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Let F be an algebraic extension of a field C and let (#")* be the multi-
plicative group of all invertible elements of the ring F&q - Q¢ F(n-times).
The author has introduced in [1] a complex structure C*(¥/C) on the groups
(F™)* whose homology groups H™(F/C) were shown to be a generalization of
the notion of the cohomology groups H™G; F*) for normal fields F with
Galois groups G. This has been extended and simplified by Rosenberg and
Zelinsky in [5]

In the present paper we introduce homology groups H,(F/C) for arbitrary
commutative rings F which are finitely generated C-free modules. These
again are obtained by a complex Cyx(F/C) obtained by the groups (F™)* with
a derivation N:(F)*—F"1)* The map N is defined with the aid of the »
different norms of the elements of F" with respect to F*~'. These groups
are again isomorphic with the classical homology group H,(G ; F*) for normal
field F with Galois groups G.

In section 2 we carry the notions of restriction, transfer and lift to the
cohomology and homology groups of arbitrary fields which again is the gener-
alization of the respective notion of the classical case.

These notions are used to prove that if (F:C)=k then the order of the
elements of H™F/C) and H,(F/C) is a divisor of k. This together with the
fact that A2%(F/C) is isomorphic with the Brauer groups of all C-separable
simple algebras (51 split by F, yields the result that the exponent of the
algebras split by F divides k. The special feature of this proof is that it
does not depend on the existence of normal separable splitting fields but rather
on F itself.

A new notion of cohomology groups for two C-algebras F, K is introduced.
This is done by considering the multiplicative groups (F"®,K™)* as a double
complex. The first two cohomology groups of this complex are zero and
H*(F, K) is isomorphic with the Brauer groups of all algebra split both by F

%) Part of this research has been done while the author was a member of a Sum-
mer Conference of the University of Chicago.
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and K. In case K2 F, these groups coincide with cohomology groups H"(F/C)
introduced above. These groups have generalizations to any finite number
F, -, F, of C-algebras.

The double complex is then used to prove the fundamental exact sequence
for arbitrary field. It was shown in ([5]) that our groups H™%F/C) are
naturally isomorphic with Adamson’s cohomology groups for separable not
necessarily normal extensions F of C. Now recently, the fundamental exact
sequence has been shown to hold also for these groups (Nakayama [6,7] and
in a more general form by Hattori [8])*, it seems probable that our exact
sequence (Theorem 4.2) coincides with Adamson-Nakayama’s exact sequence.
No attempt has been done to prove this fact in this paper; nevertheless, this
has been carried out only for the classical case of normal separable fields and
normal subfields. Namely it is proved that the Hochschild-Serre’s exact se-
quence coincides with the exact sequence of under identical
egnditions.

‘The rest of the paper is devoted to show that the basic tools for the
classical homology groups exist and work as well for our groups.

1. Homology groups.

Let C be a commutative ring with a unit, and let ¥ be a commutative
C-algebra containing C as a subalgebra (both F and C have the same unit).
Put F'=F2=F&¢ - QcF (n-factors) and for » =0 set, F'=CP.

Following and we define the homomorphism ¢;: F*— F** (g =1)
by setting:

@@ Qa)=a;Q - R V1Ra;® - Qa,.

These homomorphisms satisfy the relation:
a1 gig;=¢€m€ for i<j.

If R* denotes the multiplicative groups of all invertible elements of a
ring R, then the set of all groups (#™)* form a cochain complex:

1.2) F* (F2)® (Fmy* (Fnriys —s ...

n+1 .
with respect to the derivation 4=4"= 3 (—1)"'¢; (written additively) and to

which we add the augmentation ¢:C*— F* which is the injection of C* in F*,
Thus:

1.3) @) =[ef@)es(@) - 1Le@e@) -+ 17 .
%) The author is thankful to the referee for the remark.

1) All tensor product, henceforth, without a subscript will be with respect to C
unless stated otherwise.
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We denote this complex by ¢*(F/C) and its cohomology groups by H™*F/C)
and H*(F/C)= > H"(F/C).

To define homology groups we use a similar procedure with the help of
the Norm:

Let K be an arbitrary commutative ring and A be a finitely generated
free K-algebra; the norm “Norm (A/K;a)” for ¢= A is defined to be
determinant of the endomorphism: az:x—aex of A, when considered as a
K-free module (e.g. [2, p. 133]). It is known (@bid) that if PCla;l)=
APt Cp A% -e- ¢, IS the characteristic polynomial of the endomorphism ¢
then Norm (A4/K; @) =(—1)"c,.

We assume, henceforth, that F is a finitely generated free C-module as
well as a commutative ring. Thus, F” is also a free ¢,/ -module, so for all
x € F" we set
a4 vi(x) =7 Norm (F" /e, F'*1; %),

and we obtain a homomorphism v;: (F*)*— (F* )% (For y,: (F)*—>(F%*%, we
also write v.) Finally let ft: (F*)y*—(F*1)* be the homomorphism given by:
€5 N(w) = i (wy(x) - vy (x) - 172
That is: M=N"=>(—1) Y, (writing it additively), and note that 9*: F*—(C*
is the ordinary Norm (F/C;*) map.

This procedure leads to a chain complex:

1.6) C* = Fo* B (Fr=1)¥ e— ...

which we shall denote by C«(F/C). To this we add the augmentation R°: C*—1.
It will be shown that C(F/C) is a chain complex, i.e. N2=0 and we then call
its homology groups the homology groups of the extension F over C—— and
denote it by H,(F/C) and H(F/C)= > H(F/C).

We remark that H(F/C)=C*/NF* where NF* is the subgroup of C*
containing all elements which are Norms of elements of F.

Furthermore, we can connect the complexes C*(F/C) and Cu(F/C) to one
complex C(F/C) by setting: F,=F*)"*! for =0 and F_,=F*)" for —n <0,
then we get a complex

—F gy F_, Fy F, F,
with the derivation d"=4: F,—F,,, for n=0, and d"=N: F,— F,,, for n <0
and d°(x) = eN%(x), i. e. the Norm (F/C, *) followed by the injection of C* into F'*.

The procedure is the same adopted for finite groups as we shall note
later for the case of finite normal Galois extensions.

To prove that Cy«(F/C) is a complex we need the following lemma :

LEMMA 1.1. The n+1 homomorphisms v;:(F" 10— (F™) satisfy the vela-
tions:
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an YiV;=V;Vi fOr i1=7.
Indeed, using the transitivity property of the Norm (e.g. [2, p. 1427]); we get:
viv(x) = ¢ '[Norm (F"/e;,F'"~!; &7 Norm (F"*/e,F™; x)]
=¢;'e7! Norm (F* /e, 715 )
and the rest follows from the relation among the ¢; given in [(1.I)}

To complete the proof that Cu(F/C) is a complex we observe that: (writing
the homomorphisms involved additively):

N =3 (—Dvi(—Dy, = ;j(—l)”"uw i+ D=1y,

iZj

=X (_1)i+jViVj+i§j(_1)i+jujui-l<1 =0

i<y
by replacing in the last sum i41, j by j and 7 respectively. For n=1, we get
N2 =wy,—vy, =0, since
yvi(x)=Norm [F/C; ' Norm (F'*/e, F'; x)]1=Norm (F?/C; x) = vv,(x).
The identification of these groups with the classical homology groups of
normal fields will be dealt with in the last section.
We begin with introducing the idea of “restriction ’ and “transfer” in

the (co-) homology group for arbitrary F which will correspond to their
classical counterpart.

2. Restriction, transfer and splitting of cycles.

If I is not C-free or not finitely generated then the results to follow will
still hold, but only for the complex C*(#/C) and for the cohomology groups
H*(F/C).

In addition to F and C dealt with above, we consider an arbitrary com-
mutative ring R which is a C-algebra, and denote by C(F/C)Q R (C*(F/C)Q R,
C«(F/C)X R) the complex

—— (F*"Q Ry —— (F" QR — -+

with the derivation 4, =3 (—1)""(e; ®1) (written additively) and Ntp = (—1p
with vp;=(Q® 1™ Norm (F*""'QRQR/(e; QIDF"RR);*). Clearly C(F/O)RR is
again a complex and one readily establishes the isomorphism:

THEOREM 2.1. C(F/O)QRQR=C(FQQR/R).

Indeed, C(F& R/ R) consists of the groups and the morphisms: [(FQ R *—
[(FRRRE"T*. The isomorphism of the theorem is given by the map:

(@@ Ra)RQr——[a:R¥1]1Rr - Qrla, 7] for a;&F, reR

whose inverse is given by :

2) Similar results hold for Co(F/C)@R and C*(F/C)@R.
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[a: @71 1Qr QrlEa@7n]—(0:1 @ - Q@) Q1175 -+ 1) .
It follows readily that these maps commutes with the ¢ and consequently,
that they form a complex icomorphism.
Now let p=p": F"— F*@ R be the isomorphism given by p(#) =x&1. As

e will be shown to be a complex isomorphism of C(#/C) into C(FQ R/R) one
obtains :

THEOREM 2.2. p induces a morphism o*: HF/C)— H(FQ R/R).

The proof for the cohomology groups is evident since pe; =(; Q1)p. For
the homology case, let ay, -+, a, be a C-base of F then (fori=1) a,®1,---,
a, Q1 will be ¢ F"*-base of F™ as well as an (¢, @ 1)(F" ' R)-base of F*Q R.
Consequently, one readily observes that for « e F", one gets (det ap)R1=
det[(@®Dg] in e F* '@ R, where @y is the endomorphism: x—ax in F* and
(@@Dg: x—(@RDx in F*Q R, from which we conclude, in view of definition
of Norm (F'"/e,F*1;x)and Norm (F"Q R/(e, @ DY(F* 1 X R); %), that o commutes
with the respective v;’s and, therefore, it is a complex morphism.

DEFINITION 2.1. We shall refer to p* as the restriction homomorphism ;
and a cycle ¢ € H(F/C) will be said to be split by R if p*(a)=1 in HF R R/R).

It will be shown that the restriction map defined above, though not
exactly the known restriction homomorphism for the cases where these
cohomology groups coincide with the classical ones, nevertheless, it seems
that this definition is more appropriate and its relation with the classical
definition will be pointed out later.

To justify the definition of the splitting of cycles we prove the following :

A homomorphism t: HX(F/C)— B(F/C) was defined in [5], where @(F/C)
is the Brauer group of all equivalent central separable C-algebras. Now the

correspondence A—-A® R defines a homomorphism o¢: KEF/C)— BEXR R/R),
and we wish to show that:

THEOREM 2.3. If R is C-free then ot = tpo*.

Indeed, recall the definition of r:

Let »; (i=2,3) be the two possible maps of End gr(FQ F)— End igr2(FQ
FRF)?, and for (= F? let L) € Endigr:(FQRQFQF) be the endomorphism
defined by multiplication by . Consider the algebra A(#)= {¢ € End 1gr(FQF);
LOnLa)L(H) ™ = ny(a)}, then 7 is given by : «(f)=A®), where { € HA(F/C) is the
class of cocycles determined by .

Now we get o7(t) = WU QR R = (o*t), as we show that

Aot) = {a € End 10rer(FQ FQ R), L(pH)na)L(ot) " =7n@)} = AOXR.

Indeed, first note that p: F*—F"® R isactually a 1Q F~!-linear injection
and clearly it induces an injection p:Endgm-1(FQQF*)— Endigrm-1gz(F&Q
Fr1QR)=[End gm-1(FRF*)]®R; namely, pla)=ae®1. It is now not

~Wé) EndRV(iV') denotes the ring of all R-endomorphism of an R-module V.
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difficult to show that p7;=7n0. Consequently, (o) 2 oN{E) = A®) since for
a € U(@), L{pt)nLoa)L(ot)™ = p[LE)nLa)L(H)™] = pnya) = n,(0a).

It remains now to show that po(#) and R are in tensor product relation
in A(or) (cf. [5, p. 336]). Now pUA{®) S Endigr(FRF)RX1 Hence, pA@)R RS
Endigr(FRF)QRQR which yields that o%(#) and R are in tensor product
relation in Endgrer(F2Q@ R) and clearly in %(of). To conclude the proof we
show that pA@) X R =N(et): Indeed, let ¢ € N(p) € Endigr(FRF)XR R, s0 a=
> a;Qr; for a C-base {7;} of R, with ¢, € End gr(FQF). Since a < Wpt), we
have 7y(@) = L(ot)nLa)L(ot)™* = L(0tXX 74(a:) @ r)L(pH) ™ =X Lt)nLa) L™ Q7 =
>inay)@r; Consequently, LH)nLa)L(H)™ =74(a;) i.e. a; < WQ).

REMARK. If R is not C-free we know only that AR = A(od).

An immediate consequence of Theorems is the fact that a cycle
te H¥F/C) is split by R if and only if the corresponding algebra () is split
by R, which is the justification for the notion of splitting a cocycle.

Next we deal with the #ransfer: To this end we consider a finitely gen-
erated free C-algebra R and a homomorphism ¢*: H(FQ R/R)— H(F/C) which
replaces the transfer homomorphism.

Let z*: F"QR—F" be given by ™(x)=Norm (I'"Q R/F"; x).

THEOREM 24. 7:C(FQR/R)— C(F/C) is a complex isomorphism and thus
induces a homomorphism ¥ H(FQR R/R)— H(F/C).

Proor. For arbitrary F, r commutes with ¢;: Indeed, let #,--,7, be a
C-base of R, and let x= F*Q R then since {1®7;} is an F"base of F*"Q R,
it follows that x(1®X7) =Xt X7 and r(x)=det (t;r). Now ¢,(1R7)=1X7;
and ¢; is an isomorphism; hence we get (2)(1Q#) =2 ¢€itu@r; so that
7(e;x) = det (e,t) = ¢; det (1) = ¢;7(%). ge.d.

This leads to the fact that 4r=1t14. To prove the relation Mr=1N we
show that r commutes with each v;. Indeed, by the transitivity of the Norm
one gets,

wix)=Norm [F*"@QR/F"; (e, 1) Norm (F"" Q@ R/(e; Q F" Q@ R) ; x)]
=g Norm [F"" Q R/, F™; x]
=¢ ! Norm [F"" /e, F"; Norm (F""' Q@ R/F"; x)1=vie(x),
from which the rest of theorem follows.
DEFINITION 2.2. The map ¢* will be called the transfer map.
An immediate consequence of the definition of z* and p* is the fact that:
COROLLARY 2.5. 7%*o* = dimension of R over C.
Comparing these definitions with classical definitions of restriction and
transfer as will be given in Section 4, one would wish that for a subalgebra

R CF the restriction should be a map: H(F/C)— H(F/R) and the transfer a
map H(F/R)— H(F/C). The first can be easily achieved whereas the latter
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can be obtained only in special cases which cover the known ones.?

To deal with the first case we start from a subalgebra RS F, and here
let #: FQR— F be the homomorphism: #(a®@7)=ar. Then u clearly induces
a homomorphism g =x": (FQ® R)E— F% and we have:

THEOREM 2.6. u is a complex homorphism: C(FQ R/R)— C(F/R) and thus
induces a homomorphism p*: HEQ R/R)— H(F/R).

PrOOF. Clearly x# commutes with the ¢;, hence it commutes with the
derivation 4. To prove that it commutes with v; and therefore, with %i- we
note first that for ¢ € (FQ R *

vi(@)=e;' Norm [(F&Q R)2" /e (FQR)"; a]l=¢e;" det (uar)
with u; € e(FQR)" 1.e. uy=e¢0y so that v (x) =det(v;). Now u is a homo-
morphism, hence uv(a)=det(pvy)=v,;u(a). Since det(w,) was the deter-
minant of the endomorphism ag:x—ax, but u(a@)g: u(x)— u(a@)u(x) and as
#(FQ Rr+1))= F»*1 it follows that the determinant of u(a)z is det(uvy) as
required.

One readily verifies that the composite map o*= p*p*: H(F/C)— H(F/R)
is simply the induced morphism of the map o(a; Q¢ - QRetn) = X g *** & rn.

We do obtain a similar result for the transfer, only if we restrict ourself
to cohomology groups and even then only under certain conditions:

Let Y, ¢: F— K be a C-homomorphism of F into a commutative C-algebra
K preserving the unit: Let 0=¢Q R, F=v R -y the complex
homomorphism : ¢*(F/C)— C*(K/C) given by:

D, Q- Ra) =)@ - Qela,) and ¥, ® - Qa)=¥(a)Q - @V (an)
induced by the injections F— K. Then:

LEMMA 2.7. @ and ¥ are homotopic and thus O* =¥*: H(F/C)— HK/C).

PRrOOF. Define u;: (F"y*— (K" 1y, {=1,2, --- n, by setting u(a,Q - Qap) =

(@)X -+ D P(ai-1) QD Pla¥(@is1) DY (@i42) D -+ QY (an).
Writing the morphism additively we define

n—1 X
u=u"=2(—1u
=1

and we add a homomorphism #°: F*—C* by setting «*(a)=1.
Considering the complex ¢*(F/C) and C*(K/C) we show that
V—@=ud+4u .
Indeed, first one verifies that
gy for i<j—1
uie; =1 0; for i=j, j—1
ety fOr i>j

4) Noting that F is C-free.



8 S. A. AMITSUR

where 0@, @ - Q@) =9(a,)Q - Q@ ¢(a;-) V(@)D -+ DY (ay). In particular
o1=¥ and oy, = .
Thus for n=1:

ud =35 (D ey 3+ 3+ Sus— Suen

1=1 j= i<j—=1 i>j 1=

2 (=1 0+ Z( i*ie sy +0,—0pey = du+¥—0 .

i<j—1
For »=0, we have only ud=u,(¢,—¢,)=0,—0, =¥ —0. q.e.d.
REMARK. This last result enables us to define H"(F/C) for infinite ex-
tensions of C as L&n H™(K/C) where K ranges over all C-finitely generated

C-subalgebras K of F, since for KC K’ the map H"(K/C)— H™(K’/C) does not
depend on the embedding of K in K.

Our extension for the transfer can be stated as follows:

THEOREM 2.8. Let RE F, if there exists a homomorphism ¥ . F— FQ R such
that 3N =1Qr for vr= R, then H*(F/R)= H*(F'Q R/R).

REMARK. In this case, we shall refer to the composite map
H*(F/R)— H*(FQ R/R)— H*(F/C) as the transfer map.

Proor. Consider the two morphisms ud:F—F, and du:FRQR—FQR.
The first is an R-homomorphism, and the latter is an 1& R-homomorphism.
Indeed, (u)@)=p(1Rr)=r and du(lXr)=39@)=1QR7r, by the property of
#. Now, both induce homomorphism (u)*: H¥(F/R)— H*(F/R) and [Jul*:
H*(FQRQR/R)— H¥(FRR/R)— H*(FQR/R). But by the previous theorem it
follows that p*d% =(ud)* =identity and similarly &*p* =[Ju]* = identity.
Consequently, u*: H¥(FQ R/R)— H*(F/R) is an isomorphism, as required.

An example where this situation exists will be given in the last section.

The justification of the “ splitting ” is given in the following result which
may be simply stated that the cocycles H*(F/C) are split by all R2F. More
precisely.

THEOREM 2.9. If FE R then H¥(FXR/R)=0.

PROOF. Llet u#:F**1QR—-F*"®R be given by: u(a;RQ - Qp 1 XR7)=
a4 Ra, R Which is well defined since a@,.,7 € R.

One readily verifies that we; = e;u for i =1, ---, n, but ue,,, = identity. Thus,

n+1 n
ud = -Z'l (—D'ue; = ;(-—1)7:6@-%—1—(—1)”“%6”.,.1 = du+(—1y"11

from which one readily shows that the identity of C*(FQ R/R) is homotopic
with zero.

The “Ilift” map is quite evident: Let CS FC K, then the injection
A:F— K yields a complex homomorphism 2: ¢*(F/C)— C*(K/C). Namely A:
(I"y¥—(K"y* and one readily verifies that ¢4 =2¢. Consequently 2 induces a
homomorphism 2* : H*(F/C)— H*(K/C).
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DEFINITION 2.3. A* will be called the /iff morphism.

We note that Lemma 2.7 implies that A* depends only on F and K and
not on the different embeddings of F and K. Furthermore the lift map is
defined only for the cohomology groups.

We conclude with the result that:

THEOREM 2.10. If F is C-free and of dimension m then the groups H(F/C)
arve torsion groups comsisting of elements of orders dividing m.

PrROOF. Consider the isomorphism §:(F")*—(F")*: (written additively)

n . n+1 .
0=dv,—vppd=23(—Dewn— (=D
i=1 i=1

Now to compute v,,,e; we choose a base ¢y, --+,c, of F over C and denote
by ;P =1 - QRc e F**..  Thus, v,.&()=¢} Norm (F**/e, F™; %)=
det (ajp) where e;(X)ci™ = 2 p(ens1&hp)ciH0.

For i < n, ¢{"*? = g;c§?, s0 to compute aj, we can start with xc{®= 3 (e, 0)cH?
and applying ¢ on both sides and we get: (ex)ci™t =2 (gie)@sp)cs™P =
S (Eps1&i@)c TP s0 that e, = e,1,6:05 and, therefore

Viri€s(%) = det (g;a5) = ¢; det (azp) = eva(x)

which yields: 4v,—v, d=(—1)"", 0= (—1"'m. For, v,1,6,4,(x) = 2™ from
which one readily proves that the elements of H*(F/C) satisfy ™ =1.
Next consider the isomorphism J: (F™)*— (F")* (written additively):

d=Rens—eN =3 (—Diens— 3 (—1)iews.
=1 =1

To compute ew;(x) for x = F* we choose a C-base {¢;} of FF and denote ¢ =
1R - Re; V1R -+ X1 where ¢; stands in the i-th place. Then y;(x) = det (a )
where xc =3 e;atzocP.

Apply &,, and we get (6,11 0)(Enr1cP) = 2 (Enri€iao)(ensi0). But fori=1,2---,n
EnriCP =cP and e,p.6 =¢6,. SO that vi(enx) = det (e,a) = ¢, det (ap) = e (%).
Thus RNe,y =, R=(—1)"", 11600, = (1D since v, .6,0,(x)=2™ for x= F",
and the proof is concluded.

Since H*(F/C)= B(F/C) where B(F/C) is the Brauer group of F over C,
we have:

COROLLARY. The index of the cenival separable algebras split by F divide
the dimension of F over C.

We would like to point out that the present proof of the finiteness of the
index of simple algebras does not depend on the existence of separable
splitting fields as the classical proof does.
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3. Double complexes.

Let F and K be two C-algebras. We define a double complex {A™"=
(F"QK™)¥} m,n=0, and its two derivations: gz:A™"— A™*L" given by
m+1
dp=4pm= T (=D'(QD, and  dg: A™"— A™M given by  dg=dpm=
i=1
n+1
E+(—1)'"+i(1®ei) with the ¢, =& acting on K. In the first case ¢ =¢f acts
i=1
really only the F™ part of (F™® K™* and in the second case only on the K"
part.
Our first result is:
THEOREM 3.1. The groups {A™"} constitute a double complex with respect
to devivation 4= Ap+ dg.
In view of [3, p. 607 it suffices to show that 4% = 4%=0 and dpdg+dxdr=0.
The first two have been proved, and for the last relation we have:
Updx="3 " (1 (E QDA @) = — drdr,

since one readily observes that (7 1)1 ef) =1 @eMNeF®1). but (1X®ef) acts
now on (™R K™)*,

The double complex obtained by F and K will be denoted by C¥*(F, K/C)
and its cohomology group by H™(F, K/C).

For the interpretation of the cohomology groups we show.

THEOREM 3.2. If K and F are C-free and let HYF/C)= HYK/C)=
HFQRQK/KH=H\FQRK/K)=0 then H'F,K/C)=HYF,K/C)=0 and H*F,
K/O)=HY C*F/C)R K/CHF/C), (= HW(C*F/C)XR K/C*K/C))) and the cohomology
group of the quotient complex is isomovphic with B(F/C)\ B(K/C), i.e. with the
Brauey group of all algebras split both by F and K.

ProOOF. To compute the first cohomology groups of the complex C*(F,
K/C) we have to consider the sequence

(CH—IF* @ K* > [(FFOFQEN BEN]— T F QK —.

Let a,,, denote an element in (F"® K")* so that a,= > an,, is a cocycle if

and only if the following relations are valid:

@B.D (k@ Xdp@m-1,741) =1, l=m<r
Aptro=dgay,=1.

REMARK 3.3. It is interesting to note that for the elements a, <
(F"@ K°y*=(F7)*, 4dp is actually the derivation in the complex C*(F/C), while
dga,y=a,,1 which means that 4z is the restriction map defined in the
previous section.

Thus, H(F, K/C)=0, for da,=1, with a,=a,,+a,.. In this case a,, € F¥,
an € K*, 80 dpa,,=1, dgxa,, =1 yields a,, and @, € C*. Finally, one readily
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observes in view of the last remark that (dga,,Xdra,) =1 yields a,, = a,, =c € C*¥
since dza,,= a7 and dgpay, = dy-

To compute H(F, K/C), we start with a, = a,,+a,+a,, which represents a
cocycle. By[@3.1) it follows that 4pa,, =1 i.e. a, represents a cocycle in H*(F/C)
but the latter =0, s0 a,, = dpa,,. Similarly, a,, = dgay. By considering the
a,4(aid+azt) which is homologous to @, we may assume that a,,=a,=1.
Then will yield

1=(Uga:)dra) = dpas, ; 1 =(dpay)Xdga) = dxa,, -
Now 4p=eF—¢f (additively written); hence ef(a,,) = ef(a,,). Since dx = —eF+ef
we get ef(a;;) = ef(ayy).

Now K is C-free, so let {k;} be a C-base and let a,;, =2/ ®k;. Thus
e )=YARfNRk: =2 (i@ R k; =¢l(a,). Consequently, f; € C and, there-
fore, a,; € 1®@K)*. From the second relation we now obtain that actually
a, € (FRD*. Hence, a,,=ce C*.

But in this case, one verifies that ¢, =15 cP1l=4(cP1). i.e. a;~1. q.e.d.

We turn now to H2%(F; K/C) and choose a representative @, of a cocycle
and let:

(3.2) 3 = Ayt Ao+ Qa1 -
From the relation in view of Remark 3.3 we get that «,, is a represen-
tative of a cocycle in H*(F/C) and a, of H¥K/C).

Now to compute the first cohomology group of the quotient complex
[C*(F/C)QRK]/C*(F/C) we have to consider the sequence of quotient groups.

——>(F®K)*/F*——>(F2®K)*/(Fz)*i(F3®K)*/(F3)*-* e

First we obtain the map a: H¥F, K/C)— H'[(C*F/C)QK)/C*(F/C)] as
follows:

To the @, given above in ala,) will be cocycle generated by as,
and it is trivial to show that a(asb,)= ala;)ab;). « is well defined: since
as = (2R K)* and from it follows that (dza,,)(4dra,;)=1. Noticing that
dgas, € (P =F*QL)* we get dpa,, € (F®)* which means that a,, represents
a cocycle in HI C¥F/C)Q K)/C*(E/C)].

Furthermore, let b, = a@;(da,), a, = a,,+a,,+a,.; then

by =[atau-ta,+ap | drasy+(dxas- dpay)+ -]

so that b,, = @,,(dpa, )(dgay,). Note that dga,, = (F?)* which means that by
and «a,, represent the same cocycle in the cohomology group of the quotient
complex.

To prove that it is an isomorphism we define an inverse map G:

Let x,, € (F* @ K)* represent a cocycle in cohomology group of the quotient
complex. This implies that 4dpx, =y, for some y,,(F)*. Put v =5
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and we get the first relation: () (dgx,)(dpx,1) =1 since dx|F? is actually the
injection (F*)*—>(F*Q1)* S (F*QK)*. Furthermore, applying 4, we get
1 = (dpdgs ) (d%x,,) = (dxdp)xi! since dgdp+4z4x=0. But as 4g is an injection
we get the second relation dpx,y=1.

Next applying 4z on (x) we obtain: (4%x,0(dxdpx,) =19

Consequently, 4x(dgx,;)=1. This means that dgx,, € (F?® K?)* represent
a cocycle in (F2QK%H* But HW(FQK?/K?)=0 hence dgx,, =4dzyv,, with
v (FQ K?)* or equivalently we obtain the third relation : (Gesx) (dga,, )(dpx1,) =1,
where x, =3\

To determine x,;,, we apply 4g on the last relation. The fact that 4% =0
implies that dgxdpx,, = 4(dgx,,) =1. Consequently, dgx,, = (FQ K?)* represents
a cocycle in H(FQK?®/K?®), but the latter is zero so that dyxx,,d,x,,=1 for
some x,, € (F*)*. Applying 4 we get dgdpx,,= dpdgx,;=1. Hence again
4K?)* is an injection so the last relation yields dgx,, =1 as required.

We now define A(x,,) to be the cocycle of the double complex represented
by X3 = X304 X21+%12-F%,s Which were chosen above.

B is a well defined homomorphism: since one readily observes that
B(%21921) = B(%:1)8(v,1); and it suffices, therefore, to show that if x, is a
coboundary then B(x,,) is the zero cocycle.

Indeed, x,,; a coboundary in the quotient complex is equivalent to x,, =
2,(dp211) = dgzs0dpz,.  Let x; be any representative obtain from x,,, then
another representative of the same cocycle will be:

¥s = %42z +21) = 30+ 14312+ 950 -

And it remains to show that a cocycle represented by y, is the zero
cocycle. To this end we observe that the relation yields first that
(4xys0)drpl) =1 but since 4x| F*® K is an injection, it follows that y,,=1.

Next (4g1)(4ry:2) =1, s0 y,, represents a cocycle in HY(FR K?/K2%, but
the latter is zero so y,,=4dpzp. Thus y,41+1425)=141+1+c¢,, is another
representative of the same cocycle. The rest of the proof follows by showing
as avove that ¢,;=1 which is a simple consequence of the fact that dpc,; =1
and 4z is an injection on cg,.

The conclusion of the proof will be obtained by establishing the iso-

morphism : H'[C¥*F/C)QK/C¥F/C)]= B(F)\B(K). To this end consider the
exact sequence:

1———>C*(F/C)L>C*(F/C)® K— C¥F/CO)Q K/CHF/C)—1

which yields the exact sequence

5) Since 4%=0.
6) Note that since F'is C-free, it follows that H°(FQ R/R) =0 for arbitrary R2C.
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0=H'[C*F/C), ® K1— H'[C¥F/OOQ K/CXF/O)]—

0
— H¥F/C)— HY[CHF/OOR K] .

Thus, our cohomology group is isomorphic with Ker(¢*). From the remark
given prior to it follows readily that Ker(o*) is isomorphic with
the subgroup of B(F/C) of all algebras which are split by K; and this com-
pletes the proof of the theorem. To prove the second isomorphism one has
to assume that A (FQK/F)=H (F*Q K/F*)=0.

In one case we can determine the group H(F; K/C):

THEOREM 3.3. Let F2K, then H(F, K/C)= HK/C), n=0.

PRrROOF. First we observe that Theorem 2.9 yields H*(F*QK/F*)=0 for
y=1

Let a,=ao,+ay,n1F - +an, @i € (F'QK"*)*, represent a cocycle in H™(F,
K/C) then it follows by (3.1) that «,, € (K")* represents a cocycle @,, € HY(K/C).
We obtain the isomorphism required by mapping: @,— don.

Indeed, the map is onto. For, let @, = H*(K/C), which means 4dxa,,=1.
Define @,,,-; stepwise to obtain an element «@,= X a;,-; for which 4a,=1.
This is carried out as follows: 4¥: K"—F®K" is an injection. Since
1= 4dpdga,, and the latter = dxdza,, it follows that dxa,, € FQ K™ is a cocycle
in CX(FQ K/C). But as remarked above H"(FR K/F)= H"(C*K/C)Q F) conse-
quently, dpa,, = dxai}-; for some a,,,-, € FQ K" . Now 1= 4}ay, = dpdgait-
= Agdpty n-, Which implies that 4pa,,.,= F2PQK"' is a cocycle. Again
H"Y(F*QK/F?) =0 yields 4pa, -, = 4xas} -, and clearly this procedure can be
continued to yield the required a,. Furthermore, the method of choosing the
@i,n-i Proves the validity of the relations (3.1) and hence 4a,=1, as required.

Now suppose @, = dgbo,n-, i.€. @,, is a coboundary; we wish to show
the corresponding «, is also a coboundary. Indeed, @45l +1+ - +1)=
1+af 1+ - +an,o=aj is homologous to @, Our proof will be obtained by
showing that if we can find an element ,=1+ --+ 4+1+4b;,4—4+ -+ +b,, homolo-
gous to @, then we can find b, =1+ -+« +1+bf1y 41+ -+ +bso 0of the same class.
Indeed, (3.1) yields that dgb;,-;=4pl =1 s0 b;,-; is a cocycle in C¥FRQK/F)
but the latter is zero, hence b;,,-; = 4pCi41,n~1-, and the element by, =0b,4(1+ ---
+cil noioi 14+ - +1) will satisfy our requirements. The rest follows now
easily.

Actually the preceding proof yields more:

COROLLARY 34. Let F, K be two free C-algebras with the property that
H - QK/F)Y=0 for n=v=1 and all n then H(F, K/C)= H*K/C).

In our case where KS F we can actually write down the explicit map
which vields the isomorphism. First we obtain a more general result:

THEOREM 3.5. Let ¢ : R—F, y: R—K be two C-homomorphisms then the
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map: & (RY*—2(F*RQK™Y)* given by
5(7’1 ® ®rn) - 2(§0u®wn-y)(71® ®7’n>
=20r)® - Qo) @V (#,11) D -+ QY (7,)

induces a homomorphism &*: H¥(R/C)— H*(F, K/C).
PrOOF. Clearly & is also a ring homomorphism on each component R®
and writing £ =3 ¢"®@*™ one obtains the relations:

fei=2(P" QV")es = P (@ QY+ P &P QY"1 ).

So that (additively written): for &=2¢&"

EA=EB-DTa =2 SV Oy B (I @y )

i=1 i<y

=5 (S D+ B (DO Y = S A @y = ¢

That is £ is a complex homomorphism. g.e.d.

REMARK 3.6. In the particular case R=K, K< F. Then ¢ =identity and
Yr: K— F is the injection of Fin K, the above & is given by &(a,® - Ra,)=
Sa® - Qa,, but each term is considered in a different ring F¥Q K. In
this case &* is an isomorphism as follows readily from the construction of
the isomorphism of the proof of Indeed, let &(ay,) = o+ -
=y, @or, € (K™)* and the isomorphism of was achieved by map-
ping : @,— -

For further application we recall the simple result of [3.1):

THEOREM 3.6. There are always homomorphisms:

2. HW(F, K/C)— H™(F/C); A HY(F,K/C)—> H"(K, C)

given by: Ap(@n) = @noy Axl@n) = Gon where a, = @+ nrt -+ +no-

We conclude with the simple observation, that since &* =A%
COROLLARY 3.7. If F2K then the composite:

ARFTL H*(K/C)— H*(F, K/C)— H*(F/C) is exactly the lift map of Definition 2.3.
We conclude with a general case where H°(F/C) and H(F/C) are zero:
THEOREM 3.8. If F is C-free then H(F/C)=0, and if C be a commutative

ving with a unit satisfying the minimum condition for ideals and F be a finitely

genervated free C-algebra with the generators k,=1, ks, -+, ky. Then HY(F/C)=0.
PrROOF. Let a<= F? be a cocycle, i.e. da={(c,a)e,a) esa=1. Thus eae=
gaca and if a=> ;R k; then:

SARaR@kNaRD)=2a;: 1Dk,

yields 1 Qa)ea=a; 1. Furthermore, we note that for the homomorphism
p:F2—F given by u(xQy)=xy, we get that da=1 yields pa=> a:k;=1.
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Consider the set {#luce F,0Ru)e=uX1} =K. Then K is a C-module
containing all ¢; and we have to show that K contains an invertible element
# which will give e=1&u™') as required. To this end we consider the
radical N of C and observe that C=C/N is semi simple.

Now if #,v= K then « Qv=>uQR1)(1X)=1ARu)e(v QX 1)e™ =vQu hence
if w=ak, v=23 0k we get that av=fu for any a=«a;, f=4;; and for
#+0 and v+0 some «, # are non zero. The module K/NK is a C module
and since it must be free and one dimensional with respect to any field of
C, one readily verifies that there exists x< K such that all @;=2.x+#,; for
n; € NK, and 2, C. Consequently, 1=2> a;k; =2 A:k)x+n for some n < NK.
Clearly, 1—» is invertible hence x has also an inverse. We also obtain that
a=Xa;Qk;=xXy (mod NK) with y=2>4;k; and note that y has also an
inverse. Multiply by 1&y™; we get

xQ@l=a(lRy =2 a; Dby =3 sija; Qk; (mod NK),
from which we deduce that x= 3] g0, mod (NK). Set u=2> #,a;= K and
u=zx+n=x1+nx") and (1+nx")"'x! exists since n & NK. q.e.d.
REMARK. In the proof we actually used only the fact that if MC), N(F)

are the Jacobson radicals of C and F respectively and 1) every module over
C/N(C) is free or C/N(C) is a direct sum of fields; and 2) FMC) < N(F).

4. The fundamental exact sequence.

The aim of the present section is to obtain some exact sequences which
in the classical case are known as the fundamental exact sequences. Our first
result in this direction is

THEOREM 4.1. Let F, K be two C-free algebras and such that H'(F!QK/FY)
=H(FRQXKN=0 for i+j<3,i=0,1 and H(FRQK/K)=0 then there exists an

exact sequence:
% %

“.1) 0— H¥(K/C)— H¥(I/C)— H(FRQK/K).

In particular, the condition holds for KE F'; and then 2 is the “lift” homo-
morvphism and o is the “ vestriction”.

Proor. It follows from the requirement of the theorem and from the
fact that H{(F*QK/F*)=0, in view of Corollary 3.4, that the procedure of
the proof of Theorem 3.3 can be applied to our case. Namely, for a,, € (K3?)*
we can find o(@y) =@ = @gp+ s+t € C(F, K/C) so that ¢ induces a
homomorphism o¢* : H¥(F/C)— H¥F, K/C).

The map A* of the theorem is the composite A*=21% where A{(a;)=a,
is given in Theorem 3.6. The homomorphism p* is the restriction i.e.
az) =a,,R1e F*Q K and clearly ¢ = 4g of the double complex.

From the proof of Theorem 3.3 it follows immediately that ¢* is an injec-
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tion (in fact an isomorphism!), so is also A¥. Indeed, let Aza; = a5 = 4rb,, for
by € F2, then by = a,d(1+1+4+b3') =bes+b.1,+bs+1 represents the same element
of H¥F, K/C). Since 4b,=1, it follows from the relation that dpb, dgl=1.
i.e. by, is a cocycle in HY(FQK/K). The latter is zero, hence by = dpcyy.
Consider ¢, =b,4(1+ci'+1)=cyp+c1,+14+1, and similarly one obtains that the
original ¢, is a coboundary. This proves that 1} is an injection and the ex-
actness of the first part of is shown.

To prove the second part of let @y, = (F*)* be such that p¥(a;)=1,
i.e. olay) = dga, = dpazt® for some a,, € F2R K. We follow now a procedure
similar to the proof of to show that there exists @, such that
s = Aso+ @+ a,Fays is a cocycle in C¥(F, K/C) which shows that ag,,=(a;)
as required. Indeed, from the way a,, was chosen we get that 1=4dka; =
dgdpa, = dpdga,. Hence dga,, is a cocycle in H(F®QK/K) and again the
latter is zero. Hence, dgd,, = dpaz, etc....

If K< F, then [Corollary 3.7 means that A* is actually the lift map.

To obtain the complete fundamental sequence including the transgression
we note that the two homomorphisms ¢, =ef: F*QK—F*QK? given by
a@@k)=a®@1®kand e,=ck: F*RQ K— F*Q K? defined by e,(aRQk)=aRER1
are in fact complex homomorphism C¥(F/C)® K— C*(F/C)R K?. Hence, they
induce ¢f : H(FQ K/K)— HY(F& K?/K?) and we shall denote H"(FQK/K) =
{¢lc e H(FQK/K) for which () =¢¥?C)}.

Thus the complete fundamental exact sequence is:

THEOREM 4.2. Let F, K be two free C-modules such that HXFQK/F)=0
and 0=H F*"QK/FY; i=3,2,1 (which is always valid if KS F) then there
exists an exact sequence:

¥ % ¥ 2%

O—HHz(K/C)—eHz(F/C)-p—»HZ(F(X)K/K)"——*HS(K/C)—»HS(F/C)

where A* is the lift map and o* is the restriction.

Proor. The proof will be carried in steps:

a) Consider first the set of all elements of I3, K/C) which have a represen-
tation of the form a, = ay+ @i+ aet+a.+1.

Now da,=1, yields by (3.1) that (1) dpa,; =1 and (2) dga,, = 4drpaz'. The
first relation is equivalent to the fact that a,, is a cocycle in HA(FR K/K).
Noting that this dx=¢F(¥)"1, it follows that (2) is equivalent to the fact that
under the induced homomorphism 4%: H*(FQK/K)— H¥FQ K?/K?) the class
of «;, is mapped onto the zero.

a’) Conversely, let a,, € (F*@K)* an element with the properties that its
class @y, € H¥(FQ K/K) and efd,;, = efd,, then clearly the first condition implies

7) Note that p is exactly the same map as 4x.
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(1) and the second condition yields (2) for some a,, = (F2® K*¥. Then we can
continue as in the proof of the previous theorems: from (2) it follows that
1= d%a,, = dxdpay' = 4(dga,,). Hence dxa,, is a cocycle in HY{(C¥FQR K*/K?))
which is zero. Thus 4dga,, = 4ray for some g, € FQK? and so on...
b) Next we observe that if a@; represents the zero cocycle in HXFQ K/K)
then the corresponding «, is homologous to zero in H3ZF, K/C). Indeed, if
@y, = dpay;, then @, is homologous to @, d1+414a5i'+1)=boy+b13-+bs+1-+1=0,.
Since 4b,=1, conditions imply that 4zb,, =0 which means that ,, is a
cocycle in H(FQK?/K?)=0. So by;;=Adpci and we continue as in the proof
of Theorem 3.3
c) Let a,= M aps+ai+as+ay)=ant -+ +as,+1, then it follows by definition
of 4 that 4pa;,,=1 and ay =(4pas)-(4drxas;,) which means that @,, e H*F/C)
and that in H*(FQ K/K), as; is homologous to dxa,,; but in the present case
dg=px: F*—F*QK is the restriction o of Definition 21. Conversely, for a
given g, which is homologous in H*(F& K/K) with an image p(a;,) of a cocycle
of H*(F/C) the corresponding @, is coboundary 4g, in the double complex
C(F,K/C). The proof is similar to the proof of (b), starting by b, = a,4(1+
1+ag'+as) where H(FQ K*/K*)=0, a3, = (dpa,, ) (dxas,), Which exists by as-
sumption on a;;. Here again H(FQ K*/K*)=0, b, =by,+b,3-+b,,-+1+1 and one
continues as in (b).
d) Consider the map o(e;) = a,= au+a,;+a,+a,;+1 where @, is chosen as
in (@"). Though ¢ is not unique, it induces by (b) a homomorphism ¢* : H*(F&)
K/K)— H*F, K/C) and the image o*[H¥(FQ K/K)"] is exactly the set of all
cocycles of the form «@,=a,,+ - +a,;;+1. But this group is clearly the kernel
of 2%: H¥F,K/C)— H*(F/C). Indeed 2Az(x,)=2A(xp,~+ +-+ +%5,+%,0)=x,, and if
Xo=1 in HF/C) it follows that =x,,=4dpy;, and consequently x,4(1-+ ---
+14+yi) = x4+ - +x4,+1 is of the preceding form.

Furthermore, Kernel (¢%) is by (¢) po*[H*(F/C)]. Hence we obtain the
exactness of the sequence:

HYF/C)— HY(F'® K/K)OG—>H3(F, K/C)—— HF/C) .

To conclude the proof, we define *=2}0s* where A*: H(F, K/C)— H(K/C)
given by Ax(X @;,,-:) = @y, Which is shown to be an isomorphism in the proof
of [Theorem 3.3 Then AFi%*=24* by This together with
complete the proof.

5. The normal separable case.

It is our purpose in the preceding section to show that the notions intro-
duced above coincide with the respective classical notions. Let F be a normal
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separable extension of an infinite field C, and let ¢ be its group of automor-
phisms.

Let @,={(9,, -, ¢, ps =G} be the set of n-tuples of elements of 4.
For a€ g, o €@, we put ap =(ag,, -+, ap,).

Let C,=C,(Q) be the free abelian group generated by the #-tuples of
®,, then clearly C,(Q) is also a free ¢-module generated by the elements
{(py, =+, Pic1s L, @4, ++, @)} for any fixed 7.

Put @,={(+)}, and C,=Z and set a(-)=(-). We shall use also the nota-
tions:

(GEY) 0l P1 s Pu) = (@1, 0y Pyt Pa)s a,(9)=(")
Tl @1 s Pn) = (@1 Pimss L @iy o, @) -

The set of all groups C,(¢) from a complex C(g) with respect to the
derivation,

(5.2) d=d,=3(~1)"a;.

Consider F* as a right ¢-module by setting ea™ = a(a), then the homology
groups of the complex F*& (C(¢) with respect to the derivation 1&d.

Our aim is first to prove:

THEOREM 5.1. H(G; F*) = H(F/C).

We start with some preliminary result in order to obtain an isomorphism
between the complex F* Q) (2) and G (F/C).

Following [5] we consider the pairing of F" with @, into F. That is,
consider the function (¢,¢) for e = F*, ¢ =®, which is linear in the first
variable and given by:

(53) (a, 90) =(a, @ - Qay, (golr ) gpn)) - @1(“1)'902(02) gon(an) .
We quote some properties of (a, ¢):

(a+b, 9)=(a, )+, ¢);  (ab,p)={(a, )b, ¢)
(@, ap)=ala,9); (Ya,¢)=(a, ¢¥)
(Eiaxl.agp) = (a, Gz§0>

(5.4)

(Via; §D> = }_é[g(a’ TﬁDO’f(i)) =11 [a, (';017 oy P &, Py ey, gDn)]

. 1=19

Where gmzh - (goll Ty §0n)("701’ Tty /llb\n) = (@111”1! Ty ?nwn) and a(i) - (1, ) 11 «, 1) ) 1)
with « standing at the i-th place.

With the exception of the last property, all proofs are straightforward.
For the last property we need:

LEMMA 5.2. Let R be an arbitrary commutative C-algebva and KCS F.
Consider KQR as a subalgebra of FQR then Norm (KQR/R; x) =I11(p Q 1)(x)
where ¢ vanges over the isomorphisms of K into the normal field F.
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ProOOF. Let %, ---,u, be a C-base of F and let x=>¢u,;, &< R. The
characteristic polynomial Pc(d;x) of x is by definition det |A1—g;(&)] where
xu = gul&)u, and its last term is (—1)" Norm (FQ R/R; x).

On the other hand, consider the polynomial

H(x; D)= 1} (A= @D ] =TILA—2&,90u)] = 1HA—1LE))

where [/{£) is a linear polynomial in & The lemma is now an immediate
consequence of the fact that H(x; A) = Pc(x; A).

Indeed, if all &; = C the result is well known (e.g. [2, p. 137]). Now C
was assumed to be infinite and both H(x;2) and Pc(x; ) are polynomials in &;
hence, they are identical.

The last property of (5.4) follows now easily since:

First, we have for a=1¢;'6 that (e;e7'h, ) = (b, ) =(&'b, 0;¢). Hence,

(via, ) = (7' Norm (F"/e,F"1; @), ) = (7' TI(@Pa), 0;7:9)
=TI (a®a, r;9) = 1 (a, 1:9a®).

To the function of (5.4) we add the definition (¢, (:))=gq for a € C=F".

The following result of (Lemma 2.2) will be used here extensively:

LEMMA 5.3. For x€ F,, let p, = Hom49(D,, L) defined as p,(¢) =(x,¢). Then
the mapping v :x—p, determines an isomorphism: (F*)* = Hom%®,, I'*).

We turn now to the proof of [Theorem 5.1:

Consider the mapping f: Co(F/C)— F* R «L(G) defined by:

(5.5) ) =21.9)R7,9 for x= F™
and where ¢ ranges over all @,_,.

Note first that in the definition of f we could have chosen any 2=i=#»
instead of 1.

Indeed, setting v =(@1'@,, -, 97'Qis, @7, 917'¢;, -++) Where @ =(@y, =+, Pu-i)s
we get 7,0 =¢,(r;¥). Now since (x, ap)=a(x, ¢)=(x, ¢)a* by definition, it
follows that:

(x, T P) Q19 = (%, T YPT Q@ut ¥y = (%, 1) Q1
Clearly 4 will also range over all @,._, if ¢ does so.
It follows now by (5.4) that

Sly) =2, 1,0) Q1190 = 22, 7,0)( 3, T.9)Q 7,9
=2 1,9) Q10+ 20, 119) D 7,9% .

It is evident that the elements of F*QC,(Q) can be written uniquely in
the form ¢é=3a,Rr:p with ¢ ranging over @, ,. The functions ¢ of

8) Note that the elements of F* are written multiplicatively, whereas the groups
F*@C,(Q) are written additively.
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Hom#%®,, F*) are uniquely determined by their values &(r;p) since every
¢ ®, can be expressed uniquely in the form ¢ =ary/, 'wed)n_l so that
(@) =ad(rsy). It follows, therefore, by that the mapping f is an
isomorphism. It remains now to show that f is also a complex isomorphism.
The last property of (5.4) yields: for x= F™*, vix = F™! hence, for ¢ >1:

Sx) = > Vix, 1, 9) QT =2 El(x, (119D 7,9

0Oy

= l(x,fM)@Ui(mP)-

eEDp—
For, 7,9 = (1;7,0)a® = (1, @, -+ , @4, @iy, -, Pn_p) and ¥ will range over all
®,_, when « and ¢ range over all ¢ and @,_, respectively. The same result
holds also for i=1. Indeed,

(11 Pa) Q¥ =, (@, 1, ¢y, N 1.0 =, all, a7, a7y, )19
=alx, 1Y) Q1 =&, 1) Q19
=, )R ane = (x, )XY =, ) Q oy,
and here vy =a'r,p=(a™}, alg, - ,a7'¢,_,), and o,-7; is the identity. Con-

sequently,
SR =MLy = S (=1 fix)
=2, 1 )@Y+ (D 2, r) Qo
=2 (—D"'AQ o XX, 1) Q) =1 R d) (%)
which concludes the proof of the theorem.

Next we show that the restriction and transfer defined in Section 2
coincide with the classical definitions for the normal case. But we shall carry
it through only for the cohomology groups. To this end we need the following
generalization of [5, Lemma 2.27:

Let Fy,--,F, be finite algebraic extensions of C and let F be a normal
extension of C containing all ;. Denote by @(F;/C) the set of all isomorphisms
of F; into F. Thus @(F/C) will be the Galois group of F.

Let @={(¢y, ", ¢n); p.€ GF)} and define algy, -, @) =A@y, -+, APy).
Again (a,¢) will denote the pairing of F;® --- Q F, with @ into F which is
linear in the first variable and defined as in [5.3) Namely,

(@@ - @ (@1, P0)) = P1(a)Ps(as) -+ Prlan) .

The same proof of [5, Lemma 2.27 will yield the following generalization :

LEMMA 56. For x=c F\Q - QF,, let p, = Hom%D, F) be defined as pL)
=, ¢). If F, -, F, are separable extensions of C then the mapping: %— pg
determines an isomorphism (F1 --- Q F,)* = Hom%®, F*).

The proof will not be reproduced here as it is the same as that of [5,
Lemma 2.2], noticing that under the assumptions F,® - @ F, is still semi
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simple.

Let K be a fixed subfield of F with a corresponding subgroup 4 of
¢=G6(F/C). The complex C(Q) given in the beginning of this section can be
considered also as a free 4 -complex. We shall use our lemma for the fields
F,---,F,K and since G(K/C) can be identified with right cosets of ¢ mod .«
we shall denote them by & for a € 4.

LEMMA 55. For x€ F*QK, let p, < Hom#(C(9), F*) be given by p.¢)=
%, (¢, 1)), where (x,v) is the pairing of F*Q K with = (% ¢/ %) into F. Then
the mapping n:x—p, defines an isomorphism C¥*(F/C)R K= Hom#*(C(&), F*).

PrROOF. The groups of C*F/C)QRQK are (F*Q K)* and by Lemma 54 it
follows that z:x—p, is an isomorphism of (F"Q K)* with Homé%¥,.,, F*)
where ¥, = {(@1, ** , Pns Brpar), Pi € GF/C), $nry € G(K/C)}. To conclude that 7
is an isomorphism between (F*@ K)* and Hom#(C,(&), F*) it remains to show
that the map f,— f where f(¢)=1(¢,1) is an isomorphism between Hom4(¥,.,,
F*) and Hom#(C(&), F*). This is clear from the observation that for an
fe Hom (C,(9), F¥), flap)=«af(¢) will hold if and only if flap,1)=af(e,1) is
valid only for a = 4 ; and from the fact that the functions f of Hom%¥,,,, F*)
are uniquely determined by f(p,1) if af(p, 1)=Ffagp,1), for all « = .%, holds.

At this stage one can reproduce the proof of [1, Theorem 17 to show that
n:x— D, is actually a complex isomorphism from which the theorem follows.

From the general theory of these complexes as developed in [1] and [5]
we know that the mapping zz: x—p, of Lemma 53 induces a complex
isomorphism: C(F/C)= Hom%C(S), F*). We also recall that the restriction
0:C(F/C)—CF/C)QR K was given by o(x)=x2Q1 for x= F*. We now prove:

THEOREM 5.6. The induced homomorphism of the composite:

noty': Hom4C(Q), F*)—— C¥*(F/C)— C*(F/C)R K— Hom#(C(9), F*)

yields the restviction homomorphisms: H™G ; F*)— H"( I ; F*).

Proor. For fe Hom4C,(G), F*) we have f=r1zx for x € (F*)* where x is
determined by the relation fle)=(x,¢) i.e. f=p, Now o)x)=7xR1)=
g€ Hom#(C (@), F*) and g is given by

2P = paen(P) = (xR 1L, (9, ) = (&, ©) =19 .
That is (zer5')f=f but here f is considered as invariant only under .%. Hence
the induced map (porz')* =7*p*tE ' =i(% ; Q) is the restriction map given in
[3, p. 254].
Next we show:
THEOREM 5.7. The induced homomorphism of the composite map:

7t Hom#(C(Q) ; F*)—— C(F/C)Q K— C(F/C)— Hom%(C(9), F*)
vields the transfer map: H™(I ; F*)— HY(G; F*).
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PrOOF. For fe Hom#(C,(G), F¥), n~'f =x & F*® K where (Lemma 5.5) p,(¢)
=(x, ¢)=f¢). By definition of r and by it follows
that: «(x)=Norm (F"Q K/F"; x) =I1(1® a@Xx) with & ranging over all cosets
of ¢mod %. Hence, rp1(x) =g € Hom%C,(@); F*) satisfies, by (5.4),

2(9)=per(®) =(TTA R aXx), ¢) = I (x, (¢, @)*
=T afx (ai'e, 1)* ITaif(e;'e)

where («, ¢)¥ is the pairing of (¢, ¢/4) and F*@QK in F, and «,; range over
a set of representatives of the cosets &. But, clearly, the relation between g
and f is exactly the transfer map as given in [3, p. 254].

REMARK 5.8. The fundamental difference between the restriction and
transfer maps for arbitrary fields and the respective notions for H™(G, F*)
and H™( 4, F*¥) is that the first are maps between C¥F/C)QK and CHF/C),
whereas the latter are between H"(%, F*) and H™"(4, F¥). The corresponding
groups for H™4, F*) are the homology groups of C¥(F/K) and not of
C¥F/C)® K. These last groups, as we have seen in are isomorphic
with the homology groups of Hom%(C(&), F*) and the former with the homology
groups of Hom#(C(4), F*). Now, for groups we know that both the complex
C(4) and C(¢€) can be used to compute H"(%, F*) while for the fields the
complexes C*(F/K) and C*(F/CR K) yield the groups H*(F/K) and H¥*(FQ K/K)
which we do not know if they are isomorphic for . arbitrary extensions
F2K2C. Though in some case it is known (Theorem 2.8 and [Theorem 5.12
in the end of this section) to be true.

From we have a homomorphism % : H¥(FQ K/K)— H*(F/K)
induced by the map u(xQ k)= xk for xQkc F*QK. Using the same methods
of the proof of Theorems 5.6 and b7, one readily verifies that: zpup™:
Hom#(C(@), F*)— C*(F/C)® K — C¥(F/K)— Hom%*(C(©), F*) is the restriction of
Jf € Hom#(C(9), F*) to C(%). This map is known to induce an isomorphism
H"(Hom*(C(@), F*)) = Hom*(C(%), F*) which clearly yields that in this case
¥ H(FQK/K)— HY(F/K) is also an isomorphism. We shall see that this
is a special case of a more general result (Theorem 5.2).

To conclude the analogue with the classical groups we have to consider
the “lift” map and the groups appearing in the fundamental exact sequence.

For the lift map we have:

THEOREM 5.9. Let 4 be a normal subgroup of G then the composite map:

ity s Hom4%(C(@/ %), K*)— C(K/C)— C(F/C)— Hom%C(9), F'*)
induces the lift map: H"(G/ I, K*)— H"(G, F¥).

PrOOF. For fe Hom%#(C(2/4), K*), t5'f = x< K™ where f(¢)=(x, §) with
G=(Gy, ", @), G;E8/H. Now Ax=xcF" and thus (rpltg)f=rtpx=g8€E
Hom%C(@), F*) is given by gl@)=(x,¢) for ¢=®,=(g, ,4). But since
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xe K™ we see that g(¢) depends only on the classes ¢. i.e. g(¢)=f(&) thus,
f—g is the known “lift” map. q.e.d.

The last result in this connection is:

THEOREM 5.10. Let I be a novmal subgroup of G then we have the isomor-
phism: H¥(FQ K/K)" = H*(9, F*)°.

In fact we shall prove more, that this isomorphism is induced by the
isomorphism H*(FQ K/K)— H*(4%, F*) discussed above.

Let (®,, <) and (@,, G, ) be the set of {(p, @)} and {(¢, @, B)}, ¢ =0, and
a, B cosets of ¢/4. Consider the commutative diagram :

(F"® KY* —— Hom%(0,@), F*)

| |
T - =
(F*Q K2y —Hom ((®,4, @), F*).
The last vertical map is by definition refz™!, and r is the map z(x)=p, of
Lemma 5.4.
Let f = Hom%®,, &) then by definition r and by (5.4) it follows that
[(ref ™) f Ao, @y, @y) = pefe™'f(p, @y, @) = (ef'r7V, (@, Ay, @,))

=(z7Y, of{(p, Ay, @) = (7, (@1, @)

:f(golx C_(Z)
and similarly (cefc™)f (@, @, @) =F(¢,, @).

Now di: F*"QK—F*"QRK? is f(e&)™'. Hence
(5.6 (tdet™f N, @y, @) =1 (@, @)f(p, @)™

Next we consider the isomorphism ¢ :Hom%(®,, <), F*)— Hom%(®,, F*)
given in the proof of [Cemma 55 Namely (¢fX¢)=s(¢,1) and similarly
(Cf )Xo, @)=f(p,1, @) will be an isomorphism of Hom4(®, &, &), F*)— Hom%(®,,
@), F¥). Consider now (rdx({t)™Yf for f = Hom#(®, F*), by it follows that:
78 [(Crdxr™ ) e, @) = (edge 7 X, 1, @)

= (X DI Xe, D
=fle)af(a™e)] =fpXa./(¢)™
since (7 (g, M=l Xa e, )= af (@)= a.f.

Since {7 induces isomorphism of the respective homology groups, hence
(¢7)* induces an isomorphism between Ker 4% and Kernel ({rdx({z)™*)*! The
first is by definition H*(FQK/K) and the latter is, by (5.7) the set of all
cocycles of H*(4; F*) for which a.f~f i.e. H¥( % ; F¥*)¢ and the proof is
thus concluded.

Summarizing the last three theorems, and noticing that all the isomor-
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phisms involved commute, the existence of the fundamental exact sequence

[T) is readily obtained from [Theorem 4.2

COROLLARY 5.11. If 4 is novmal in G then the following sequence is exact:
0— HYAG/H, F*)—— H¥G, F*)— H¥ I, F*)?
—— H¥G/ 9, F*)— H¥ G, F*).

We close the paper with a case where we can prove the validity of the
condition of [Theorem 2.8; hence for which H*(F/K)= H*(FQK/K).

THEOREM 5.12. Let F2 K2C be finite algebraic extension of a field C and
such that K is sepavable over C%; and suppose that each of the fields (W F)K,
which is generated by K and by conjugate v'F of F, contains F (e.g. if F is
normal) then there exists a homomorphism & : F— FQK such that k=1Qk for
all ke K. Clearly, an application of Theorem 2.8, yields now the fact that if ;
F is normal then H¥(FQQK/K) = H¥F/K).

PROOF. Let @,= {(¢,, ¢.), ¢, € G(F/C), ¢, = G(K/C)} (in the notations of
Lemma 5.4) and let ¢=¢(L/C) where L is any normal extension of C con-
taining F. It follows from Lemma 55 that : FQK—Hom%®, L) is an
isomorphism. Let 4 S ¢ be the subgroup of ¢ leaving the elements of K
invariant, and let @(F/C)=\J K ;.

First we observe that every element of @, can be expressed in the form
(¢, V¥)=a(p; 1). Indeed, let «, be any element of ¢ such that a|K=+r then
(p, )=ala;te, D)=alp;, 1) with «jl¢p =he, and a=a,k Next, we prove
that if a(g; 1)=4(@;, 1) then i=j and a(e)= F(e) for all e=F. Indeed, the
fact that ag,= f¢; yields that i=j by the definition of ¢;s, and that a|K=
BlK i.e. B=ah. This in turn yields i@, =¢; so that i¢(a)=¢(a) for all
a < F. Inother words, % leaves ¢,(F) invariant, but it leaves also K invariant
since 7 4. Consequently, ¢,(F)K is invariant under %z and therefore Z(a)=a
for all e € FS ¢ (F)K by assumption. Thus, we conclude Ala)=alla)= ala)
for all ¢ € F and our assertion is proved.

We recall that 7: FQQ K— Hom4%®,, L*) is given by (rxX¢, V)= plp, V)=
(x,(¢,¥)). For a= FQK we define ¥#(q) by the relation:

6.8 (rPa)p,¥r)=aa where (@,y)=alp;]).

From the result obtain above, we can show that the function f (¢, v)=«ala)
is a well defined element in Hom4®,, L*). Indeed, f(yo, rv¥)=rf(¢, ¥)=(a)a
since (7, r¥)=ra(p, 1) and if (@, ¥)=alp; 1)=H(p;, 1) then ala)=p(a) by
the previous result.

Consequently, ¢ is uniquely determined, and it is readily seen that & is a
homomorphism.

9) F is not necessarily separable.
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Now for k€ K,
L1 QA e, ¥) =1 @ kL alp, 1)]= a1 & kX¢:, 1)]
=a(1QEk, (¢, 1)) =apDk
=ak=(t3kX@, V).
Hence #2=1&*%, and the proof is completed.
Another evident case where such ¢ exists is that the field F=HRXK is

the tensor product of two fields since then ¢ : F— FQK is merely the map
we denoted earlier as f: HQK—-HRX KR K.

Hebrew University
Jerusalem, ISRAEL
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