Journal of the Mathematical Society of Japan Vol. 12, No. 1, January, 1960

Class formations V.
(Infinite extension of the p-adic field or the rational field)

Dedicated to Professor Z. Suetuna on his sixtieth birthday

By Yukiyosi KAWADA

(Received June 29, 1959)

In the present paper we shall continue our study on class formations
(Kawada [12]-[147]). Let k£ be an infinite algebraic extension of the p-adic
number field @,. M. Mori has defined the fundamental group F, of such a
field £ and has proved a class field theory over 2 by means of F, (Mori [16].
Then the author has considered the cohomology theory over F} and has given
the cohomology-theoretic treatment of Mori’s theory. Moreover, by a similar
method the author has established a class field theory over an infinite alge-
braic extension % of the rational field Q.

In Part I of this paper we shall consider the structure of the fundamental
group F; of an infinite algebraic extension 2 of @, by giving a monotone
family of subgroups of F,. Then we shall consider the ramification theory
of a finite normal extension K/k by means of these subgroups of F,. This
ramification theory is different from the known theory of Herbrand [8] Our
new theory is especially fitted to the case where % is an H-extension of @,
in the sense of Satake [23] Finally we shall consider the relation between
our ramification groups and the norm-residue symbol (n, K/k) (n € F,) for an
abelian extension K/k.

In Part II we shall assume that % contains all the roots of unity both in
local and in global cases. Then we have two kinds of class formations over
such fields. One is our class formation derived from local or global class
field theory by considering suitable inverse limit groups (Kawada [14]) and
the other is derived from Kummer theory (Kawada [12, 3]). We shall prove
here that these two kinds of class formations are actually isomorphic. The
isomorphism can be obtained by means of Hilbert’s norm-residue symbol.
We have already considered the relation between our class formation theory
and Moriya’s theory [20], [21] (Kawada [14, 6]). Therefore, we might say
that we have unified both Moriya’s theory and Kummer theory by our class
formation theory.
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Part 1
§ 1. Preliminaries from ramification theory.

For the investigation of the structure of the fundamental group we need
the ramification theory for a non-normal finite extension K/k of a local field
k of finite degree over @,. Such a theory has been investigated by Krasner
(cf. also Satake [23] and Kawada [10]). Here we shall summarize the

results as far as we shall use them later.

Let @, be the p-adic number field, # be a finite extension of Q,. We
denote by o, P, Up the ring of integers, its prime ideal and the unit group
of k respectively. Let o./p, = GF(q,), where ¢, is a power of p. Then U,
contains a multiplicative group W, of order ¢,—1 which is generated by a
primitive ¢,—1-th root of unity. Furthermore, we shall denote by U,®)
(1=0,1,2,---) the subgroups of U, consisting of all elements a« =1 (mod p?)
respectively. Especially, we have U,= U,0). We have then the direct de-
composition U,= W,x U(1). We denote the non-archimedian valuation of %
with the value group Z (the ring of all integers) by ord, and we denote by
7, an element with ord,(z,) =1.

Let 4 be the (smallest) normal extension of %k containing K. We denote
by & =G(A/k) and = G(A/K) the Galois group of these normal extensions
respectively. Let e=ord, (ng). The group of inertia Ty, is defined by

1) Tpp=1{0;,0@, 0°=p for all pe Wg}.

Clearly < T4, and the subfield of K corresponding to Ty, is denoted by
Tkn (the field of inertiay: RS Txs & K. We define v(o) = (s/e)—1 for o € Tg,
where s=ord, (n"—ng), and for a real number v

2) L) = {0; 0 € Txp v{0) =0} D= <),

Then By, (v) is a subgroup of Ty, containing . Especially, we have Ty, =
Bxi(0). We denote the field corresponding to Bgi() by Viw@). We shall
omit the index K/k if there is no danger of misunderstanding. In general
v >v’ implies B@) S B(v’). For various values of » from 0 to co we have

G2T=B(0)2B(/e) == Bw) DV, +(1/e)) == Bwy) D+++++
D B0,y (1/e)) == B(,) D Blo, +(1/e)) == 9.
Then we denote
(3) By=3, B =B@,), -, B, =Bw,), By, =9D.

The field corresponding to ¥B; is denoted by V; (i=1,---,7). Here all v, (i =
1, -+, #) are rational numbers, but need not be integers. Let us put n=[K:£k]}
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=[8: &1, n,=[K: V,I=[B,: 9], my=ny/n;=[V;: TI1=[B,: B,J ((=0,1, -,
r-+1). These are all integers. Thus we have
G23298,0--0B,0%B,, =9,
kTS V,CCV,CK,
0=2) <0, < <0p <Vpyy =00,
=Ry =N > >N >Ny =1,
l=my=m, <--<mp <Mypsy =My .

Also we have n=cef,e=n, f=[T:k] and e=re,p™, (e, p)=1 for ¢,=[V,: T]
=m;, p"=[K: V,]1=n,, where f is the degree, e is the exponent and ¢, is
the reduced exponent of K/k.

After Hasse we define the function Vg, of v (0=v < ) by

CY) #=VYgp®) =0vy+@,—0vo)/my+---+@—0v;)/m;, for v; SV =054

Let us put w;=vgu@,) (7=0,1,--,7+1). u; are all rational numbers, but
need not be integers:

0:u0<u1 <"'<ur<u1-+1 = 00,
We call the inverse function @i of Vxn the Hasse function :
®) v = Prp(n) = ug+m(u,—ve) -t +my(u—u;) for u;=u=w;..

If p, is unramified for K/k& we define

(6) Ven@)=v 0=v<00), @gpu)=u (O=u<c0).
If p, is tamely ramified for K/k (i.e. r=0, B, = ) then we have by (5)
) Pru(u) =nu  for 0=u<oo.

We define the canonical set Uy, by
(8) uK/Ic = {uOy Uy ***y u'r} if %0 * EB1 ’
= {ub ) ur} if SB0 = EB1 ’

and the canonical value by gy =u, (<co). If p, is unramified for K/k we
define Mg, =0 and ug, =—1.

The following theorems hold just as in the case of a normal extension
K/k:

(I) (Herbrand’s theorem). For kC 2 C K we have

(1 Txio=Tgn- 2, Via@) = Vin(0) - 2,
(ii) Tom=TgnN2, Van®) = Veu(@riow)NL .0

1) There is a misprint in Kawada [10, p. 29, line 10]. v’=¢mk(v) or v=<p9/k(v/)
should be corrected as v’ =4/K/Q(v) or v:sz/g(v’).
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(L) (Chain theorem). For kC 2 C K we have

Pr(tt) = Prs@ ° P amn) SJor 0=u<oo.

(1) (Monotone property of the canonical set and the canonical value). For
kC 2C K we have

(1) H.Q/k - uK/Ic y Nom = Vg,
(ii) uK/k = usz/kuwg/k(ux/,@) .

(IV) (Characterization of V;). Txp is chavacterized as the maximal unramified
subfield of K. In generval, let us put V(u)= Viu(Prn(w))=V; for u;—; <u=u;
(G=1,-,7). Then V(u) (0 <wu < o0) is charactevized as the maximal subfield £
of K with the property ngy < u.

() If u is an integer, then Qxui(u) is also an integer.

(V) follows from the following lemma. Let the different of 2/ be denoted
by Doi = po? " where d(2/k) is an integer.

Lemma 1 (Hasse).

d(Vj/k) = mj(’l’x/k(v)+1)_(v+l) for Vi SV=0; (G=12,-,7+1)

(see Hasse [6, p. 485]). Now let » be an arbitrary positive integer. Take v;
such that v, ; <v <o, holds for v = @xu(w). Then ¢xu(u)=mu+1)—d(V;/k)—1
is an integer by [Lemma 1, which proves (V).
The following results of Hasse [6] holds also for non-normal extensions?.
(VD) (Hasse’s theorem). Let K/k be an arbitrary finite extension. Then

@) NeawU@xn@) S UL (=0,1,2,-),

(ii) NenUg(@rm()+1) € Upi+1) ¢=0,1,2,),

(iii) U,(0) = Ugi4+1) - NgnUrl(@Prp(@)) holds if i & gy,

(iv) LU : UnGi+1) - NepUr(@rnDI S8y By0n] if i€ Ugpe (=) -

Let us denote Bgu(i) = Ngu (Ui(@) S Ux i=0,1,2,--). Then from (VI)
follows immediately

(VI)* (1) BK//:(O) - UK ’
(i) Bg(i) 2 Ug @ri(i)) ,
(ii1) Brp(i+1) 2 Ug(@gp(i)+1) .

Finally, let £/k be the maximal abelian extension contained in X. Then we
have

2) For the proof in Hasse [5] we need some modifications of the arguments in
pp. 480-482 since K/k is not normal. But these do not cause any change of the rest
of the proof.
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(VIID (@) [k*: NguK¥1=[82:F],
(ii) LU : Uli+1) - NguwBru(@)1=[BonPon@) : Bam(Pan@+1)]
(i=1,2,),
(i) CWie: Nep Wil =[Uk: UdD)NguBrn(D)] = [Beuw(0) : Bou(D)].

§2. The fundamental group of an infinite algebraic extension of Q,.

Let us fix an algebraic closure §, of the p-adic number field @, and we
consider only algebraic extensions of @, contained in §,. Let £ be an infinite
algebraic extension of @,. Then we have k= \U,k; where k, are finite exten-
sions of @, contained in k.. Here we can choose a monotone sequence of
subfields Q, € &, € k, &--- such that

) k= Uk,

holds. The absolute order N(k)=1lim[k,: @,] is decomposed to the product
(2) N(k) = N(k) - N;(k)
where N.(k) is the formal product of all factors of the form p,~ (p,: a prime)
and Ny(k) is the formal product of (finite or infinite number of) finite factors
2. We call N.(k) the infinite part and N,(k) the finite part of N(k).
Similarly, let [&,: Q,]=e.f, en=o0rde (p) and N s, (m) =p’». Then we can
define the absolute exponent and the absolute degree of %k by E(k)=lime,
and F(k)=1imf, respectively. The infinite part and the finite part of E(k)
and F(k) can be defined similarly. \
For a moment, let £ be a finite extension of @,. By %4* we mean the
multiplicative group of &, and by £ the compact completion of k* with re-
spect to the Artin topology (see Artin [1, p. 177]). Similarly, we denote by
Z the total completion of the ring of integers Z such that

3) Zzg%

holds, where Z, means the ring of p-adic integers. We can identify canonically
U, with a subgroup of £: U, £, and every element a &% can be represented
uniquely by a fixed element = € £ with ordy(z)=1,2€ U, and m< Z in the
form

a=7n"k.
Hence we have the topological isomorphism
4 E/lU=Z

(where the left hand side is a multiplicative group and the right hand side
is an additive group). If 2Dk’ we can naturally define the norm mapping



Class formations V. 39

N:E—FE’ with the usual properties. Moreover, if k/F is normal we can
extend the automorphism of k/k to E/E'.

Now let k= \U,k, be an infinite extension of @, as above. After Mori
we define the fundamental group F, of k as the inverse limit group of £,:

(5) F,=inv.limZ,
with respect to the norm mapping N, : k,—k,_, (#=2,3,--). Clearly F, is a
compact group. Since N,: Up,— Us,_;» Wiy— Wi,y and Uy, (1) — Uy, _ (1) we
can define
(6) Uy =inv.lim Uy,, W,=inv.lim W,,, Ug*=inv.lim U, 1).
Tueorem 1. (1) The fundamental group F, contains the closed subgroup
Uk and ’
(6) Up = Wix Ug* (direct) ® .
(ii) Let M= M) be the set of all prime numbers p, such that p,™ is not
a factor of Fe(k). Then we have

) F/Uc= TI Z,,.

PYEM

Proor. (i) follows immediately from Uy, = W, x Uy, (1). (ii) We can see
easily that F,/U,=inv.lim (%,/U,,) with respect to the norm mapping N,*:
En/Ukneﬁn_l/Ukn_l. Let us take m,<=k, such that ord, (7,)=1. Then we
have N,r,=mr,_/»/»-1 mod Uy,_,. By the isomorphism Z~<”>=En/U,cn;Z we
may consider Fy/U; = inv.lim Z™ with respect to the mapping

Ja

n—1

N*: m— m (mEZ).

Let us decompose each Z™ as the direct product
AL =Z~1(n) . Z~2(”), Z~1(") = II pr Zz(") = II va .
PyeEM pyEM
Then we can see easily that F,/U, = (inv.lim Z~1‘”’) .- (inv. lim Z~2”“). Here the
first factor reduces to {1} and t~he second factor is isomorphic to II, cu Zy,
since N,* is an isomorphism of Z,™— Z," 0 (n=2,3,--), q.e.d.

Next we shall consider the structure of U,. For that purpose we shall
define the Hasse function for an infinite extension k/Q, after the idea of
Satake [23]. First we deine the canonical set and the canonical value of k/Q,
for infinite extension % by

(8) uk/Qp:-' U/l ukl/Qp, ngkACk,

9) Ugsg, = S;lp Uky/gp = sEp Ukp/ap

3) Uy* is the p-primary component of Uy and W, is the p-complementary component
of U,.
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respectively. Also we define the ramification field with parameter # by
(10 Vig,(4) = n\!l Viensap(Pinsgp(®)) 0=u<oo.

In particular, we have

(11) Tk/Q o Vk/Qp(O) = n\;Jl an/Qp(O) .

By the chain theorem (II), § 1 the sequence {@,/o,(#); #=1,2,---} is monotone
increasing for each fixed value of #. Hence we denote its limit by

(12) Prsgp() = }LHT: Prensop(tt) «

In particular, ¢,/,(0)=0. We define u>=1,,5,~ by
13) U™ = Prrgp (00) =sup{Pus, '(v); 0=v < co}.

Namely, @p,(#) < oo for u<u> and @q,(w)=oc0 for u>u=. The value
Prsgp(#™) is = oco. Also the value #= can be 0 or co. The function ¢, (%) is
continuous and strictly increasing for 0 <# <#=. This means, in particular,
‘lileojok/qp(”) = oo if Prergp(0e™) = oo,

An important special case is the following case.

DeriniTION. £/Q, is called an H-extension if

14 Uk/gp = Ui/gp™
holds. There are following cases of H-extensions.

Case A. Wyg, = {(wo), g, -+ 0t,} and [ Vi (#): Tpe,] <0 (i=1,---,7). In
this case there is an integer n, such that for n=n, we have WV, (u) <
ko Tisgy G=1,,7) and @i, () = Prsq,(u) for 0 =u <u,. Hence by the chain
theorem (II) §1 we have ¢4, x.(#) =2 for n=n, and for 0 <u <u,.

Case A,: u~=oo. In this case there is an integer », such that we have
for n=un,

(15) ?’k/Qp(u) = 901cn/Qp(u) O=su<oo.

Hence again by the chain theorem &,.,/k, (#n =mn,) are unramified extensions.
Case A,: u~=u,. In this case @,(#)=0co for u>u. By the chain
theorem there is an integer #, such that for » =#», we have

u Oéuévr’

(16) Prenr1/kn(8) =
ortm™M(u—v,) v, =u< o,

where v, = ¢i/9,(#,), and lim m(™ = oo,

Case B. 11I(:/Qp = {(uo)y Uyy Ugy -+ ”u} and [Vk/Qp(ui): Tk/Qp] <0 (Z = 1, 2,"')'
In this case there is an integer n(s) for any given s such that Vi ,(u) S
ku Trj, for n=n(s) and u; <s, and Qo (#) = Pr,g,(u) fOr n=n(s) and #<s
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hold.
Case B;: limy;==c0 and hence x> = co.

im0

Case B,: limu,=u><oco. In this case @,(n) = oo for u=u=
k/Q, is called an Hi-extension in cases A, and B,, and k/Q, is called an
H,-extension in cases A, and B,. Important examples of H,-extension are the
maximal abelian extensions of p-adic number fields (see Tamagawa [25],
Satake [23] and Kawada [107]).

Now let £ be an arbitrary infinite algebraic extension of @,. Let m=
{my, My, -+, M-} be a sequence of non-negative integers such that

an Nu(Uie,(mn)) E Ut (10-1) =23

hold, where N,= Ny, u,_,- Then we define the closed subgroup U(m) of U,
by

18) Uy(m) = inv. lim U,,(m,) .

As special cases of U,(m) we define

(19) Ui(a) = inv. 1im Uy, ([ Prrigp(e)]) 0<Zu< oo,
(20) Uc*(u) = inv. lim Uy, ([P, 0,(@)]+1) 0=u< .
In particular, we have by definition

1) U= Ui0), Ug* = U*0).

Here we shall verify the condition for the sequences of and

By the chain theorem we have ¢g,q.(#) = @ipin-; ° Pin-1/0,(#), Which implies
[Prnio )] Z Prepsin— ([ Prn-1sg,(w)]). Hence from (VI) (i) in §1 follows

N, Ukn(BDkn/Qp(u)]) - Nn(gokn/kn_1([§Okn—1/Qg(u)]))
S Ui (CPrp—1/0,() ) -

Similarly, we can verify for the case by means of (VI) (ii) in §1.
TueoreM 2. Let k be an infinile algebraic extension of Qp. Then we have

1) Uuw) 2 Up(u') for u<u',

(ii) Ui*(u) 2 U*(u') for u<u,

(iii) Uiln) 2 U *(u) for any u,

(iv) Uctu) 2 Up(n') Jor Qr,(u=) Su<u .
(v)  For integers i (0 =1i< @prp,(u™)) let

22) Vi = Prrap ' (2) i=0,1,2,--.

Then we have
(23) Ui(u) = Ugly,) Jor vi=u<Viy,
(24) Ue*(u) = Up(Visy) Jor vi=u<Viy.
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vi) Ui)/U:¥u) (u>0) is either isomorphic to a finite elementary p-group or
isomorphic to an infinite product of cyclic groups of order p.

Proor. (i), (ii), (iii) are immediate consequences of the definition. (iv)
follows from the fact [@r,0,(#)14+1=[@s,0,(#")] for sufficiently argel ». (v)
follows from the fact that [ ¢, ,(#)]1=1i for v; = u <v,,, for sufficiently large
n. (vi) follows from

Ui(w)/ Ux*(2e) = inv. lim { Up,([Prnsp(#) D/ UL Prnsp(@)1+1)} -

If we put a further assumption [R] we can prove that there are no
other subgroups U,(m) than Ui(u) or Uy*(u) (0 <u < co). Namely, for arbitrary

generation of k& as k= D k, we have certainly By, /k,_(#) 2 Uk(Prnsien_,G—1D+1)

n=1
by (VD) (ii) in §1. Our assumption is
[R] Ukn(¢kn/kn_1(i—1)) & Bkﬂ/kn_1(i) for i =1,2,--

and for n =, where n, is a certain large positive integer. _

This condition [R] is satisfied if [k,: k,_,] are primes for n=#n, and
gn=p'»>p for w=mn, For,in (VI)(iv)in §1 we have [B;: B,,,1=[k,: ko1l =
a prime and [ Uy,(#) : Us,G+1)]=q, which implies N, Uy, (Prn/kn—1(8) E U G+ 1).

Tueorem 3. If k/Q, satisfies the assumption [R] then any subgroup Ui(m)
is either Uylu) for some uw or U*(u') for some u'.

Proor. Let m= {my, my---}. By assumption [R] N,U,(m,) S Uk, ,(n-)
implies 72, = Prppn— M-y —1)-+1. Hence let u, be defined by the equality
Prnsgplttn) =Mn—1 (m=1,2,--) (0= u, < o0). Then we have n,=u,_, (n=2,3,-).
Therefore, let #,=1lim#, (0 =u,=< o).

Case 1. #uo=u, for n=n, In this case we have m,= @i, (u)+1 for
n=mn, Hence U,(m)= U,*(u,) holds.

Case II. #uy+#wu, for all » and wu,<<oo. In this case let £=limé, ¥
Um), &, € Up,(m,). Then &, = Ny u,bm (# < m) implies that

= Nkm/kn Ukm(§0k7n/qp(um) +1) < Ukn([¢kn/Qp(um)] +1).

Let us fix # and let m— oo,

(1) Prnigp(tty) =iy =an integer for n =n,. Then we have [¢;,/0,(#n)]=1i—1
for sufficiently large m, and hence ¢,< U,(i,). This means that &,
Ui Pinsg,(#00)) for all n=n, and hence &< Uyug). Conversely, @, ,(%) >
Prnsgplttn) =m,—1 implies Uy, (m,) 2 Ui, (Prnig,(#)). Hence we have Up(m)=2
Ui(u,). Therefore, U,(m)= Ui(u,) holds in this case.

(1)  Prnse,(2to) is not an integer for any n. Then for any fixed » and for suffi-
ciently large m we have [@r,/q,(#0)1=[Pi,1q,(#n)]. Hence &, Up, ([ Pisq,(#s)1+1)

4) We shall distinguish two kinds of limits by lim (usual limit in a topological
space) and lim (inverse limit).
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holds for any n. This means & e Uy*(u,). Conversely, m, = @i, 0,(tt,)+1=
[Pinsgp(te)1+1 implies Uy(m) 2 Up*(u,). Therefore, we have Uy(m) = Uy*(u,) in
this case.

Case III. #,=oco. Then we have U,(m)=1, q.e.d.

§3. Ramification theory for a finite normal extension over an infinite
extension of the p-adic number field.

Let £ be an infinite algebraic extension of @, and K be a finite exten-
sion of k. Let us associate with & the fundamental group F,. Then there
exists the natural injection ¢, x: F;— Fg, which satisfies the chain condition
Per=Pr,L°Prx for EkCKCL. Moreover, if K/k is normal with the Galois
group & =G(K/k), then o=@ operates on Fy/F, such that the usual Galois
theory holds.

Lemvma 2. Let K/k be normal. Then Uy is invariant under o €& = G(K/k),
i.e. U’ = Uy, and o operates trivially on the factor group Fx/Ux. In particular,
g is the identity if and only if o operates trivially on Uk.

The proof of this Lemma is easy.

Now we shall define the ramification groups of K/k by means of the
fundamental group of K. This definition is different from that of Herbrand
[8] For that purpose we shall consider first the usual case. Namely, for a
- moment let 2 be a p-adic number field and K/& be a finite normal extension.
Then the group of inertia can be defined by

Txp=1{0,0@, o"=p for all p= Wg}.
The ramification groups can be defined by
Lrn@)={0; 0T, o =n mod pf*t for all 7 e pg}
={0; 0 &€ Tgp, 7°°' € Ux(i+1) for all 7 Uk}

since we have Uz = Wgx Ux(l) and for n=14rnc UgQl) 1°'—1=@n"—n) /5=
(#°—m) /7 € pHt is equivalent to z°=nr mod pgiti.

DeriniTion. Let 2 be an infinite algebraic extension of @, and K/k be a
finite normal extension with the Galois group & =G(K/k). We define the
group of inertia Iz, by

@ Trn=1{0;0E@®, o =p for all pe Wy}

and the ramification groups by

) Brpu) = {0; 0 € Tk, and 97"t € Ug(u) for all n € Uk},
3) Brp*(u)={0; 0 €Iy and 777t € Ug*(u) for all n e Ug}

O=u< ).
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In particular, we identify Ty, = Bgu(0). That these are normal subgroups
of @ can be seen easily. Also from follows the inclusion rela-
tions:

4 B /e(1) 2 Bg* (1)

) Bg/(u) 2 Brp(w'),  Vru™*(w) 2 Vg™ (') for u<u'.

We denote the subfields of K corresponding to (1), (2) and (3) by Tgu Vxu(e)
and Vg,*(u) respectively.
Let K=k(#) and 6 be a root of an irreducible polynomial A X) with coeffi-

cients in &£ Let &= Okn, (kn: Qpl<oco. Then all coefficients of f(X) are
n=1

contained in some k,,. Let K,=£k,(f). Then K= G K, and [K: k]=[K,: k,]
n=1

holds for #=#n, If K/k is normal then K,/k, are also normal with the same
Galois group & for n=n, Lety& Fy, 7=lim7,, 7, K, Then by defini-
tion Ngu7 =lim Ng, 7. holds. We have also 7’ =1lim7,” for c = @.

Let us denote the group of inertia in the sense of Herbrand by Tg,*®.
By Herbrand [8] ZTxi™® =k, x, holds for sufficiently large », and hence
G/ is a cyclic group of order f, where f is prime to Fw.(#). Similarly,
the first ramification group Bg,» in the sence of Moriya is charac-
terized by Ly, = Bg,x,(1) for sufficiently large ». Now we shall compare
these definitions with ours.

Tueorem 4. (1) In gemeral Ty, is a subgroup of Txp. If Wg,=
Nipsin Wi, h0ld for a sufficently lavge n and for all m > n, then we have g, =
(H)

(i1) Bu™* = Vru™ holds. Hence By, is a p-group.

(iii) Brr@)/Bri* @) (0 < u < 00) are elementary abelian p-groups.

Proor. (i) Let 7<= Wx be represented by z=Ilimz, (9, Wg,), then
7°=mn holds if and only if %,”=7, hold for all n. Hence we have Ty, 2
Tp™® = g, i, (for a sufficiently large n). Conversely, assume that N, x, Wk
= Wk, ®<m) holds for n=n,. Then 7°=2, g=limy, (7, Wg,, 7€ W)
holds only if ¢ € Tk,u, for =n,. Therefore, we have Ty, =Tz, in this
case.

(ii) Let n=lim7y,, n< Ux, 7, Ux,. Then 7'"?=Ilim7,'””. Hence o<
T belongs to Bgu* if 7,'77 € Ugu(l) for all n. This proves Bg,* 2 By,
Conversely, assume that Byg,* were larger than Bg,®. Then By,* would
contain an element ¢ whose order v is prime to p. From a formula

6?—1=(0—1)?+plc—1)P"1+4---+p(c—1)
follows that 7,°"' € Uk, (i) implies 7.7 e Ux,(7) (7 =min (pi, ordg,(p)+i)) (see

iK 1k

5) We identify an automorphism ¢ of K/k and its restriction on K,/k,.
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Artin [1, p. 817]). Since ¢"=1 and (r, p) =1 we can find a suitable integer ¢«
for any given N such that o=0%" holds. Hence for any given j we can
choose N sufficiently large such that from 7, '€ Ug,(1) follows 7,771 =7,7"!
€ Ug,(j) (¢’ = 0*?Y). Therefore we have 7,°7'=1, and ¢ operates trivially on
Ug. By this would imply ¢ =1 which contradicts with the hypo-
these o & By, . Therefore we have Bg,* = Bk, ™.

(iii) can be proved similarly, q.e.d.

Remark. We have similarly

B /iae) Qni Brn/knLPxnrgp(®)])
() "

B (1) 2 O B [P @] +1).

Tueorem 5. Let K/Q, be an H-extension. Then

(1) Txp =i and hence &/, is a cyclic group of order f.

(1) Tgrp/Brxi™ is a cyclic group of order e wherve [K: k] =cef, e =e®p™,
(e®, p)=1.

(iii) For sufficiently lavge n K,/k, has the same sequence of ramification
groups
@ T2B, 0B, 5---DB, 0B, =1
where [T: B, ]1=¢O and B; (=1, :--,7) are p-groups.

(iv) The sequence of ramification groups for K/k coincides with (7), namely
there is a sequence of integers

0=Z)0<7)1<Uz<"'<vr<vr+lzoo

such that
€) Bg(u) = B; Jor Vo, =u <V,
) B W) =By for Vo, Su vy,

hold, where we put v; = Pg,” ().

Proor. (i) For an H-extension K= \J, K, the reduced exponents of
K,.../K, are all equal to 1 for sufficiently large » (say n =#x,). Hence we
have N, 1Wxy, = Wk, (n=mn) by (VII) in §1. From this follows g/, = Tx™
as a corollary of Theorem-4 (i). (ii) follows from Theorem 4, (ii).

(iii) Let 2 be a fixed positive number and let K;= Vgq,(R), by =kNK,
By the characterization of ramification fields (IV) in §1 Vgy,(4) is charac-
terized by the property that it contains all subfields £ of K with ugg, < 2.
From this property follows also that k; 2 Vi, (). If we take 1 sufficiently
large (namely, at least >, ,9,) We may assume that k2,2 %, and also [K;: &;]
=[K: k] Let us denote u= @,/ (4).



46 Y. Kawabpa

Let TXO 2B/, D D---D B, 51 be the sequence of ramification groups of
Kj/kl and let

(10> %iu) = SBK;[/kl(vi(/l))’ v'i(l) = gDKA/kA(Mi(A))i i=1,-7.
Then we have
(11) ui(x) <u (Z':l; ERE) 7’)7

because by (II), dII), AIV) of §1 we have

Vi ygptts V) = Vi yep © ’/’K,\/k,l(vi(’b) =V r0:V) < 2.
Since K is an H-extension Vg, (4) is a finite extension of @,. Hence we can
take #n, such that %, 2%; and K,,2 K;. Let n=n, By the characterization
of K, and the monotone property (III) in §1 we have
gakn/kl(u) =u for 0 é U é ¢Ic/1/Qp()‘) =U,

(12)
¢Kn/KA(u) =Uu for 0 é u é ¢KA/Qp<’z) = goKA/kA(la) .

Substituting into the chain relation @g,x, = Prux,° Py, = Prn/in © Consiy
we have

Now by the definition of Hasse function we have
14) Prymy(0) =0,V +[K: TrpJ(o—u, D) for w,® =u < oo.

Then we have by Prain(#) has the same expression for #,® =u =< u.
Then by the property of Hasse function that its slope can be equal to
[Kn: Tryinl =[K: Tg;e] only for u > ug,, we can conclude that ¢g, ., (#) has
the same expression [14) also for #,» <wu < co. Hence we have the same
Hasse function @g,m,(®) = @xye,() for n=n,, We denote simply @g/(x) =
Pry(w).  Since the characteristic numbers #;, v;, #;, m; are determined uni-
quely by Hasse function (§1) we can conclude that the sequence of ramifica-
tion groups of K,/k, (n=mn,) is

IWOP ™ H...OB, D1,
B, = %Kn/k‘nQ)i)’ V= Prmtts), n,= [(B™:1] @¢=1,--,n,

where u,, v; and n; (i=1, --+,7) are independent of #.
We shall prove, moreover, that the groups 8B, are the same for all

(15

n=n:

(16) B, =1, (=1--n.

For that purpose we use the relation

17 (Nos1Ugp i DUk, (0) = Ug, 0 <0 <@gy (1)

which follows from (VI) in §1 and from the fact that all the ramification
groups Bg,,x,(v) are the same for 0<v < Pgyi,(#). Now let g B, V.
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Then we have 7, € Ux,,,(;+1) for all 9,,, € Ux,,,. Since every 72, &€ U,
can be represented by 7,=¢&, - Nppines &n € Uk, 0 +1), 704y € Ug,,, we have
Nl "0 =E,17% Npipei' ™0 € Ug,(0:+1) for o = B,**H. Hence B, < B, holds.
Since these two groups have the same order we have ;"D =L,™, which

proves
(iv) By we have only to consider the ramification groups

Br(e), i=1,2,+- (and in case A, also By(w) for Prj,(u=) = u < o0). Now let
us consider Bg/(v,). Since g, (%) = Pxi,(u) for 0 =u <v;+1 for sufficiently
large #n (say for n=n, =n,) and Bg,,(») are the same for all these n, we
have by the remark (6)

(18) Br/p(Vi) 2 Brpn () for n=wn,.

Now we shall prove the equality in [I8). By the same reason as in (iii) it
is enough for that purpose to see that

(19) Ugp =N ¥ U Ugp(w)  for 0<u=v,+1 nzn).

holds, where we denote by N,*Ug the range of 7, in the expression 7 = lim 7,
7€ Ug, M0 € Uk,

Let 7, be an arbitrary element in U, Then by we have for m >
7> 1y M= Np )™, Mm € Ugyp E2™ < Uk, () where N,’ means the norm
Nypixn- Since Ug, and Ug,(#) are compact we can select a subsequence {m;}
of {m} such that lim N, 7m;, =7.* in Uk, and lim¢,™) =¢, in Uy, (u) exist.

Next take a suitable subsequence of {m,;} such that lim Ng, xp.i7m = Tmes®
exists for this subsequence, etc. Finally by the diagonal procedure we can
choose a subsequence {m(:)} of {m;} such that in Ukg,,,

lim NKm(i)/KnH Mm) = 77n+r* Y= 1; 2""

exist. Then 7= lim7,.* exists in Uy and we have 7z,=(N,*7)&, which

proves [19).

In case A, we have By (u) =1 for u = Pg/q,(u=) by the reason v; < Qg (™),
q.e.d.

Here we shall give a simple example of H-extension. Let %,=Q,({.),
p#2,n=1,2,-- where {, is a primitive p"-th root of unity, and let &=\, &,.

Then we know that [&,: @,]=p""'(p—1), Us,e, = {0,1, -, n—1} and
=D+ (p—Dw—i) for ifu=i+1, (=0,1,,n—2),
Prnsg,(®t) =
P =D+p" N (p—Du—(—1)) for n—1=u < .

Hence we have wu~= o0, Uy, ={0,1, -, 7, }, Prsg (%) = Prpso,(t) for 0=u=n
and
Trsop = @ps Visgp(tt) =kn for n—1<u<n n=12,).
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Let K be an arbitrary normal extension of & with [K: k]=s. Let K=
k(0), K,=k,(6) and [K,:k,]=s for n=n, We can apply for K/k.
Let u;,v,n, ((=1,---,7) be the characteristic numbers of ¢g;(x), and let us
put ;= Pug, (u) G=1,-,7). We have Ug,q,= Wi, Y kWi, = 10,1, -,
n—11\I{py, -+, 2} and Qg () = P, s0,(#) holds for 0 =u <n if we take = N.
Here we choose N such that N—1= u,. Finally we can see that

(20) Pr/i(1) = Crpic(20) for n=N.

Now we shall compare our definition of ramification groups with that of
Herbrand in two cases. ’

(I) Let %/Q, be the extension in the above example. Let A be an
arbitrary primary ideal of 0. Let ¥ \og, = bk, ™. Then we have pm, =,
= pm,—1)+1. Let u, be defined by w, = Vx,p,(m,). Then we can see easily
from that m,—1> u, for sufficiently large », say # =#n, This implies
that Bg,/r,(m,—1)=1 for n=n, Therefore, the ramification groups of K/k
in the sense of Herbrand are all trivial. The above argument can be applied
to every H-extension &/Q,.

(II) Let now K/k be completly ramified (Herbrand [8], p. 493). Then by
Theorems 23, 24, 25 in his paper the ramification theory of Herbrand is
effective in this case. We shall show that our ramification theory is also
effective in this case. Namely, let us take N large such that K,,,/K, and
knsi/k, are tamely ramified for »=N. Then we have @g, 0, (%)= Prxy°
Prcyrop(t) = Cxn/myPryi0p(2) where eg,x, means the exponent of K,/Ky. By
(VD) in §1 we have also N xyUsx,(Prne,(®) = Ury(Pryq,(#)) 0T Prpo,(u) =
0,1,2,---. From these follows

21 B/ () = Biprien(Prenio, (@) for = N.

This proves that the sequence of ramification groups for K/k are the same
with that of Ky/ky.

§4. Norm-residue symbol and ramification groups.

Let %k, be an infinite algebraic extension of @, The theory of abelian
extensions over k, can be described by a class formation theory (Kawada
[147]). Namely, let us associate with every finite extension %2 of %, the funda-
mental group Fy. Let K/k be a finite normal extension. As before let
K=U,K, and k=\U,k, [K: k]=[K,: k,] (n=1,2,---). The fundamental
2-cocycle &g of the normal extension K/k is a 2-cocycle of the Galois group
& of K/k with coefficients in Fg, which is derived from the fundamental
2-cocyles &g, m, Of K,/k, Dy

@ EK/k(G: 7) =lim 5Kn/kn(0; 7) o,te@®.
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Hence the norm-residue symbol for n =lim %, € F, is represented by

Now we shall consider on some properties on the relation between norm-
residue symbol and ramification groups. Let us assume that K/k is abelian,
and K=\, K,, k=\U, k, as before. The conductor {,=p;,’» of K,/k, is given
by the formula

3) Cn =g, /141
and §, is characterized by the following properties:
(i) My Kn/kn)=1 for all Nn € Ukn<cn> ’

(ii) there exists an %, € Uy,(c,—1) such that (9,, K./k.) * 1.
By the translation theorem we have (7,41, Kns1/Bns1) = Nusi%nsr, Ko/ks) for
Nnst € Pnyy. From this follows that

N1 U si(Cnin) € Ukn<cn) .

Therefore, U,(}) for the sequence = (¢, cy,--) defines a subgroup of U, which

we shall call the conductor of K/k.
Especially if &=\, k, satisfies the condition [R] in §3 we have

cn+1_1 é gakn“/kn(cn_l) .

Let us put c,—1= @, (#,). Then we have u, =w,=u,;=--. Hence put
o =lim u,. Then by we have either U,(f) = Up*(#=) or = Uplttw).
Next we shall consider the range of norm-residue symbol for an abelian
extension K/k. Let H be a subgroup of F;. We denote by (H, K/k) the set
of all the elements (3, K/k) for 7 = H.
Tueorem 6. For an abelian extension K/k we have

(U, K/RB) S T, (Ur(), K/R) S Bep(e), (Up*(we), K/k) S B/ *(u)
0=u<<c0).
In particular, we have (Uy(Y), K/k) = 1.

Proor. Let gp=limp, 7, €k, If 7 belongs to Uyx), then 7,
Uin(LPxnsp(w)]). Hence we have (n, K/k) =1im(n,., K,/k,) belongs to

ng By /in [ Pronig,(0)]) S Byp(ne)

by the remark (6) in §3. The others can be proved similarly.

Tueorem 7. Let k/Q, be an H-extension, and K/k be an abelian extension.

(i) For the conductor 1, =P, of Ku/ks c, are the same for all sufficiently
large n. We put ¢ =cy (say for n=mn,). Then the conductor of K/k is equl to
Ur(Pxs™'(c)).

(i) We have
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(Ui. K/R) =Zgpm, (Ur(w), K/k) = Bgp(u), (Up*(w), K/k) = By, ()
0=u< ).

Proor. (i) Since k2/Q, is an H-extension we can apply the results of
Theorem 5. Hence uy, ., are the same for sufficiently large » (say for »=n,).
This proves that ¢, are the same for #n =, Also we have @/ (%) = Pr,/u (%)
0= u=<¢) for sufficiently large n. From this follows that U(}) = U(@xs~'(c)).

(i) We have proved in Theorem 5 that Bg(v:) = By, /(i) for sufficently
large n. Also we have seen that the range of 7, in the expression of 7=
lim 7, for » € U, is equal to U, modulo U, (c,) for sufficiently large = (say
n=n,). Hence the range of (3, K/k) for <= U, is equal to the range of
My Kn/ky) for n, € Uy, for n=n, Also we know by the local class field
theory that (Uy,, K./k») = Tk, (See e. g. Hasse [4]). Moreover, we know that
Trw = Tk, for sufficiently large » (Theorem 5). Combining these facts we
have (U, K/k) =3 ;. Similarly we have the rest of our formulas from the
known result in local class field theory (see Iyanaga [9]), q.e.d.

Part 11

§ 5. Class formations over a local field which contains all the roots of
unity.

Let & be an infinite algebraic extension of Q,. We shall prove first

Lemma 3. Let us assume that the infinite part of the absolute order Nw(k)
is divisible by factor p™ for every prime p. Then for any finite normal extension
K/k we have

(1) NK/kK* - k* .

Proor. Since K/k is solvable it is enough to prove (i) for a cyclic ex-
tension. Let k=\U, kn K=\Ur K,, K,/k, be normal and [K: k] =[K,.: k,]=r.
By local class field theory H, = Ng, ., K,* is a subgroup of k£,* of index 7.
Let m >#» be such that [K,,: K,] is divisible by ». Then by the translation
theorem we have H, = Nk,/kmKn* = Nk, 'H, Which includes k,*. Hence k,*
is contained in H,, & NgiK*. Since this inclusion holds for all » we have
k* = Nk, K*, q.e.d.

Suppose now that k contains all the rvoots of unity. Then the assumption
in Lemma 3 is certainly satisfied. Hence & satisfies the condition:

K 1. the characteristic of % is 0,

K 2. k& contains all the roots of unity,

K 3. for every finite normal extension K/k k* = Ng,K* holds.

Hence the class formation theory of Kummer extensions can be applied
over such a field k2 (see Kawada [14, §3]). Namely let us associate with
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each & the group
@ ER)=(k*QQ/2))",
where ~ means the (compact) character group, @ means the tensor product
over Z, and k* is considered as a multiplicative group and @/Z is considered
as an additive group. Hence y € E(k) is a character of the abelian group
F*RWQ/Z):

x=2xEQR@/s)) Eck¥ r,seZ.
(Dx Let K2k and [K: k] be finite. Then the injection ¢, x: E(k) - E(K) is
given by
3) ?w,x(0(A) = x(NgiA) ,
where A=8Q@/s) € K¥*QQ/Z), NgwA = Nguf@(r/s). That ¢y g is an into-
isomorphism follows from K 3.
(D, If K/k is normal with the Galois group & = G(K/k), then o = @ operates
on E(K)
4) A= 2A")  A'=EQRQW/))=ER/s) (E=K¥).
We have then ¢ xE(k) = E(K)®.
(1), Let £2%/k be the maximal abelian extension and I'(¥) be the Galois
group of 2%/k with the compact Krull topology. Let W be the multiplica-
tive group of all the roots of unity contained in £* and let us fix an iso-
morphism v: W—Q/Z. Then the generalized norm-residue symbol

5) O.: E(k)—>I(k) (topological isomorphism)

is given as follows. @, is characterized by its adjoint isomorphism: @,*:
'Ry —>Ek)” =k*@X(@/Z). Namely, for any given element A= r/s)
E(k)" the image 2= ¥*)"1(A)=I'(k)" is defined by

6 Mo) = exp@ri Y () (o' (k).

Therefore, the image o= 0x(y) €I'(k) of y = E(k) is determined by the rela-
tion

(7 o) = x(ER(/s) .

Now we shall compare this class formation theory for Kummer exten-
sions with our class formation theory (Kawada [14]) which we have applied
in §4. For that purpose we need Hilbert’s norm-residue symbol.

Let now % be a finite extension of @, which contains the set W, of all
the n-th roots of unity. Then Hilbert’s norm-residue symbol <ff——~——
™

=y, and a €k, f €k*) is defined by means of the norm-residue symbol

(B = (,a’p_ﬂ—lk)nﬁlln, g = (‘Etz k,;ﬁ,l/n) ) .
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If there is no danger of misunderstanding we omit % in the symbol.

use the following properties:

N 1L <ﬁ’ﬁ——)n belongs to W,.

p
N 2. (91)@—)7;:1 in case B k* or ac NEB™.
NL () (552) (%49).
N 4. (ab'@ = ('BT“): for a, f < k*

N 3% (“’ _/;xﬂz)n: <,%bﬁ;)n (&pﬂv )

N 5. If W,— k& and m divides » then

(5.~ (5) (),

N 6. Let r be an automorphism of %2 then

af, B7lkTY _ (@, BlENT i

(—p, W)n"“( » >n for a ek, fEk*.

N7 Let KDk and 2> W, then
D )n—( P )n for ask, fsk*.

N 8. Let £2/k be any finite extension and 2D W,. Then

& B18Y _ ( Napa, Bk 5 :

( P )n~< D )n foras , f=k*.

a BlLY\ _ (.« NonBlk N .

(49 ~(“Hrflk)  tor sk g

From these follows

Lemma 4. Let k contain W, (the set of all the n-th roots of wunity).
EJE™ and k*/B*™ are dual with respect to the inner product (%p—,@lk>
k

For the proof see e.g. Hasse [4, § 147].

We

Then

Let us change our notation. Let now %, be an infinite algebraic exten-
sion of @, such that & contains all the roots of unity, which we denote by
W. Let B=\U,k, as before, but we may assume that k, contains W,. Let
us denote the fundamental group F; by F(k) which is a compact group. Let

ER)" =k*R(Q/Z) as before.
(I) We shall define the function
® FR)Y<EFR)" —W
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as follows: let n=lim7y,, 7€ F&), .k, and A=EQr/s)e E(R)". Let k,
be chosen such that £<k, and » is divisible by s. Then we define the
symbol

© (o, A= (

Ny §° | Ry
pkn >ne W
Firstly we must see that the valus of (9) is independent of the choice

of n. It is enough to compare the cases of m and » where m is divisible
by n. Then we have by N5, N7, N8

n

s €™ Vo (Tmy €™V B\ Nyl E™5 1 hn\ (7m0 €|
) 2 (1 ) A (T 0 T,

Secondly let A=E¢R((r/s) =7 (t/u) (r,s,t,u = Z), then we have &%= p®.
Therefore let us take # such that » is divisible by s#. Then we have ™=
n*, This shows that the value of (9) is independent of the representation
of A.

D) (n, A) is a continuous bilinear function on F(k)x E(k)" with respect
to the compact topology of F(k) and the discrete topology of E(k)".

That (5, A) is bilinear follows from N3 and N 3* immediately. To prove
that (n, A) is continuous it is enough to see that for any given A< Ek)"
there exists a neighbourhood U;(#) of unity in F(k) such that (U,(u), A)=1
holds. This follows from the fact that for any given g in &, there exists
Usn(a0), B kn)

kn

Uy, (u) (i. e. the conductor of the extension &,(5'")/k,) such that <

=1 holds.

A1) (F(k),A)=1 for A< E(k)" if and only if A=0and (3, E(k)*)=1 for
n € F(k) if and only if 7 =1.

To prove the first statement let us take an element 4 + 0 in £(k)". Then
we may represent A=¢X®(1/n) and £'/* is not contained in k2 We can as-
sume here that [k(£V*): k]=n. Let k(D W,) be such that £ € k,* and m is
divisible by n. Then by local class field theory the set of all 7, in %, which

m/n
satisfy (—”m’g—r> =1 makes a subgroup H, of %,* of index ». By the

km

translation theorem we see as in §4 that the set of all » € F(k), = lim 7,

m/n
with (7}’";’35—> =1 makes a subgroup H of F(k) of index ». Hence (F(k), A)

=1 implies A =0.
To prove the second statement let us assume that (5, E(k)") =1 for an 7

in F(k). Let y=lim»,, 7, <k, Then <m_pﬂl[en> =1 must hold for all g

kn

k.*. By this implies 7, € (£,)". This must hold for all ». Hence
from 7, € (kn)™ where m is divisible by » follows that 7, = Ny, /k,m € E)™
Therefore, 7, € Nm (k)™ =1. This proves 7=1, g.e.d.
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Tueorem 8. Let (1, A) be the continuous bilinear function F(k)x E(k)" — W
defined above. Then n & F(k) defines umquely an element y,< E(R) by

(10) WA= A4 (A€ER").
By this mapping ¥y: n— xy we have the topological isomorphism
(1) Vy: F(R)= ER)=(k*QQ/Z))" .

(1) Let kC K. Then the following diagram is commutative, where t; g is
the natural injection.

lk,x
F(k) — F(K)

12) | w. szK
Pr,k
E(R) — E(K)

(ii) Let K/k be normal with the Galois group &= G(K/k). Then ¥x: F(K)
— E(K) is an G-isomorphism, i.e.

(13) GOWK:WKOG f07’ UE‘@.

Proor. (1), (1), (II) show that F(k) and FE(k)" are orthogonally paired
by the bilinear function (7, A). Since F(k) is compact and E(k)" is discrete
we have the topological isomorphism ¥, : F(k)— E(k) (see e.g. S. Lefscetz,
Algebraic topology, p. 67, (20.6)).

To prove (i) let 7 € F(k). Then we may identify ¢, x7 =7 F(K). Put
Tu(n) = xy and ¥x(7) = X,. Then for p=lim7,ck, and A=EQ(r/s), & € K,*
we have by N4, N8

XE® /) =y e/ = (T ) = (T N

=9, NgxA) = (@r,xx)(A) .
This proves (i).
To prove (i) let ne FK), 7 =lim7, 7, €k A=EQR@/s), E€ K*. Put
Y(n) = x,- Then by N6 we have
G f’_,’>ﬁ’ﬂ_{f_nﬁ) _ (?ni éﬁ"ﬁLKm)

pKn pK n

1 (D) = 1A = (1, €7 R /) = (

= (1%, A) = ¥x(n")(A).

This proves (13), q.e.d.

From Theorem 8 follows finally

TueoreMm 9. Let k be an infinite algebraic extension of @, such that k
contains all the roots of unity. Then the two class formations over k, namely
that of Kummer extensions and that of the natural extension of the local class
field theory, are isomorphic to each other. Moreover, the generalized norm-residue
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symbols of these two class formations coinside with each other.

Proor. That these two class formations are isomorphic means the exist-
ence of an isomorphism ¥, : F(k)— E(k) with the properties (i), (ii) in Theo-
rem 8. Hence we need only to compare two kinds of generalized norm-
residue symbols.

Let 7 < F(k) and 7 =lim7,, 7, €%, Then for any finite cyclic extension
K=Fk(p"™), B = k* the generalized norm-residue symbol @)= (n, k)€ I'(k)
(defined by class field theory) induces on K/k the automorphism g

mya—1 (s Bn/ R\ _ ( Tny B™™ | B
(14) (B1/mye=1 = (ﬁ pkn/' ) - (_L_g,;L)n
by the definition of Hilbert’s norm-residue symbol, where we take £k, such
that g &, and » is divisible by m.
On the other hand, let ¥,(n) = x, = E(k), and let the generalized norm-
residue theorem (defined by Kummer theory) be denoted by 7= @;(x,). Then
by definition (6), (7) of (II)y we have for any FQ(r/s) = E(k)"

rn/s
(15) 2D = 1 BR G/ = (T LM )

where we take %, such that g <k, and = is divisible by s.
Comparing (14) and (15) we see that two kinds of norm-residue symbols
are identical, q.e.d.

§6. Class formations over a global field which contains all the roots of
unity.

Let %, be an infinite algebraic extension of the rational field Q. As we
have proved (Kawada [14, Theorem 7]) we have a class formation theory
over k, which is a natural extension of class field theory.

Namely, let k=\U, kn, &y Cky,C-+, [ka: Q]< oo. Let C(k,) be the idéle
class group of &, and Cy(k,) be the compact subgroup of C(k,) consisting of
all idele classes of volume 1. We associate with 2 the inverse limit group
of {Cy(k,)} with respect to the norm-mapping Ni,,,/xn: Co(Bnsr) = Colks). We
shall call this limit group the fundamental group of k and denote it by

) F(k)—inv. lim Cy(ky,) .

F(k) is a compact group. For a finite extension K/k we have a natural
injection ¢ x: F(k)— F(K), and for a normal extension K/k with the Galois
group 8=G(K/k) F(K) is a @-group and ¢, xF(k)=F(K)® holds. It was
proved that the system F(k) gives a class formation over k&,.

Let (an, k,) be the generalized norm-residue symbol of k2, which gives
the continuous homomorphism of Cy(k,) onto the Galois group I'(k,) of the
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maximal abelian extension 2, of k2,. The kernel of this mapping a,— (., &)
is the connected component D,(k,) of Cy,(k,) (see Weil and Artin [2].
Let a=lim «,, @ € F(k), a, < C,(k,). For an arbitrary abelian extension K/&,
K=FE(0) we have as before K=\, Kn, B =\Un kn, K, =kn(6). Then the symbol
(a, k) induces the automorphism (a, K/k) which is given by («, K/k) = (ay,
K,/k,) (for » =n,). From this follows that the kernel D(k) of the mapping
a—(a, k) (« e F(k) is given by

2) D(k) =inv.lim Dy(k,) .
Let us put then

3 F*(k)=F(k)/D(k) .

We have also

@ F*(k) = inv.lim Cy(k,)/D(k,) -

If % is totally imaginary then &, are also total imaginary (for z =n,).
Then for any normal extension K/k, K= k(0), K=\U, Ky, k=\U, kn. K, = k.(0)
the Galois group &= G(K/k) has trivial cohomologies for the coefficient
groups Dy(K,) (n=n,) (see Weil and Artin [2]. Hence it is the same
for D(k). Now we can easily verify the following theorem.

Tueorem 10. Assume that k, is total imaginary. If we associate with each
finite extension k of k, the compact group F*(k) we have also a class formation.
Moreover, F*(k) is topologically isomorphic to the Galois group I'(k) of the maxi-
mal abelian extension 2°/k with the compact Kvull topology.

Now we shall consider the case where the ground field k&, contains all
the roots of unity. In this case we shall compare the two class formations.
One is the above defined F*(k) and the other is E(k) = (¥*R(Q/Z))" of the
Kummer extensions. The purpose of this § is to give explicitly the iso-
morphism of these two class formations. For this purpose we need some
more properties of Hilbert’s norm-residue symbol. These properties were
prepared in a paper of Satake (in Japanese). For the sake of complete-
ness we shall reproduce them here.

Let now k£ be a finite number field containing a »-th primitive root of
unity. We denote by W, the group of n-th roots of unity as in §5. The
idéle group J, =7/ is the restricted direct product of the locally compact
groups ky,* with respect to the compact open subgroups U, (unit group of
ky*) (except infinite prime divisors p.). Then the quotient locally compact
group J//* is the restricted direct product of ky*/k,*" with resepect to the
compact open subgroups U,k*"/k,*" (except p=1p.):

) I =1I" ky* /ky* .

k* can be considered as a subgroup of J by identifying each element a = k*
with the principal idéle (a).
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D A" = k%",

Proor. Let (@) € £*~J". Then kya'™) =k, hold for all p which implies
k@™ =k, i.e. a s k*, q.e.d.

Let V(a) be the volume of an idéle ac/J. Let J, be the subgroup of J
consisting of all idéles with volume 1. Since J=J,x R (direct) we have

(6) Tt =T/l -
Now we shall define the inner product (a,b|k), for idéles a= {a,} and
b={b} ] by

@) @blR = T1 (Dl

all finite p p

Here (E%E‘l> =1 if (i) » is not divisible by p and (ii) ay € U, and b, € U,.

Hence (a,b|%), is certainly well defined. This symbol has the following
properties which will follow easily from N1-N8 in §5 and the product
formula of Hilbert’s norm-residue symbol. We shall use also the notation
(a, b), instead of (a,b|k)..

N*1. (a,0), € W,.
N*2, (a, 8), = (b, a), L.
N*3. (a;a3, 0)n = (a3, B)nly, 0)n s
(@, b;95)n = (a, b)a(a, y)r, -
N*4, (Product formula) (a.9),=1 if ac k* and b k*.
N*5. If 6D W, and m divides # then
(@, D) = (@, B),™™ .
N*6. Let r be an automorphism of % then

(a%, 07| k), = (a, Bl R)," for a,5€J,.

N*7. Let KDk and kD W,. Then
(a,6| K), = (a,b] k), for a,6&/,.

N*8. . Let £/ be any finite extension and 2O W,. Then
(2, 0] 2)n = (N, b &)y for as /g, b& /.

From N*1 and N*3 follows that (q,0),=1 if aJ” or b &J™ Hence
(a,0), gives a pairing of J//* and J/J"

anx Jj/7* is self-dual with respect to the inner product (a, 5).,.

We use the following general lemma. Let G and X be locally compact
abelian groups which are orthogonally paired by the inner product (g, x)
(geG, ye X) into R/Z. Moreover, if there exist compact open subgroups
G, of G and X, of X such that they are mutually annihilators of the other.
Then we have G= X"~ and X=G", where ~ means the character group in
the sense of Pontrjagin.

Now we shall prove (II). By Lemma 4 we can easily see that J//* and



58 Y. KawaAapa

J/J" are orthogonally paired by the inner product (a,b),. Next we shall
prove that there exist compact open subgroups H, and H, of J/J™ which are
mutually annihilators of the other. Let £ be a finite set of prime divisors.
Then we denote J2={a:a&/, 0, U, for p& E} and JZ "= {a;ae/, , € k"
for pe £ and a, = U, for p< E}. If we take E such that (i) £ contains all
infinite prime divisors, (ii) £ contains all finite prime divisors which divides
n. Then (II)* follows from the following Lemma (III)*:

dmy* jZ.j»/J® and jJ%=.J"/J™ are compact open subgroups of ///* which
are mutually annihilators of the other.

Proor. That these are compact open subgroups follows immediately
from (5). That they are mutually annihilators of the other follows from
and from the fact that (U,, Uylky).=1 for pe E, q.e.d.

(IVy* By the above self-duality of J//™ the discrete subgroup £*/*//" is
the annihilator of itself.

Proor. Let E be a finite set of prime divisors which satisfy the above
conditions (i), (ii) and (iii) /=/JFk*. Then we shall first prove that

&) J k] and JTRE/]T

are mutually annihilators of the other, where we denote 2% = £*N\JE By the
self-duality of J//™ it suffices to see that

9 (JJEnk*, JEP | k), =1
and
(10) CT: T TEmR*] =[] k% J"] < oo.

Here (9) is easy to see. We shall prove [I0} Since J=JEk* J"C (JE)"k* C
JEnk* we have

[T: T 5mk] = LT 5% s T3] = [T %2 TP LT 5 AR T5 AR

Since ky(a,"") =k, for a, e U, if p¥n we can prove

quite similarly as (I)*. Hence we have
(12) LIENE*  JEr R ] =[kE . (KE)"] =n'*t,

where s is the number of prime divisors of E (see Chevalley [3, §3, p. 121,
Coroliary of [Theorem 3]). Also we know that

(13) [JE: JEn] = p26+D

(see Chevalley [3, §8.2, p. 1297]). Substituting [12), into the above equa-
lity we have

(14 [T T 5k ] =n*t.
On the other hand we have by
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15) [T"RE: J*]=[k": kP ("] = [RE: (RF)] = ne+t.
From and follows g.e.d.

Now the proof of (IV)* is immediate. Since k* =\Uz&kZ and J" = N\gJJZn
where E runs over the family of all finite sets of prime divisors, we have
ET ™ =N RET /] = N (R TER]™) = k¥ /]".

Here ™ means the annihilator with respect to the inner product. q.e.d.

As a corollary of (IV)* we have

(V)* The compact group J/k¥/"=C(k)/C(k)" and the discrete group
kX" /] = k*/k*" are mutually the character groups of the other.

Applying the above results of Satake, it is now easy to prove the iso-
morphism of two class formations.

Let k, be an infinite algebraic number field such that % contains all the
roots of unity. We denote by W the group of all the roots of unity as in
§5. In this case we can see that three conditions K1, K2, and K3 in §5
hold. Here the condition K3 follows from a theorem of Hasse [5] Hence
we have a class formation theory of Kummer extensions by assosiating with
each finite extension 2 of %, the compact group E&)=k*®RQ/Z))". We
shall compare E(k) and the group F*(k) defined in

(D) Let b=\Upk, [kr: Q1< o0 and W, k,. We shall define a function
F*kyx E(k)— W as follows. Let n=lim7,, n< F*&), n, € Cy(k,)/D,(k,) and
A=a®r/s) € E(k)", ac k*. Then we can take k, such that e &, and #» is
divisible by s. Then we put

(16) (7]7 A) - (C(n, a?‘n/s)n S5 W’

where a, is an arbitrary representative idéle of the class 7,. If we take
another representative a,’ then a,’ = a,(¢’)b holds where o’ € k£, and b € D(%,).
Since Dy(k,) is infinitely divisible (Weil and Artin [2]) we have b/,
Hence by N*4 we have (a,, a™*),=(a,/,a™*),. That the value of is
independent of the choice of # and the representation A=a®(/s) can be
proved just as in local case by N*5, N*7, N*8.

dI) (9, A) is a continuous bilinear function on F*(&) x E(k)" with respect
to the compact topology of F*(k) and the discrete topology of E(k)".

Proor. That (7, A) is bilinear follows from N*3. To prove the continuity
of (3, A) it suffices to see that for any given A = E(k)” there exists an open
subgroup H of F*(k) such that

an (H,4)=1

holds. This follows immediately from the fact that for any given q,<k,
the set H consisting of all idéles b J,, with the property (b, a,), =1 is an
open subgroup of J, of index [k,(a,'™): k,] and that H contains k,*D(k,).
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(III) (Orthogonality) (F*(k), A)=1 implies A =0 and (3, E(k)") =1 implies
=1

Proor. The first statement can be proved just as in local case by ap-
plying class field theory. For the proof of the second statement we use the
result of Satake. Namely, let  =lim7,. Then (7, E(k)*)=1 implies (7,, £,*)
=1. Hence by (IV) we have 7,< k¥, "Dyk,)/k.*Dy(k,). 1If we take any
multiple m of n then 7, = Ny, 1n € kx*Te,"Do(kn)/ k¥ Dy(k,). Hence we have

This proves =1, q.e.d.
From (II) follows that each 7 e F*(k) determines uniquely an element

Xy € E(k) defined by

a7 A =m4)  (AsERk)").

Since F*(k) is compact and E(k)" is discrete we have by (III) the topological
isomorphism

(18) Uy: F¥R)= E(R) = (k*R(Q/2))"

by the mapping ¥;:7— xy
(IV) Let kC K. Then we have the following commutative diagram:

ly, &
F¥*k) — F*(K)

19) v, l l v,
Pr,x
EER) 25 EEK)

(V) Let K/k be normal with the Galois group &= G(K/k). Then ¥g:
F*(K)= E(K) is an @-isomorphism:
(20) go¥gr=¥goo ce®.

We can prove (IV), (V) just as in local case by N*4, N*6, N*8. Summing
up (D)—(V) we have the following theorem:

TueoreMm 11. Let k, be an infinite algebraic number field such that k, con-
tains all the roots of wunity. There are two kinds of class formations: one is
that of defined in Theovem 10 and the other is that of Kummer extensions. Then
they are isomorphic by the mapping (18).

Finally we shall mention here briefly the case of an algebraic function
field £ of one variable with absolutely algebraic and algebraically closed
constant field 4 of characteristic p. N“amely, A is the union of all finite
fields GF(g), g=p" (n=1,2,---). Then for a suitable finite field GF(g,), g, =p™
there is an algebraic function field &,, with constant field GF(g,) such that
k is the union of &, and A. Hence if we put k,=#k, - GF(p"") which has
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GF(p") as constant field, then we have 2=\J, k,. Therefore, we can derive
a class formation over k2 as the limit of the usual class field theory over k,.

Let J;, be the group of all idéles of &, and let J,,° be the group of all
ideles with degree 0. We denote the group of idéle classes by C(k,) = J,/kn*
and also Cy(k,) =7.,"/k.*. Here Cy(k,) is a compact group and C(k,)/C,(k,) = Z.
As in Weil we can compactify the group C(&,). We denote the com-
pactification by C*(k.). Then C*k,)DCyk,), C¥kn)/Cok) =2, Z=TI,Z,.
Moreover, we denote [, =11, U, and €y (k,) =7J,°/k* - J,® (group of divisor
classes of degree 0), which is a finite group.

Now the fundamental group F(k) is defined by

1) F(k) = inv. lim C¥(k,)

with respect to the norm-mapping Ni,, /&, : C¥(kyns)— C¥(k,). By local class
field theory the image Ny, /x,C¥(k,+;) is the group of all idéle classes whose
degrees are divisible by [k,4,: k,]- From this follows that if we express
7 =1limz7,, n € Fk), n, s C*k,) the range of 7, is C/(k,). Hence we can write

(22) F(k) =inv.lim Cy(%,)

where Ni,.,/x,.Colkns) =Co(k,). F(k) contains a closed subgroup
(23) Fé(k) = inv. lim &, %], %/k,*

such that we have the factor group:

24) B(k) = F(k)/F4(k) = inv. lim €(&,)

where Ny, ,/x,Co(kn+) = €(k,) holds.

By the general theory (Kawada [14]) we have a class formation over
such a field % if we associate with every finite separable extension K the
fundamental group F(K) and F(K) is topologically isomorphic to the Galois
group I'(K) of the maximal separable abelian extension 2%K)/K with the
compact Krull topology.

In a former paper (Kawada-Satake [13, § 3]) we have proved the isomor-
phism of two kinds of class formations of separable p-extensions of k,.
Namely, let B(&,) be the group of all Witt’s vectors over k&, and let

(25) W(k,) = (B(k,)/#B(k,) QP /Z))
where Q® = {a/p";a=Z,n=0,1,2,---} and
(26) Ek) =Bk, .

Then 2W(k,) and the compact group Z,x(Cy(k,)/Cy(ks)=) are orthogonally
paired by the inner product defined in §3 of our joint paper. Here we put
Collen)™ = M Cyllen)”™.

Similarly we define



62 Y. Kawapa

27 E(k) =B(k)", W(k) = (B(k)/$B(k) ®QP/Z)).
Then we have (k) = dir.1lim (%) by the natural injection and dually
E(R) =inv.lim E(&,) .

Let F(R)~ =\, F(k)?". Then we can define a pairing (5, A) of 7
F(k)/F(k)~ and A € (k) as follows. Since A belongs to some W(k,) we define

where 7 =lim 7,, 7, € Cy(k,)/Co(k,)=. We can prove similarly to the formula
(38) in §2 of Kawada-Satake [137], that the value of is independent of
the choice of #n, i.e. (Ni,/knlim A) = m, A) for m >n. It is not difficult to

prove the following theorem:

Turorem 12. Let ky, be an algebraic function field of one variable with
absolutely algebraic and algebraically closed constant field of chavacteristic p.
Let us consider separable p-extensions of k,. Then two kinds of class forma-
tions {E(R)} and {F(R)/F(k)>*} are isomorphic.

Now we shall consider only separable unramified p-extensions of k,, We
have then also a class formation in this case (Kawada-Satake [13, §4]).
Namely let us associate with %2 the compact group

(29) *E(k) =*W(k)", *W(k) = (*B(k)/&*V(k) R Q™ /2))

where *B(k) is the group of all unramified Witt’s vectors over k& We can
consider *¥(k) naturally as a subgroup of (k). Then we have

Lemva 5. By the duality of W(k,) and Z,*(Cy(k,)/Cy(k,)=) the subgroup
*W(k,) of Wk,) and the subgroup Z,x (Ju, ke, *J1,07)/Rr*(Je,O)> of the latter
group are muatually annihilators of the other.

Hence by taking the limit groups we have

Tueorem 13. By the orthogonal paiving of the discrete group L8(k) and the
compact group F(R)/F(k)~ the subgroup *T8(k) of W(k) and the closed subgroup
Fo(R)/F(R)> of F(k)/F(k)= are mutually annihilators of the other.

As a corollary we have the topological isomorphism of *Ek)=*Tk)" and
TR /F(R)=.

We know already that both groups *E(k) and g(k)/F(k)> are topologically
isomorphic to the direct sum of p copies of Z, where p is the Hasse-Witt’s
invariant of £ (Hasse-Witt [7). gives us an explicit isomor-

phism of these groups.

University of Tokyo.
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