yields more:
COROLLARY 3.4. Let $F,$ $K$ be two free C-algebras with the property that

$H^{n+1-\nu}(F^{\nu}\otimes K/F^{\nu})=0$ for $n\geqq\nu\geqq 1$ and all $n$ then $H^{n}(F, K/C)\cong H^{n}(K/C)$ .
In our case where $K\subseteqq F$ we can actually write down the explicit map

which yields the isomorphism. First we obtain a more general result:
THEOREM 3.5. Let $\varphi$ : $R\rightarrow F,$ $\psi:R\rightarrow K$ be two C-homomorphisms then the
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map: $\xi;(R^{n})^{*}\rightarrow\sum(F^{\nu}\otimes K^{n-\nu})^{*}$ given by

$\xi(r_{1}\otimes\cdots\otimes r_{n})=\sum(\varphi^{\nu}\otimes\psi^{n-\nu})(r_{1}\otimes\cdots\otimes r_{n})$

$=\sum\varphi(r_{1})\otimes\cdots\otimes\varphi(r_{\nu})\otimes\psi(r_{\nu+1})\otimes\cdots\otimes\psi(r_{n})$

induces a homomorphism $\xi^{*};$ $H^{*}(R/C)\rightarrow H^{*}(F, K/C)$ .
PROOF. Clearly $\xi$ is also a ring homomorphism on each component $R^{n}$

and writing $\xi=\sum\varphi^{\nu}\otimes\psi^{n-\nu}$ one obtains the relations:

$\xi\epsilon_{i}=\sum(\varphi^{\nu}\otimes\theta^{n-\nu})e_{i}=\sum_{\dot{t}<\nu}\epsilon_{i}^{F}(\varphi^{\nu-1}\otimes\psi^{n-\nu})+$ $\sum_{\leq,\nu=i}e_{i^{K}}(\varphi^{\nu}\otimes\psi^{n-1-\nu})$ .

So that (additively written): for $\xi=\xi^{n}$

$\xi\Delta=\xi\sum_{i=1}^{n}(-1)^{i-1}\epsilon_{i}=\sum_{?=1}^{n}\sum_{i<\nu}(-1)^{i-1}\epsilon_{i}^{F}(\varphi^{\nu-1}\otimes\psi^{n-\nu})+\sum_{i=1}^{n}\sum_{i\geqq\nu}(-1)^{i-1}\epsilon_{i^{K}}(\varphi^{\nu}\otimes\psi^{n-1-\nu})$

$=\sum_{\lambda=0}^{n-1}(\sum_{\leqq\dot{t}\lambda}(-1)^{i-1}\epsilon_{i}^{F}+\sum_{i\leq\lambda}(-1)^{i-1}\epsilon_{i^{K}})(\varphi^{\lambda}\otimes\psi^{n-1-\lambda})=\Sigma(\Delta_{F}+\Delta_{K}(\varphi^{\lambda}\otimes\psi^{n-1-\lambda})=\Delta\xi$ .
That is $\xi$ is a complex homomorphism. $q$ . $e$ . $d$ .

REMARK 3.6. In the particular case $R=K,$ $K\subseteqq F$. Then $\varphi=identity$ and
$\psi:K\rightarrow F$ is the injection of Fin $K$, the above $\xi$ is given by $\xi(a_{1}\otimes\cdots\otimes a_{n})=$

$\sum a_{1}\otimes\cdots\otimes a_{n}$, but each term is considered in a different ring $F^{\nu}\otimes K^{n-\nu}$ . In
this case $\xi^{*}$ is an isomorphism as follows readily from the construction of
the isomorphism of the proof of Theorem 3.3. Indeed, let $\xi(a_{on})=a_{on}+\cdots$

$=a_{n},$ $a_{0n}\in(K^{n})^{*}$ and the isomorphism of Theorem 3.3 was achieved by map-
ping: $a_{n}\rightarrow a_{on}$ .

For further application we recall the simple result of (3.1):
THEOREM 3.6. There are always homomorphisms:

$\lambda_{F}^{*}:H^{n}(F, K/C)\rightarrow H^{n}(F/C)$ ; $\lambda_{K}^{*}:H^{n}(F, K/C)\rightarrow H^{n}(K, C)$

given by: $\lambda_{F}(a_{n})=a_{n0},$ $\lambda_{K}(a_{n})=a_{0n}$ where $a_{n}=a_{0n}+a_{1,n-1}+\cdots+a_{n0}$ .
We conclude with the simple observation, that since $\xi^{*}=\lambda_{K}^{*-1}$ .
COROLLARY 3.7. If $F\supseteqq K$ then the composite:

$\lambda_{F}^{*}\lambda_{K}^{*-1}$ : $H^{*}(K/C)\rightarrow H^{*}(F, K/C)\rightarrow H^{*}(F/C)$ is exactly the lift map of Definition 2.3.
We conclude with a general case where $H^{0}(F/C)$ and $H^{1}(F/C)$ are zero:
THEOREM 3.8. If $F$ is C-free then $H^{0}(F/C)=0$ , and if $C$ be a commutative

ring with a unit satisfying the minimum condition for ideals and $F$ be a finitely
generated free C-algebra with the generators $k_{1}=1,$ $k_{2},$ $\cdots$ , $k_{n}$ . Then $H^{1}(F/C)=0$.

PROOF. Let $a\in F^{2}$ be a cocycle, $i.e$ . $\Delta a=(\epsilon_{1}a)(\epsilon_{2}a)^{-1}\epsilon_{3}a=1$ . Thus $\epsilon_{2}a=$

$\epsilon_{1}a\epsilon_{3}a$ and if $a=\Sigma a_{i}\otimes k_{i}$ then:

$\Sigma(1\otimes a_{i}\otimes k_{i})(a\otimes 1)=\Sigma a_{i}\otimes 1\otimes k_{i}$

yields $(1\otimes a_{i})a=a_{i}\otimes 1$ . Furthermore, we note that for the homomorphism
$\mu:F^{2}\rightarrow F$ given by $\mu(x\otimes y)=xy$ , we get that $\Delta a=1$ yields $\mu a=\sum a_{i}k_{i}=1$ .
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Consider the set $\{u|ueF, (1\otimes u)a=u\otimes 1\}=K$ Then $K$ is a C-module
containing all $a_{i}$ and we have to show that $K$ contains an invertible element
$u$ which will give $a=(1\otimes u^{-1})$ as required. To this end we consider the
radical $N$ of $C$ and observe that $\overline{C}=C/N$ is semi simple.

Now if $u,$ $v\in K$ then $u\otimes v=(u\otimes 1)(1\otimes v)=(1\otimes u)a(v\otimes 1)a^{-1}=v\otimes u$ hence
if $u=\sum\alpha_{i}k_{i},$ $v=\sum\beta_{j}k_{j}$ we get that $\alpha v=\beta u$ for any $\alpha=\alpha_{i},$ $\beta=\beta_{i}$ ; and for
$u\neq 0$ and $v\neq 0$ some $\alpha,$

$\beta$ are non zero. The module $K/NK$ is a $\overline{C}$ module
and since it must be free and one dimensional with respect to any field of
$\overline{C}$, one readily verifies that there exists $x\in K$ such that all $a_{\dot{t}}=\lambda_{i}x+n_{i}$ for
$n_{i}\in NK$, and $\text{\‘{A}}_{i}\in C$ . Consequently, $1=\Sigma a_{i}k_{\dot{t}}=(\sum\lambda_{i}k_{\dot{t}})x+n$ for some $n\in NK$.
Clearly, $1-n$ is invertible hence $x$ has also an inverse. We also obtain that
$a=\sum a_{i}\otimes k_{i}=x\otimes y(mod NK)$ with $y=\sum\lambda_{i}k_{i}$ and note that $y$ has also an
inverse. Multiply by $1\otimes y^{-1}$ ; we get

$x\otimes 1\equiv a(1\otimes y)^{-1}\equiv\Sigma a_{i}\otimes k_{i}y^{-1}\equiv\Sigma\mu_{ij}a_{i}\otimes k_{j}(mod NK)$ ,

from which we deduce that $x\equiv\sum\mu_{i}a_{i}mod (NK)$ . Set $n=\sum\mu_{i}a_{i}\in K$ and
$u=x+n=x(1+nx^{-1})$ and $(1+nx^{-1})^{-1}x^{-1}$ exists since $n\in NK$. $q$ . $e$ . $d$ .

REMARK. In the proof we actually used only the fact that if $N(C),$ $N(F)$

are the Jacobson radicals of $C$ and $F$ respectively and 1) every module over
$C/N(C)$ is free or $C/N(C)$ is a direct sum of fields; and 2) $FN(C)\subseteqq N(F)$ .

4. The fundamental exact sequence.

The aim of the present section is to obtain some exact sequences which
in the classical case are known as the fundamental exact sequences. Our first
result in this direction is

THEOREM 4.1. Let $F,$ $K$ be two C-free algebras and such that $H^{i}(F^{j}\otimes K/F^{j})$

$=H^{i}(F\otimes K^{j})=0$ for $i+j\leqq 3,$ $i=0,1$ and $H^{2}(F\otimes K/K)=0$ then there exists an
exact sequence:

(4.1)
$0\rightarrow H^{2}(K/C)\rightarrow H^{2}(F/C)\lambda^{*}\rightarrow^{\rho^{*}}H^{2}(F\otimes K/K)$ .

In particular, the condition holds for $K\subseteqq F$ ; and then $\lambda$ is the “ lift” homo-
morphism and $\rho$ is the “ restriction ”.

PROOF. It follows from the requirement of the theorem and from the
fact that $H^{1}(F^{\nu}\otimes K/F^{\nu})=0$ , in view of Corollary 3.4, that the procedure of
the proof of Theorem 3.3 can be applied to our case. Namely, for $a_{03}\in(K^{3})^{*}$

we can find $\sigma(a_{03})=a_{3}=a_{30}+a_{2i}+a_{12}+a_{03}\in C^{2}(F, K/C)$ so that $\sigma$ induces a
homomorphism $\sigma^{*}:$ $H^{2}(F/C)\rightarrow H^{2}(F, K/C)$ .

The map $\lambda^{*}$ of the theorem is the composite $\lambda^{*}=\lambda_{F}^{*}$ , where $\lambda_{F}(a_{3})=a_{30}$

is given in Theorem 3.6. The homomorphism $\rho^{*}$ is the restriction i. e.
$\rho(a_{\mathfrak{Z}0})=a_{30}\otimes 1\in F^{3}\otimes K$ and clearly $\sigma=\Delta_{K}$ of the double complex.

From the proof of Theorem 3.3 it follows immediately that $\sigma^{*}$ is an injec-
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tion (in fact an isomorphism !), so is also $\lambda_{F}^{*}$ . Indeed, let $\lambda_{F}a_{3}=a_{30}=\Delta_{F}b_{20}$ for
$b_{20}eF^{2}$ , then $b_{3}=a_{3}\Delta(1+1+b_{20}^{-1})=b_{03}+b_{12}+b_{21}+1$ represents the same element
of $H^{2}(F, K/C)$ . Since $\Delta b_{a}=1$ , it follows from the relation (3.1) that $\Delta_{F}b_{21}\Delta_{K}1=1$ .
$i.e$ . $b_{12}$ is a cocycle in $H^{1}(F\otimes K/K)$ . The latter is zero, hence $b_{21}=\Delta_{F}c_{11}$ .
Consider $c_{3}=b_{3}\Delta(1+c_{11}^{-1}+1)=c_{03}+c_{12}+1+1$ , and similarly one obtains that the
original $a_{3}$ is a coboundary. This proves that $\lambda_{K}^{*}$ is an injection and the ex-
actness of the first part of (4.1) is shown.

To prove the second part of (4.1), let $a_{30}\in(F^{3})^{*}$ be such that $\rho^{*}(a_{30})=1$ ,
$i$ . $e$ . $\rho(a_{30})=\Delta_{K}a_{30}=\Delta_{F}a_{21}^{-17)}$ for some $a_{21}\in F^{2}\otimes K$ We follow now a procedure
similar to the proof of Theorem 3.3 to show that there exists $a_{3}$ such that
$a_{3}=a_{30}+a_{21}+a_{12}+a_{03}$ is a cocycle in $C^{*}(F, K/C)$ which shows that $a_{30}=\lambda(a_{3})$

as required. Indeed, from the way $a_{21}$ was chosen we get that $1=\Delta_{K}^{2}a_{30}=$

$\Delta_{K}\Delta_{F}a_{21}=\Delta_{F}\Delta_{K}a_{21}$ . Hence $\Delta_{K}a_{21}$ is a cocycle in $H^{1}(F\otimes K/K)$ and again the
latter is zero. Hence, $\Delta_{K}\Delta_{21}=\Delta_{F}a_{12}^{-1}$ , etc....

If $K\subseteqq F$, then Corollary 3.7 means that $\lambda^{*}$ is actually the lift map.
To obtain the complete fundamental sequence including the transgression

we note that the two homomorphisms $\epsilon_{1}=\epsilon_{1}^{K}$ : $F^{n}\otimes K\rightarrow F^{n}\otimes K^{2}$ given by
$\epsilon_{1}(a\otimes k)=a\otimes 1\otimes k$ and $\epsilon_{2}=\epsilon_{2}^{K}$ ; $F^{n}\otimes K\rightarrow F^{n}\otimes K^{2}$ defined by $\epsilon_{2}(a\otimes k)=a\otimes k\otimes 1$

are in fact complex homomorphism $C^{*}(F/C)\otimes K\rightarrow C^{*}(F/C)\otimes K^{2}$ . Hence, they
induce $\epsilon_{i}^{*}:$ $H^{n}(F\otimes K/K)\rightarrow H^{n}(F\otimes K^{2}/K^{2})$ and we shall denote $H^{n}(F\otimes K/K)^{0}=$

{ $\overline{c}|\overline{c}\in H^{n}(F\otimes K/K)$ for which $\epsilon_{i}^{*}(\overline{c})=\epsilon_{2}^{*}(\overline{c})$ }.
Thus the complete fundamental exact sequence is:
THEOREM 4.2. Let $F,$ $K$ be two free C-modules such that $H^{2}(F\otimes K/F)=0$

and $0=H^{1}(F^{i}\otimes K/F^{i});i=3,2,1$ (which is always valid if $K\subseteqq F$) then lhere
exisls an exact sequence:

$0\rightarrow H^{2}(K/C)\rightarrow^{\lambda^{*}}H^{2}(F/C)\rightarrow H^{2}(F\otimes K/K)^{0}\rho^{*}\rightarrow^{t^{*}}H^{3}(K/C)\rightarrow^{\lambda^{*}}H^{3}(F/C)$

where $\lambda^{*}$ is the lift map and $\rho^{*}$ is the restriction.
PROOF. The proof will be carried in steps:

a) Consider first the set of all elements of $H^{3}(F, K/C)$ which have a represen-
tation of the form $a_{4}=a_{04}+a_{18}+a_{22}+a_{81}+1$ .

Now $\Delta a_{4}=1$ , yields by (3.1) that (1) $\Delta_{F}a_{31}=1$ and (2) $\Delta_{K}a_{31}=\Delta_{F}a_{22}^{-1}$ . The
first relation is equivalent to the fact that $a_{31}$ is a cocycle in $H^{2}(F\otimes K/K)$ .
Noting that this $\Delta_{K}=\epsilon_{1}^{K}(\epsilon_{2}^{K})^{-1}$ , it follows that (2) is equivalent to the fact that
under the induced homomorphism $\Delta_{K}^{*}:$ $H^{2}(F\otimes K/K)\rightarrow H^{2}(F\otimes K^{2}/K^{2})$ the class
of $a_{31}$ is mapped onto the zero.
$a^{\prime})$ Conversely, let $a_{o}o_{1}e(F^{3}\otimes K)^{*}$ an element with the properties that its
class $\overline{a}_{31}eH^{2}(F\otimes K/K)$ and $\epsilon_{1}^{*}\overline{a}_{31}=\epsilon_{2}^{*}\overline{a}_{81}$ then clearly the first condition implies

7) Note that $\rho$ is exactly the same map as $\Delta_{K}$ .
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(1) and the second condition yields (2) for some $a_{22}\in(F^{2}\otimes K^{2})^{*}$ . $T^{henwe}$ can
continue as in the proof of the previous theorems: from (2) it follows that
$1=\Delta_{K}^{2}a_{31}=\Delta_{K}\Delta_{F}a_{22}^{-1}=\Delta_{F}(\Delta_{K}a_{22})$ . Hence $\Delta_{K}a_{22}$ is a cocycle in $H^{1}(C^{*}(F\otimes K^{3}/K^{3}))$

which is zero. Thus $\Delta_{K}a_{22}=\Delta_{F}a_{13}^{-1}$ for some $a_{13}\in F\otimes K^{3}$ and so on...
b) Next we observe that if $a_{81}$ represents the zero cocycle in $H^{2}(F\otimes K/K)$

then the corresponding $a_{4}$ is homologous to zero in $H^{3}(F, K/C)$ . Indeed, if
$a_{31}=\Delta_{F}a_{21}$ then $a_{4}$ is homologous to $a_{4}\Delta(1+1+a_{21}^{-1}+1)=b_{04}+b_{13}+b_{22}+1+1=b_{4}$ .
Since $\Delta b_{4}=1$ , conditions (3.1) imply that $\Delta_{F}b_{22}=0$ which means that $b_{22}$ is a
cocycle in $H^{1}(F\otimes K^{2}/K^{2})=0$ . So $b_{22}=\Delta_{F}c_{12}^{-1}$ and we continue as in the proof
of Theorem 3.3.
c) Let $a_{4}=\Delta(a_{03}+a_{12}+a_{21}+a_{30})=a_{04}+\cdots+a_{31}+1$ , then it follows by definition
of $\Delta$ that $\Delta_{F}a_{30}=1$ and $a_{31}=(\Delta_{F}a_{21})\cdot(\Delta_{K}a_{30})$ which means that $\overline{a}_{30}\in H^{2}(F/C)$

and that in $H^{2}(F\otimes K/K),$ $a_{31}$ is homologous to $\Delta_{K}a_{30}$ ; but in the present case
$\Delta_{K}=\rho_{K}$ : $F^{3}\rightarrow F^{3}\otimes K$ is the restriction $\rho$ of Definition 2.1. Conversely, for a
given $a_{31}$ which is homologous in $H^{2}(F\otimes K/K)$ with an image $\rho(a_{30})$ of a cocycle
of $H^{2}(F/C)$ the corresponding $a_{4}$ is coboundary $\Delta a_{3}$ in the double complex
$C(F, K/C)$ . The proof is similar to the proof of (b), starting by $b_{4}=a_{4}\Delta(1+$

$1+a_{21}^{-1}+a_{30}^{-1})$ where $H^{0}(F\otimes K^{3}/K^{3})=0,$ $a_{31}=(\Delta_{F}a_{21})(\Delta_{K}a_{30})$ , which exists by as-
sumption on $a_{31}$ . Here again $H^{0}(F\otimes K^{4}/K^{4})=0,$ $b_{4}=b_{04}+b_{13}+b_{22}+1+1$ and one
continues as in (b).

d) Consider the map $\sigma(a_{31})=a_{4}=a_{04}+a_{13}+a_{22}+a_{31}+1$ where $a_{4}$ is chosen as
in $(a^{\prime})$ . Though a is not unique, it induces by (b) a homomorphism $\sigma^{*};$ $ H^{2}(F\otimes$

$K/K)^{0}\rightarrow H^{2}(F, K/C)$ and the image $\sigma^{*}[H^{2}(F\otimes K/K)^{0}]$ is exactly the set of all
cocycles of the form $a_{4}=a_{40}+\cdots+a_{31}+1$ . But this group is clearly the kernel
of $\lambda_{F}^{*}:H^{3}(F, K/C)\rightarrow H^{3}(F/C)$ . Indeed $\lambda_{F}(x_{4})=\lambda(x_{04}+\cdots+x_{31}+x_{40})=x_{40}$ and if
$\overline{x}_{40}=1$ in $H^{3}(F/C)$ it follows that $x_{40}=\Delta_{F}y_{30}$ and consequently $ x_{4}\Delta(1+\cdots$

$+1+y_{30}^{-1})=x_{0^{\prime}4}+\cdots+x_{3^{\prime}1}+1$ is of the preceding form.
Furthermore, Kernel $(\sigma^{*})$ is by (c) $\rho^{*}[H^{2}(F/C)]$ . Hence we obtain the

exactness of the sequence:

$H^{2}(F/C)\rightarrow^{\rho^{*}}H^{2}(F\otimes K/K)^{0}\sigma^{*}$

$\lambda_{K}^{*}$

$\rightarrow H^{3}(F, K/C)\rightarrow H^{3}(F/C)$ .
To conclude the proof, we define $t^{*}=\lambda_{K}^{*}\sigma^{*}$ where $\lambda^{*}:$ $H(F, K/C)\rightarrow H(K/C)$

given by $\lambda_{K}(\sum a_{i,n-i})=a_{0n}$ which is shown to be an isomorphism in the proof
of Theorem 3.3. Then $\lambda_{F}^{*}\lambda_{K}^{*-1}=\lambda^{*}$ by Corollary 3.7. This together with
Theorem 4.2 complete the proof.

5. The normal separable case.

It is our purpose in the preceding section to show that the notions intro-
duced above coincide with the respective classical notions. Let $F$ be a normal
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separable extension of an infinite field $C$, and let $\mathcal{G}$ be its group of automor-
phisms.

Let $\Phi_{n}=\{(\varphi_{1}, \cdots, \varphi_{n}), \varphi_{i}\in \mathcal{G}\}$ be the set of n-tuples of elements of $L$ .
For $\alpha\in \mathcal{G},$ $\varphi\in\Phi_{n}$ we put $\alpha\varphi=(\alpha\varphi_{1}, \cdots, \alpha\varphi_{n})$ .

Let $C_{n}=C_{n}(\mathcal{G})$ be the free abelian group generated by the n-tuples of
$\Phi_{n}$ , then clearly $C_{n}(\mathcal{G})$ is also a free $\mathcal{G}$-module generated by the elements
$\{(\varphi_{1}, \cdots , \varphi_{i-1},1, \varphi_{i}, \cdots , \varphi_{n-1})\}$ for any fixed $i$ .

Put $\Phi_{0}=\{(\cdot)\}$ , and $C_{0}=Z$ and set $\alpha(\cdot)=(\cdot)$ . We shall use also the nota-
tions:
(5.1) $\sigma_{i}(\varphi_{1}, \cdots, \varphi_{n})=(\varphi_{1}, \cdots,\hat{\varphi}_{i}, \cdots, \varphi_{n})$ ; $\sigma_{1}(\varphi)=(\cdot)$

$\tau_{i}(\varphi_{1}, \cdots, \varphi_{n})=(\varphi_{1}, \cdots, \varphi_{i-1},1, \varphi_{i}, \cdots, \varphi_{n})$ .
The set of all groups $C_{n}(\mathcal{G})$ from a complex $C(\mathcal{G})$ with respect to the

derivation,

(5.2) $d=d_{n}=\sum_{i=1}^{n}(-1)^{i-1}\sigma_{i}$ .

Consider $F^{*}$ as a right $\mathcal{G}$-module by setting $a\alpha^{-1}=\alpha(a)$ , then the homology
groups of the complex $F^{*}\otimes {}_{\mathcal{G}}C(\mathcal{G})$ with respect to the derivation $1\otimes d$.

Our aim is first to prove:
THEOREM 5.1. $H_{n}(\mathcal{G};F^{*})\cong H_{n}(F/C)$ .
We start with some preliminary result in order to obtain an isomorphism

between the complex $F^{*}\otimes {}_{\mathcal{G}}C(\mathcal{G})$ and $\mathcal{G}_{*}(F/C)$ .
Following [5] we consider the pairing of $F^{n}$ with $\Phi_{n}$ into $F$. That is,

consider the function $(a, \varphi)$ for $a\in F^{n},$ $\varphi\in\Phi_{n}$ which is linear in the first
variable and given by:

(5.3) $(a, \varphi)=(a_{1}\otimes\cdots\otimes a_{n}, (\varphi_{1}, \cdots, \varphi_{n}))=\varphi_{1}(a_{1})\cdot\varphi_{2}(a_{2})\cdots\varphi_{n}(a_{n})$ .
We quote some properties of $(a, \varphi)$ :

$(a+b, \varphi)=(a, \varphi)+(b, \varphi)$ ; (ab, $\varphi$ ) $=(a, \varphi)(b, \varphi)$

$(a, \alpha\varphi)=\alpha(a, \varphi)$ ; $(\psi a, \varphi)=(a, \varphi\psi)$

(5.4)
$(\epsilon_{i_{-}}a^{l}\varphi)=(a, \sigma_{i}\varphi)$

$(\nu_{i}a, \varphi)=\prod_{\alpha\in \mathcal{G}}(a, \tau_{i}\varphi\alpha^{(i)})=\prod_{a\in \mathcal{G}}[a, (\varphi_{1}, \cdots, \varphi_{i-1}, \alpha, \varphi_{i}, \cdots, \varphi_{n})]$

where $\varphi\psi=(\varphi_{1}, \cdots, \varphi_{n})(\psi_{1}, \cdots, \psi_{n})=(\varphi_{1}\psi_{1}, \cdots, \varphi_{n}\psi_{n})$ and $\alpha^{(i)}=(1, \cdots, 1, \alpha, 1, \cdots, 1)$

with $\alpha$ standing at the i-th place.
With the exception of the last property, all proofs are straightforward.

For the last property we need:
LEMMA 5.2. Let $R$ be an arbitrary commutative C-algebra and $K\subseteqq F$.

Consider $K\otimes R$ as a subalgebra of $F\otimes R$ then Norm $(K\otimes R/R;x)=\Pi(\varphi\otimes 1)(x)$

where $\varphi$ ranges over the isomorphisms of $K$ into the normal field $F$.
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PROOF. Let $u_{1},$
$\cdots$ , $u_{m}$ be a C-base of $F$ and let $x=\Sigma\xi_{i}u_{i},$ $\xi_{i}\in R$ . The

characteristic polynomial $Pc$( $\lambda$ ; x) of $x$ is by definition $\det|\lambda 1-g_{i\lambda}(\xi)|$ where
$xu=\Sigma g_{\dot{t}k}(\xi)u_{k}$ and its last term is $(-1)^{n}$ Norm $(F\otimes R/R;x)$ .

On the other hand, consider the polynomial

$H(x;\lambda)=\prod_{\psi}[\lambda-(\varphi\otimes 1)(x)]=\Pi[(\lambda-\Sigma\xi_{j}\varphi(u_{j})]=\Pi(\lambda-l_{\varphi}(\xi))$

where $l_{\varphi}(\xi)$ is a linear polynomial in $\xi$ . The lemma is now an immediate
consequence of the fact that $H(x;\lambda)\equiv Pc(x;\lambda)$ .

Indeed, if all $\xi_{i}\in C$ the result is well known ($e$ . $g$ . $[2$ , p. 137]). Now $C$

was assumed to be infinite and both $H(x;\lambda)$ and $Pc(x;\lambda)$ are polynomials in $\xi$ ;
hence, they are identical.

The last property of (5.4) follows now easily since:
First, we have for $a=\epsilon_{i}^{-1}b$ that $(\epsilon_{i}\epsilon_{i}^{-1}b, \varphi)=(b, \varphi)=(\epsilon_{i}^{-1}b, \sigma_{i}\varphi)$ . Hence,

$(\nu_{i}a, \varphi)=$ ( $\epsilon_{i}^{-1}$ Norm $(F^{n}/\epsilon_{i}F^{n-1}$ ; $a),$
$\varphi$ ) $=(\epsilon_{i}^{-1}\prod_{a}(\alpha^{(i)}a), \sigma_{i}\tau_{i}\varphi)$

$=\prod_{\alpha}(\alpha^{(i)}a, \tau_{\dot{t}}\varphi)=\prod_{\alpha}(a, \tau_{i}\varphi\alpha^{(\dot{t})})$ .

To the function of (5.4) we add the definition $(a$ , (.)$)=a$ for $a\in C=F^{0}$ .
The following result of [5] (Lemma 2.2) will be used here extensively:
LEMMA 5.3. For $x\in F_{n}$ , let $p_{x}\in Hom^{\mathcal{G}}(\Phi_{n}, L)$ defined as $p_{x}(\varphi)=(x, \varphi)$ . Then

the mapping $\tau;x\rightarrow p_{x}$ determines an isomorphism: $(F^{n})^{*}\cong Hom^{\mathcal{G}}(\Phi_{n}, F^{*})$ .
We turn now to the proof of Theorem 5.1 :
Consider the mapping $f;C_{*}(F/C)\rightarrow F^{*}\otimes {}_{\mathcal{G}}C(G)$ defined by:

\langle 5.5) $ f(x)=\Sigma(x, \tau_{1}\varphi)\otimes\tau_{1}\varphi$ for $x\in F^{n}$

and where $\varphi$ ranges over all $\Phi_{n-1}$ .
Note first that in the definition of $f$ we could have chosen any $2\leqq i\leqq n$

instead of 1.
Indeed, setting $\psi=$ $(\varphi_{1}^{-1}\varphi_{2}, \cdots , \varphi_{1}^{-1}\varphi_{i-1}, \varphi_{1}^{-1}, \varphi_{1}^{-1}\varphi_{i}, \cdots)$ where $\varphi=(\varphi_{1}, \cdots , \varphi_{n-1})$,

we get $\tau_{i}\varphi=\varphi_{1}(\tau_{1}\psi)$ . Now since $(x, \alpha\varphi)=\alpha(x, \varphi)=(x, \varphi)\alpha^{-1}$ by definition, it
follows that:

$(x, \tau_{i}\varphi)\otimes\tau_{i}\varphi=(x, \tau_{1}\psi)\varphi_{1}^{-1}\otimes\varphi_{1}\tau_{1}\psi=(x, \tau_{1}\psi)\otimes\tau_{1}\psi$ .
Clearly $\psi$ will also range over all $\Phi_{n-1}$ if $\varphi$ does so.

It follows now by (5.4) that
$ f(xy)=\Sigma(xy, \tau_{1}\rho)\otimes\tau_{1}\varphi=\Sigma(x, \tau_{1}\rho)(y, \tau_{1}\varphi)\otimes\tau_{1}\varphi$

$=\Sigma(x, \tau_{1}\varphi)\otimes\tau_{1}\varphi+\Sigma(y^{r}\tau_{1}\varphi)\otimes\tau_{1}\varphi^{8)}$ .
It is evident that the elements of $F^{*}\otimes C_{n}(\mathcal{G})$ can be written uniquely in

the form $\xi=\Sigma a_{\varphi}\otimes\tau_{i}\varphi$ with $\varphi$ ranging over $\Phi_{n-1}$ . The functions $\mathcal{G}$ of

8) Note that the elements of $F^{*}$ are written multiplicatively, whereas the groups
$F^{*}\otimes C_{n}(\mathcal{G})$ are written additively.
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$Hom^{\mathcal{G}}(\Phi_{n}, F^{*})$ are uniquely determined by their values $\mathcal{G}(\tau_{i}\varphi)$ since every
$\varphi\in\Phi_{n}$ can be expressed uniquely in the form $\varphi=\alpha\tau_{i}\psi,$ $\psi\in\Phi_{n-1}$ so that
$\mathcal{G}(\varphi)=\alpha \mathcal{G}(\tau_{i}\psi)$ . It follows, therefore, by Lemma 5.3 that the mapping $f$ is an
isomorphism. It remains now to show that $f$ is also a complex isomorphism.

The last property of (5.4) yields : for $x\in F^{n},$ $\nu_{i}x\in F^{n-1}$ hence, for $i>1$ :

$ f(\nu_{i}x)=\sum_{\varphi_{\subset\Phi_{n-2}}^{-}}(\nu_{i}x, \tau_{1}\varphi)\otimes\tau_{1}\varphi=\Sigma\prod_{\alpha}(x, \tau_{i}(\tau_{1}\varphi)\alpha^{(i)})\otimes\tau_{1}\varphi$

$=\sum_{\varphi\in\phi_{n-1}}(x, \tau_{1}\psi)\otimes\sigma_{i}(\tau_{1}\psi)$ .

For, $\tau_{1}\psi=(\tau_{i}\tau_{1}\varphi)\alpha^{(i)}=(1, \varphi_{1}, \cdot.. \varphi_{i-2}\alpha, \varphi_{i-1}, \cdot.. , \varphi_{n-2})$ and $\psi$ will range over all
$\Phi_{n-1}$ when $\alpha$ and $\varphi$ range over all $\mathcal{G}$ and $\Phi_{n-2}$ respectively. The same result
holds also for $i=1$ . Indeed,

$(x, (\tau_{1}\tau_{1}\varphi)\alpha^{(1)})\otimes\tau_{1}\varphi=(x, (\alpha, 1, \varphi_{1}, \cdots))\otimes\tau_{1}\varphi=(x,$ $\alpha(1, \alpha^{-1}, \alpha^{-1}\varphi_{1}, \cdots)\otimes\tau_{1}\varphi$

$=\alpha(x, \tau_{1}\psi)\otimes\tau_{1}\varphi=(x, \tau_{1}\psi)\alpha^{-1}\otimes\tau_{1}\varphi$

$=(x, \tau_{1}\psi)\otimes\alpha^{-1}\tau_{1}\varphi=(x, \tau_{1}\psi)\otimes\psi=(x, \tau_{1}\psi)\otimes\sigma_{1}\tau_{1}\psi$ ,

and here $\psi=\alpha^{-1}\tau_{1}\varphi=$ $(\alpha^{-1}, \alpha^{-1}\varphi_{1}, \cdot.. , \alpha^{-1}\varphi_{n-2})$ , and $\sigma_{1}\cdot\tau_{1}$ is the identity. Con-
sequently,

$f\mathfrak{R}(x)=f(\Pi\nu_{\dot{t}}(x)^{(-1)i-1})=\Sigma(-1)^{i-1}f(\nu_{i}x)$

$=\Sigma(x, \tau_{1}\psi)\otimes\psi+\Sigma(-1)^{i-1}\Sigma(x, \tau_{1}\psi)\otimes\sigma_{i}\tau_{1}\psi$

$=\Sigma(-1)^{i-1}(1\otimes\sigma_{i})(\Sigma(x, \tau_{1}\psi)\otimes\tau_{1}\psi)=(1\otimes d)f(x)$

which concludes the proof of the theorem.
Next we show that the restriction and transfer defined in Section 2

coincide with the classical definitions for the normal case. But we shall carry
it through only for the cohomology groups. To this end we need the following
generalization of [5, Lemma 2.2]:

Let $F_{1},$ $\cdots$ , $F_{n}$ be finite algebraic extensions of $C$ and let $F$ be a normal
extension of $C$ containing all $F_{i}$ . Denote by $\mathcal{G}(F_{i}/C)$ the set of all isomorphisms
of $F_{i}$ into $F$. Thus $\mathcal{G}(F/C)$ will be the Galois group of $F$.

Let $\Phi=\{(\varphi_{1}, \cdots, \varphi_{n});\varphi_{i}\in \mathcal{G}(F_{i})\}$ and define $\alpha(\varphi_{1}, \cdots , \varphi_{n})=(\alpha\varphi_{1}, \cdots , \alpha\varphi_{n})$ .
Again $(a, \varphi)$ will denote the pairing of $F_{1}\otimes\cdots\otimes F_{n}$ with $\Phi$ into $F$ which is
linear in the first variable and defined as in (5.3). Namely,

$(a_{1}\otimes\cdots\otimes a_{n}, (\varphi_{1}, \cdots, \varphi_{n}))=\varphi_{1}(a_{1})\varphi_{2}(a_{2})\cdots\varphi_{n}(a_{n})$ .
The same proof of [5, Lemma 2.2] will yield the following generalization:
LEMMA 5.6. For $x\in F_{1}\otimes\cdots\otimes F_{n}$ , let $p_{x}\in Hom^{\mathcal{G}}(\Phi, F)$ be defined as $p_{x}(\varphi)$

$=(x, \varphi)$ . If $F_{2},$ $\cdots$ , $F_{n}$ are separable extensions of $C$ then the mapping: $x\rightarrow p_{x}$

determines an isomorphism $(F_{1}\otimes\cdots\otimes F_{n})^{*}\cong Hom^{\mathcal{G}}(\Phi, F^{*})$ .
The proof will not be reproduced here as it is the same as that of [5,

Lemma 2.2], noticing that under the assumptions $F_{1}\otimes\cdots\otimes F_{n}$ is still semi
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simple.
Let $K$ be a fixed subfield of $F$ with a corresponding subgroup $\ovalbox{\tt\small REJECT}$ of

$9=\mathcal{L}^{c}(F/C)$ . The complex $C(\mathcal{G})$ given in the beginning of this section can be
considered also as a free St-complex. We shall use our lemma for the fields
$F,$ $\cdots$ , $F,$ $K$ and since $\mathcal{G}(K/C)$ can be identified with right cosets of $\mathcal{G}$ mod $\ovalbox{\tt\small REJECT}$

we shall denote them by $\overline{\alpha}$ for $\alpha\in \mathcal{G}$ .
LEMMA 5.5. For $x\in F^{n}\otimes K$, let $\overline{p}_{x}\in Hom^{j(}(C_{n}(\mathcal{G}), F^{*})$ be given by $\overline{p}_{x}(\varphi)=$

$(x, (\varphi,\overline{1}))$ , where $(x, \psi)$ is the pairing of $F^{n}\otimes K$ with $\psi=(\mathcal{G}^{n}, \mathcal{G}/\ovalbox{\tt\small REJECT})$ into F. Then
the mapping $\eta$ : $x\rightarrow p_{x}$ defines an isomorphism $C^{*}(F/C)\otimes K\cong Hom^{ff}(C(\mathcal{G}), F^{*})$ .

PROOF. The groups of $C^{*}(F/C)\otimes K$ are $(F^{n}\otimes K)^{*}$ and by Lemma 5.4 it
follows that $\tau;x\rightarrow p_{x}$ is an isomorphism of $(F^{n}\otimes K)^{*}$ with $Hom^{\mathcal{G}}(\Psi_{n+1}, F^{*})$

where $\Psi_{n+1}=$ $\{(\varphi_{1}, \cdots , \varphi_{n},\overline{\varphi}_{n+1}), \varphi_{i}\in \mathcal{G}(F/C),\overline{\varphi}_{n+1}\in \mathcal{G}(K/C)\}$ . To conclude that $\eta$

is an isomorphism between $(F^{n}\otimes K)^{*}$ and $Hom^{ff}(C_{n}(\mathcal{G}), F^{*})$ it remains to show
that the map $f_{x}\rightarrow fwhere\overline{f}(\varphi)=f(\varphi, \overline{1})$ is an isomorphism between $Hom^{\mathcal{G}}(\Psi_{n+1}$ ,
$F^{*})$ and $Hom^{\ovalbox{\tt\small REJECT}}(C_{n}(\mathcal{G}), F^{*})$ . This is clear from the observation that for an
$f\in Hom(C_{n}(\mathcal{G}), F^{*}),\overline{f}(\alpha\varphi)=\alpha\overline{f}(\varphi)$ will hold if and only if $f(\alpha\varphi, \overline{1})=\alpha f(\varphi,\overline{1})$ is
valid only for $\alpha\in\ovalbox{\tt\small REJECT}$ ; and from the fact that the functions $f$ of $Hom^{\mathcal{G}}(\Psi_{n+1}, F^{*})$

are uniquely determined by $f(\varphi, \overline{1})$ if $\alpha f(\varphi, \overline{1})=f(\alpha\varphi, \overline{1})$ , for all $\alpha\in\ovalbox{\tt\small REJECT}$, holds.
At this stage one can reproduce the proof of [1, Theorem 1] to show that

$\eta:x\rightarrow\overline{p}_{x}$ is actually a complex isomorphism from which the theorem follows.
From the general theory of these complexes as developed in [1] and [5]

we know that the mapping $\tau_{F}$ ; $x\rightarrow p_{x}$ of Lemma 5.3 induces a complex
isomorphism: $C(F/C)\cong Hom^{\mathcal{G}}(C(\mathcal{G}), F^{*})$ . We also recall that the restriction
$\rho;C(F/C)\rightarrow C(F/C)\otimes K$ was given by $\rho(x)=x\otimes 1$ for $x\in F^{n}$ . We now prove:

THEOREM 5.6. The induced homomorphism of the composite:

$\eta\rho\tau_{F}^{-1}$ : $Hom^{\mathcal{G}}(C(\mathcal{G}), F^{*})\rightarrow C^{*}(F/C)\rightarrow C^{*}(F/C)\otimes K\rightarrow Hom^{ff}(C(\mathcal{G}), F^{*})$

yields the restriction homomorphisms: $H^{n}(\mathcal{G};F^{*})\rightarrow H^{n}(\mathscr{X};F^{*})$ .
PROOF. For $f\in Hom^{\mathcal{G}}(C_{n}(\mathcal{G}), F^{*})$ we have $f=\tau_{F}x$ for $x\in(F^{n})^{*}$ where $x$ is

determined by the relation $f(\varphi)=(x, \varphi)$ $i$ . $e$ . $f=p_{x}$ . Now $(\eta\rho)(x)=\eta(x\otimes 1)=$

$g\in Hom^{\ovalbox{\tt\small REJECT}}(C_{n}(\mathcal{G}), F^{*})$ and $g$ is given by

$g(\varphi)=p_{x\otimes 1}(\varphi)=(x\otimes\overline{1}, (\varphi, 1))=(x, \varphi)=f(\varphi)$ .
That is $(\eta\rho\tau_{F}^{-1})f=f$ but here $f$ is considered as invariant only under Yl. Hence
the induced map $(\eta\rho\tau_{F}^{-1})^{*}=\eta^{*}\rho^{*}\tau_{F}^{*-1}=i(\ovalbox{\tt\small REJECT};\mathcal{G})$ is the restriction map given in
[3, p. 254].

Next we show:
THEOREM 5.7. The induced homomorphism of the composite map:

$\tau_{F}\tau\eta^{-1}$ ; $Hom^{\ovalbox{\tt\small REJECT}}(C(\mathcal{G});F^{*})\rightarrow C(F/C)\otimes K\rightarrow C(F/C)\rightarrow Hom^{\mathcal{G}}(C(\mathcal{G}), F^{*})$

yields the transfer map: $H^{n}(\ovalbox{\tt\small REJECT};F^{*})\rightarrow H^{n}(\mathcal{G};F^{*})$ .
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PROOF. $For\overline{f}\in Hom^{\ovalbox{\tt\small REJECT}}(C_{n}(G), F^{*}),$ $\eta^{-1}\overline{f}=x\in F^{n}\otimes Kwhere(Lemma5.5)\overline{p}_{x}(\varphi)$

$=(x, \varphi)=\overline{f}(\varphi)$ . By definition of $\tau$ (Theorem 2.4) and by Lemma 5.2 it follows
that: $\tau(x)=Norm(F^{n}\otimes K/F^{n} ; x)=\Pi(1\otimes\overline{\alpha})(x)$ with $\overline{\alpha}$ ranging over all cosets
of $\mathcal{G}mod \ovalbox{\tt\small REJECT}$ . Hence, $\tau_{F}\tau\cdot(x)=g\in Hom^{\mathcal{G}}(C_{n}(\mathcal{G});F^{*})$ satisfies, by (5.4),

$g(\varphi)=p_{\tau(x)}(\varphi)=(\Pi(1\otimes\overline{\alpha})(x), \varphi)=\Pi(x, (\varphi,\overline{\alpha}))^{*}$

$=\Pi$ a $i(x, (\alpha_{\iota^{-1}}\varphi,\overline{1}))^{*}\prod_{\alpha}\alpha_{\dot{t}}f(\alpha_{i}^{-1}\varphi)$

where $(a, \varphi)^{*}$ is the pairing of $(\mathcal{G}^{n}, \mathcal{G}/\ovalbox{\tt\small REJECT})$ and $F^{n}\otimes K$ in $F$, and $\alpha_{i}$ range over
a set of representatives of the cosets $\overline{\alpha}$ . But, clearly, the relation between $g$

and $f$ is exactly the transfer map as given in [3, p. 254].

REMARK 5.8. The fundamental difference between the restriction and
transfer $\grave{m}aps$ for arbitrary fields and the respective notions for $H^{n}(\mathcal{G}, F^{*})$

and $H^{n}(\ovalbox{\tt\small REJECT}, F^{*})$ is that the first are maps between $C^{*}(F/C)\otimes K$ and $C^{*}(F/C)$,

whereas the latter are between $H^{n}(\ovalbox{\tt\small REJECT}, F^{*})$ and $H^{n}(\mathcal{G}, F^{*})$ . The corresponding
groups for $H^{n}(\ovalbox{\tt\small REJECT}, F^{*})$ are the homology groups of $C^{*}(F/K)$ and not of
$C^{*}(F/C)\otimes K$ These last groups, as we have seen in Lemma 5.5, are isomorphic
with the homology groups of $Hom^{Jt}(C(\mathcal{G}), F^{*})$ and the former with the homology
groups of $Hom^{ff}(C(\ovalbox{\tt\small REJECT}), F^{*})$ . Now, for groups we know that both the complex
$C(\ovalbox{\tt\small REJECT})$ and $C(\mathcal{G})$ can be used to compute $H^{n}(\ovalbox{\tt\small REJECT}, F^{*})$ while for the fields the
complexes $C^{*}(F/K)$ and $C^{*}(F/C\otimes K)$ yield the groups $H^{*}(F/K)$ and $H^{*}(F\otimes K/K)$

which we do not know if they are isomorphic for arbitrary extensions
$F\supseteqq K\supseteqq C$. Though in some case it is known (Theorem 2.8 and Theorem 5.12
in the end of this section) to be true.

From Theorem 2.6 we have a homomorphism $\mu\backslash $ : $H^{*}(F\otimes K/K)\rightarrow H^{*}(F/K)$

induced by the map $\mu(x\otimes k)=xk$ for $x\otimes k\in F^{n}\otimes K$ Using the same methods
of the proof of Theorems 5.6 and 5.7, one readily verifies that: $\tau_{F}\mu\eta^{-1}$ :
$Hom^{g\int}\iota(C(\mathcal{G}), F^{*})\rightarrow C^{*}(F/C)\otimes K\rightarrow C^{*}(F/K)\rightarrow Hom^{fl\int}(C(\mathcal{G}), F^{*})$ is the restriction of

$f\in Hom^{\ovalbox{\tt\small REJECT}}(C(\mathcal{G}), F^{*})$ to $C(\ovalbox{\tt\small REJECT})$ . This map is known to induce an isomorphism
$H^{n}(Hom^{ff}(C(\mathcal{G}), F^{*}))\cong Hom^{ff}(C(t), F^{*})$ which clearly yields that in this case
$\mu^{*};$ $H^{n}(F\otimes K/K)\rightarrow H^{n}(F/K)$ is also an isomorphism. We shall see that this
is a special case of a more general result (Theorem 5.2).

To conclude the analogue with the classical groups we have to consider
the “ lift ‘’ map and the groups appearing in the fundamental exact sequence.

For the lift map we have:
THEOREM 5.9. Let $\ovalbox{\tt\small REJECT}$ be a normal subgroup of $\mathcal{G}$ then the composite map:

$\tau_{F}\lambda\tau_{K}^{-1}$ ; $Hom^{\mathcal{G}/\ovalbox{\tt\small REJECT}}(C(\mathcal{G}/\ovalbox{\tt\small REJECT}), K^{*})\rightarrow C(K/C)\rightarrow C(F/C)\rightarrow Hom^{\mathcal{G}}(C(\mathcal{G}), F^{*})$

induces the lift map: $H^{n}(\mathcal{G}/\ovalbox{\tt\small REJECT}, K^{*})\rightarrow H^{n}(\mathcal{G}, F^{*})$ .
PROOF. For $f\in Hom^{\mathcal{G}/M}(C(\mathcal{G}/\ovalbox{\tt\small REJECT}), K^{*}),$ $\tau_{K}^{-1}f=x\in K^{n}$ where $f(\overline{\varphi})=(x,\overline{\varphi})$ with

$\overline{\varphi}=$ $(\overline{\varphi}_{1}, \cdots , \overline{\varphi}_{n}),\overline{\varphi}_{i}\in \mathcal{G}/\ovalbox{\tt\small REJECT}$ . Now $\lambda x=x\in F^{n}$ , and thus $(\tau_{F}\lambda\tau_{K}^{-1})f=\tau_{F}x=ge$

$Hom^{\mathcal{G}}(C(\mathcal{G}), F^{*})$ is given by $g(\varphi)=(x, \varphi)$ for $\varphi\in\Phi_{n}=(\mathcal{G}, \cdots , \mathcal{G})$ . But since
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$x\in K^{n}$ we see that $g(\varphi)$ depends only on the classes $\overline{\varphi}$ . $i$ . $e$ . $g(\varphi)=f(\overline{\varphi})$ thus,
$f\rightarrow g$ is the known “lift” map. q. e. $d$ .

The last result in this connection is:
THEOREM 5.10. Let Yt be a normal subgroup of $\mathcal{G}$ then we have the isomor-

phism: $H^{*}(F\otimes K/K)^{0}\cong H^{*}(\ovalbox{\tt\small REJECT}, F^{*})^{Q}$ .
In fact we shall prove more, that this isomorphism is induced by the

isomorphism $H^{*}(F\otimes K/K)\rightarrow H^{*}(\ovalbox{\tt\small REJECT}, F^{*})$ discussed above.
Let $(\Phi_{n},\overline{\mathcal{G}})$ and $(\Phi_{n},\overline{\mathcal{G}},\overline{\mathcal{G}})$ be the set of $\{(\varphi,\overline{\alpha})\}$ and $\{(\varphi,\overline{\alpha},\overline{\beta})\},$ $\varphi\in\Phi_{n}$ and

$\overline{\alpha},\overline{\beta}$ cosets of $\mathcal{G}/\ovalbox{\tt\small REJECT}$ . Consider the commutative diagram:

$(F^{n}\otimes K)^{*}\rightarrow^{\tau}Hom^{\mathcal{G}}((\Phi_{n}\overline{\mathcal{G}}), F^{*})$

$\epsilon_{i}^{K})$ $\downarrow$

$(F^{n}\otimes K^{2})^{*}\rightarrow^{\tau}Hom((\Phi_{n}\overline{\mathcal{G}},\overline{\mathcal{G}}),$
$F^{*}$).

The last vertical map is by definition $\tau\epsilon_{\dot{t}}^{K}\tau^{-1}$ , and $\tau$ is the map $\tau(x)=p_{x}$ of
Lemma 5.4.

Let $f\in Hom^{\mathcal{G}}(\Phi_{n}, \mathcal{G}^{-})$ then by definition $\tau$ and by (5.4) it follows that
$[(\tau\epsilon_{1}^{K}\tau^{-1})f](\varphi,\overline{\alpha}_{1},\overline{\alpha}_{2})=p\epsilon_{1}^{K}\tau^{-1}f(\varphi,\overline{\alpha}_{1},\overline{\alpha}_{2})=(\epsilon_{1}^{K}\tau^{-1}f, (\varphi,\overline{\alpha}_{1},\overline{\alpha}_{2}))$

$=(\tau^{-1}f, \sigma_{1}^{K}(\varphi,\overline{\alpha}_{1},\overline{\alpha}_{2}))=(\tau^{-1}f, (\varphi_{1},\overline{\alpha}_{2}))$

$=f(\varphi_{1},\overline{\alpha}_{2})$

and similarly $(\tau e_{2}^{K}\tau^{-1})f(\varphi,\overline{\alpha}_{1},\overline{\alpha}_{2})=f(\varphi_{1},\overline{\alpha}_{1})$ .
Now $\Delta_{K}$ : $F^{n}\otimes K\rightarrow F^{n}\otimes K^{2}$ is $\epsilon_{1}^{K}(\epsilon_{2}^{K})^{-1}$ . Hence

(5.6) $(\tau\Delta_{K}\tau^{-1}f)(\varphi,\overline{\alpha}_{1},\overline{\alpha}_{2})=f(\varphi,\overline{\alpha}_{1})f(\varphi,\overline{\alpha}_{2})^{-1}$ .
Next we consider the isomorphism $\zeta$ : $Hom^{\mathcal{G}}((\Phi_{n},\overline{\mathcal{G}}),$ $F^{*}$) $\rightarrow Hom^{J!}(\Phi_{n}, F^{*})$

given in the proof of Lemma 5.5. Namely $(\zeta f)(\varphi)=f(\varphi, i)$ and similarly
$(\zeta f)(\varphi,\overline{\alpha})=f(\varphi, \overline{1},\overline{\alpha})$ will be an isomorphism of $Hom^{\mathcal{G}}((\Phi,\overline{\mathcal{G},}\overline{\mathcal{G}}),$ $F^{*}$) $\rightarrow Hom^{\ovalbox{\tt\small REJECT}}((\Phi_{n}$ ,
$\mathcal{G}),$ $F^{*}$ ). Consider now $\zeta\tau\Delta_{K}(\zeta\tau)^{-1}f$ for $f\in Hom^{ff}(\Phi, F^{*})$ , by (5.6) it follows that:

(7.8) $[(\zeta\tau\Delta_{K}\tau^{-1}\zeta^{-1})f](\varphi,\overline{\alpha})=(\tau\Delta_{K}\tau^{-1}\zeta^{-1}f)(\varphi, \overline{1},\overline{\alpha})$

$=(\zeta^{-1}f)(\varphi_{\sim}^{r}\overline{1})[(\zeta^{-1}f)(\varphi,\overline{\alpha})]^{-1}$

$=f(\varphi)[\alpha f(\alpha^{-1}\varphi)]^{-1}=f(\varphi)(\alpha_{c}f(\varphi)^{-1}$

since $\zeta^{-1}f(\varphi,\overline{\alpha})=\alpha(\zeta^{-1}f)(\alpha^{-1}\varphi, i)=\alpha f(\alpha^{-1}\varphi)=\alpha_{c}f$.
Since $\zeta\tau$ induces isomorphism of the respective homology groups, hence

$(\zeta\tau)^{*}$ induces an isomorphism between $Ker\Delta_{K}^{*}$ and Kernel $(\zeta\tau\Delta_{K}(\zeta\tau)^{-1})^{*}!$ The
first is by definition $H^{*}(F\otimes K/K)^{0}$ and the latter is, by (5.7) the set of all
cocycles of $H^{*}(\ovalbox{\tt\small REJECT};F^{*})$ for which $\alpha_{c}f\sim fi$ . $e$ . $H^{*}(\ovalbox{\tt\small REJECT};F^{*})^{\mathcal{G}}$ and the proof is
thus concluded.

Summarizing the last three theorems, and noticing that all the isomor-
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phisms involved commute, the existence of the fundamental exact sequence
([4]) is readily obtained from Theorem 4.2.

COROLLARY 5.11. If $\ovalbox{\tt\small REJECT}$ is normal in $g$ then the following sequence is exact:

$0\rightarrow H^{2}(\mathcal{G}/\ovalbox{\tt\small REJECT}, F^{*})\rightarrow H^{2}(\mathcal{G}, F^{*})\rightarrow H^{2}(\ovalbox{\tt\small REJECT}, F^{*})^{\mathcal{G}}$

$\rightarrow H^{3}(\mathcal{G}/\ovalbox{\tt\small REJECT}, F^{*})\rightarrow H^{3}(\mathcal{G}, F^{*})$ .
We close the paper with a case where we can prove the validity of the

condition of Theorem 2.8; hence for which $H^{*}(F/K)\cong H^{*}(F\otimes K/K)$ .
THEOREM 5.12. Let $F\supseteqq K\supseteqq C$ be finite algebraic extension of a field $C$ and

such that $K$ is separable over $C^{9)}$ ; and suppose that each of the fields $(\psi F)K$,

which is generated by $K$ and by conjugate $\psi F$ of $F$, contains $F(e.g$ . if $F$ is
normal) then there exists a homomorphism $\theta$ : $F\rightarrow F\otimes K$ such that $k=1\otimes k$ for
all $keK$ Clearly, an application of Theorem 2.8, yields now the fact that if;
$F$ is normal then $H^{*}(F\otimes K/K)\cong H^{*}(F/K)$ .

PROOF. Let $\Phi_{2}=\{(\varphi_{1}, \varphi_{2}), \varphi_{1}\in G(F/C), \varphi_{2}\in G(K/C)\}$ (in the notations of
Lemma 5.4) and let $\mathcal{G}=\mathcal{G}(L/C)$ where $L$ is any normal extension of $C$ con-
taining $F$. It follows from Lemma 5.5 that $\tau;F\otimes K\rightarrow Hom^{\mathcal{G}}(\Phi_{2}, L)$ is an
isomorphism. Let $\ovalbox{\tt\small REJECT}\subseteqq \mathcal{G}$ be the subgroup of $\mathcal{G}$ leaving the elements of $K$

invariant, and let $\mathcal{G}(F/C)=\cup\ovalbox{\tt\small REJECT}\varphi_{i}$ .
First we observe that every element of $\Phi_{2}$ can be expressed in the form

$(\varphi, \psi)=\alpha(\varphi_{i}, 1)$ . Indeed, let $\alpha_{0}$ be any element of $\mathcal{G}$ such that $\alpha|K=\psi$ then
$(\varphi, \psi)=\alpha_{0}(\alpha_{0}^{-1}\varphi, 1)=\alpha(\varphi_{i}, 1)$ with $\alpha_{0}^{-1}\varphi=h\varphi_{i}$ and $\alpha=\alpha_{0}h$ . Next, we prove
that if $\alpha(\varphi_{i}, 1)=\beta(\varphi_{i}, 1)$ then $i=j$ and $\alpha(a)=\beta(a)$ for all $a\in F$. Indeed, the
fact that $\alpha\varphi_{i}=\beta\varphi_{j}$ yields that $i=j$ by the definition of $\varphi_{i^{\prime}}s$ , and that $\alpha|K=$

$\beta|Ki$ . $e$ . $\beta=\alpha h$ . This in turn yields $h\varphi_{i}=\varphi_{i}$ so that $h\varphi_{i}(a)=\varphi_{i}(a)$ for all
$a\in F$. In other words, $h$ leaves $\varphi_{i}(F)$ invariant, but it leaves also $K$ invariant
since $h\in\ovalbox{\tt\small REJECT}$. Consequently, $\varphi_{i}(F)K$ is invariant under $h$ and therefore $h(a)=a$

for all $a\in F\subseteqq\varphi_{i}(F)K$ by assumption. Thus, we conclude $\beta(a)=\alpha h(a)=\alpha(a)$

for all $a\in F$ and our assertion is proved.
We recall that $\tau;F\otimes K\rightarrow Hom^{\mathcal{G}}(\Phi_{2}, L^{*})$ is given by $(\tau x)(\varphi, \psi)=p_{x}(\varphi, \psi)=$

$(x, (\varphi, \psi))$ . For $aeF\otimes K$ we define $\theta(a)$ by the relation:

(5.8) $(r\theta a)(\varphi, \psi)=\alpha a$ where $(\varphi, \psi)=\alpha(\varphi_{i}, 1)$ .
From the result obtain above, we can show that the function $f(\varphi, \psi)=\alpha(a)$

\’is a well defined element in $Hom^{\mathcal{G}}(\Phi_{2}, L^{*})$ . Indeed, $f(\gamma\varphi, \gamma\psi)=\gamma f(\varphi, \psi)=(\gamma\alpha)a$

since $(\gamma\varphi, \gamma\psi)=\gamma\alpha(\varphi_{i}, 1)$ and if $(\varphi, \psi)=\alpha(\varphi_{i}, 1)=\beta(\varphi_{j}, 1)$ then $\alpha(a)=\beta(a)$ by
the previous result.

Consequently, $\theta$ is uniquely determined, and it is readily seen that $\theta$ is a
homomorphism.

9) $F$ is not necessarily separable.
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Now for $k\in K$,

$[\tau(1\otimes k)](\varphi, \psi)=\tau(1\otimes k)[\alpha(\varphi_{i}, 1)]=\alpha[\tau(1\otimes k)(\varphi_{i}, 1)]$

$=\alpha(1\otimes k, (\varphi_{i}, 1))=\alpha\varphi_{i}(1)k$

$=\alpha k=(\tau\theta k)(\varphi, \psi)$ .
Hence $\theta k=1\otimes k$ , and the proof is completed.

Another evident case where such $\theta$ exists is that the field $F=H\otimes K$ is
the tensor product of two fields since then $\theta:F\rightarrow F\otimes K$ is merely the map
we denoted earlier as $\epsilon_{1}^{K}$ ; $H\otimes K\rightarrow H\otimes K\otimes K$
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Added in proof: Rosenberg and Zelinsky have pointed out to the author
that instead of the assumptions of the freeness of F over C and that the
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it suffices to assume that F is C-flat and that the unit map: $C\rightarrow F$ splits.
The modifications of the proof are as in [5].
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