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On the partitions of a number into the powers
of prime numbers.

By Takayoshi MITSUI

(Received June 25, 1957)

1. In 1953, Szekeres [4] proved an asymptotic formula for the
number P(n,m) of the partitions of » into positive integers not
exceeding m, for large » and m. The generating function of P(n, m)
is

F(w)zﬁl1 (l—u)“)“zni;]0 P, myuw (lw]<<1)

and we have

1) P(n, m)= % enpS”F(e_pMo)e-made ,
T ~-x
where p is the root of the equation
3 v
n= .
VZ'; e’ —1

The essential point in Szekeres’s proof is this determination of
0, by which it is shown that the integral over the neighborhood of
the point #=0 in (1) gives the principal term of the asymptotic
formula for P(n, m).

In this paper, we shall prove, by a method partly analogous to
Szekeres’s proof, an asymptotic formula for the number T(n,m; k)
of the partitions of » into k-th (A=1) powers of prime numbers not
exceeding m. Our result is stated as follows:

THEOREM. Let n and m be sufficiently large integers and n'’* =m.
Then we have, uniformly in n and m,

T, m; k):'l—/zl'A'* enm+A,{1 +O(max (n—z(kﬂ)k(mz) ym 2(1!:2) ))} ,
s 2
where o is the root of equation
pk
@ n=y

P=EMm empk _ 1
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and
(8) A =—logl—e "),
P=EmM
2% Ho! k
(4) A2= E ~p Ie P

PEm (ewpk —1) )

In the summations (2), (3) and (4), p is taken over all prime numbers < m.
The generating function of T(n,m; k) is

Gw)=TT L —u*")'= i T, m; Bw*  (w]<1)

pP=Em

and we have by Cauchy’s theorem
1/2

) T(n,m; k) :enwg G(e~#+2mit)g-2mindgH
~1/2

= ean(e“w) S 2 g(,e,ﬁ?ﬂ e——2nin0d0 .

-2 Gle™®)

We shall divide the last integral as follows:

1/2 '8 1/2 -6
e e e
—1/2 _05 00 “1/2

where 0,=n""(na)®+»/+3, (Since a<C1, §, becomes small).

The estimation of I, will be given in section 2 by an analogous
method to that of Szekeres. In section 3, the estimation of I, will
be considered, to which we shall apply, differing in this point from
Szekeres’s case, the estimation of a certain frigonometrical sum
obtained by Vinogradov Hua [1] and These estimations will
lead to our

In section 4, special cases will be treated. As the results, we
shall have

COROLLARY 1. Let n and m be sufficiently lavrge and m =
(nlog® n)'/** D, then

Tln,ms W)= — wste | (102 7% P12 e[t | Qog = v
Vv 2r k k k

XeWA,(l_ kloglogn +O( 1 )),
2(k+1)logn log n

where a and A, have the meaning mentioned in our Theorem, ((s) is
Riemann zeta function, and we have asymptotically




1 1\, %
r 2+_M)c<1 ) P
_{ ( k N k } ( kloglogn ( 1 ))
a={ R RIy (1 RIBOBR o0 L))
nlogn (k+1logn logn

I

_kloglogn+o( 1 ))

A
1 (k+1logn logn

el 1o

1
COROLLARY 2. Let n and m be sufficiently large and m=<=n*1,
then

T(n, m; k):i( m __)1/267’“+A‘(1+O(———]f‘_<)) ,
n \2rlogm log m

where we have asympitotically

a=—T (110( ],
nlogm

A= 1og.”1°g’”(1+0( 1 ))
logm mEr! log m

Throughout this paper, ¢ denotes the positive constant which is
independent of » and m but may depend on k It does not always
mean the same constant at every time it appears. When it is
necessary to distinguish such constants, we shall use c¢,c,--. We
denote by p prime numbers and write a=1/z.

We shall need a summation formula for >]f(p), instead of
Euler’s summation formula often used in Szekeres’s paper. It is
formulated as follows. Writing =(x)= > 1, we obtain

=T

p;n 7(®) :ﬁ]z F) @) —n(v — 1)) =a(m)f(m) — g;nn:(f)f’(t)dt )

Therefore putting

(%) = S:ng{z? ()
in the above formula, we have
©® 55 =\ LD ar pompem " wwwar,

where

$(x) =0(xe= 1087 )
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by the prime number theorem. (We shall use O-notation when the
constants in it are independent of # and m). Furthermore, we shall
consider the functions of the following forms

frs(2) = ~—~—~',fc A (x=0),
(8 —1)

where >0, » and s are integers and r>s>1. The following pro-
perties of f,(x) are obvious;

fr,s(x) :O(ﬁ_r) ¢ min(l, (ﬂxk)r—s) ’
X r,s(x) :O(B—T—a) ¢ min(l, xﬂa) ’

(7.0t =0(67r0) min(l, x5°),

v

i,s(x) :O(IB#M), xf{'s(x) :O(ﬁ_r) ’
S:z |1 (&) |dt=0(8-"-*) - min(1, £67) .

Now we shall apply (6) to f,,(x), then we have

frm)d(m) =0(e=* "5 ™) «mf, ,(m) =O(e="*¢™) - ~*~*min(1, mp") ,

(7 wpma={" 0

=0(8""m"*) +O0(e”*"°#™) « B~"~*min(1, m8%)
and finally

[ L@ go(s-rminy
s logx

Hence we have uniformly in g and m

rk m rk
e I dx+0(m"8")
pEm (ghr" 1) m”* (e —1)log x
(7)
+0le~ 7). g7~ min(1, mg?).
2. From now on we shall assume that » and m are sufficiently

large and #'*>m. We shall first prove the following lemma.
LEMMA 1. If « is the root of eguation
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k
nzﬂ—{? )
pEm %P _1
then
8) _}.min{ (L)I;Tl, m ]ga
3n log*n logm
gwmjn‘( n )k%l-l, m ]_
) log*n log m

PROOF. We apply (7) to the case r=s=1 and put

_b { n e m } b0
? nmm(log’“n) ’ logm ©=9).

Then we have g=0(n *®*V), therefore

I m -
(9) Z f = S & fﬁk—“ dx —‘" R}? min(l’ mﬁa) . O(e—c\/l(’g m) .
pEm gfr” 1 I (ef —1)log x B

Since

e’ <et—1<tet,

Ste‘"ua‘ldug min(l'(a), k),

t min(l,t) k .
S e 'u 'du = S A —u)u*'du = - min(1, %)
0

0

for t=0, we have

k

w]m

m P 3 m _B
w08 _1)log x £ logm Jo
.20 (57 6
=_'£_S et ldn < 2 min(l, mpY
ptelogm Jo Bt*logm
and
m k m
S - x dx = —L—S e " dx
miss (eﬁx —1)logx Blogm Jmr
pm* . 173
=__€’__S e "u ldu > 1 min(1, mpB%) —_m
ptelog m /3 2B logm Blogm

Thus we have
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1 . Je
10 = (1+4+e¢,)mind 4 < -
(10) 25 log m (1 -+¢)min(l, mp )—gmeﬁpk—l
6 . .
= T 1@ T (1 +¢2)m1n(11 mﬁ ) ’
Bt logm

where

pi=0 ), 9,0 ).

Now, if
(8 Jrmom
log*n log m

then

_1_——6 min(1, mp*) < bm _ 6n

Bt logm Blogm b
On the other hand, if

1
(11) ( n )T‘f ~_m
log*n logm
then
6 . o 6 _ brlogmn 6(2+kmn
4—ﬂl+a logm mln(l, mB ) g ﬂ1+a 10gm = pi+a logm __g_. pite ’

since it follows from that

log m>log m—log log m > 1 (logn—Fkloglogn) > —1~ logn
k+1 k+2

for large n#. Furthermore we see that

min(l, mpA*) = ‘min(, 6*) min[ n* ( m )a(k+1)’
na.

logm logn " \logm

- o

Therefore we have from (10)

3 1, a@ 7 . 2
az) P2 waie) = 3 -»~-b;,1~g6max(%—, 2 Jn( g0,
=m g .

which shows that we have for large n and m



434 T. Mirsut

_Lgn
1§n eﬁpk_]_ -

if we put b=6(2+k), and on the other hand

k
> f— =n
p=in eBp _1
if we put b=1/3. Our lemma is thereby proved.
REMARK. We have from (8)

b g, men) < cpac.

(13) cnat <
alogm

Furthermore, we may assume that na is sufficiently large.
Now we shall consider

_ (% G(em**=%) _, ing
[,=(" G ponmagy
S—ﬂo G(e™®) ‘

p® — eZniﬂpk

0o o
:S exp[— > log ¢ —2mind (do .

-8 p=m eapk . 1

We divide the sum in this integrand into two parts,

(14) D=2+ 20

p=m  pEm; Mm<PEM

where m, =min(m, [#”/**"P]). The second sum in is empty if
m=<n¥*H,  When it is not empty, m>»n*¥**D implies that a >
C(nlogn)—k/(k+1)’ so that amlkgc(nl/(ﬂﬁl) (1Ogn)—l)k/(k+1)Zc(na)k/(2k+2)-
Therefore

log & —€"7 —0( 3 e")=0(exp(—c(n)” ).

mi<pEm err” — ]_ my<pEm

ewpk _eQrciﬂpk

Since |6p*| < 0,m* < n (na)®+ D/E+3) | 2/ D) < o(log 1)~ H/C+D and

Inifp® ~ k1l
E**k__lzo(j_) zo(ﬁt) =0((na) ***)
e*? —1 (¢4 (47
for p<m, we have the following expansion of the first sum in [I4);

k ok P
eor __ei’rm?p . eanﬂp _1
—= > log 11—

e —1

(15) > log

pEm, err’ — 1 P=Em,
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:Z _ e?niﬂpk__l B (eaniap"_l)2 +0( i p )}

sl gt (e 1) (e —1)°
@ e 3k
= —2nig > P owe S __Zke_p—w(eﬁé A
p=Em, emp __1 pEm, (ewp’c_l)?. =1 p=m, (ewp _1)1

It follows from (7) and that this error term is
-k
O(6,’a*"*(log m)~') . min(1, ma®) 20(50304"2%) =0((na) =+3),

Furthermore we have, by the definitions of a and A,,

a0 3 & =z 3 | L mnroes-dmamy),

p=m;y ewp __]_ Ip§m m.<p§m} evr —

2k ap® 2k ,ap” Ty
an 3 ﬁ_l’k_e_z{ -3 }_ﬂ_ke =A,+O0(exp(—c(na) e ).
p=m, (emp _1)2 psEm  m<psEm (e’“’ _]_)2

Collecting [15), (16) and (17), we have
Go -k
L=\" e oL+ O((na) ).
In this right hand side,

S:., —I A = 1/2;214 Sx “vdu= 172}9712 ( Sle'“zdu — 2S:e‘”°du)

=% A‘* (1+0(e™*Y),

where x,’=27’4,0,%. Since

pzkewpk sz - pzk

(e —1p e —1 (em"—1y 7

we can apply the formula (7) to A, and we have

(18) ——5——— min(l, ma’) <A, < —%  min(l, ma®).
e logm a’**logm

Hence by [13)
1
% =0/ na ' > c(na) s .

Thus we obtain the estimation of I,;
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= 1 ,,,,, 2k+3
(19) 11_1/27rA2 {1+0((na)y *+%)}.
3. We put
_ G(e—w+2ni0) [ _ ewp __e2ni0p’°
f)=J\ ")
H(0) e 4 exp( 2: log“ 1 )

and assume first that 6,<<0=<0,=(na) "/ +3,
Obviously we have

20)  HO)< exp[ —% pof log( 2¢ 2— coiﬁnﬁp") ) ]

where m,=min(m, [a~*], [(20)"°]). Since

LI

1
1 —cos 2z0p* = 80°p**, o
cos S0p =80 P 1 2ap”

for p<m,, it follows from [20) that

H(ﬁ)gexpl n(;nz) log (1+ iﬁ )} .

If 6< a, then

= log mz a’
> ¢ mm(m, 1 ) 6 = ¢ min(1, ma®) ‘ﬁi—gc(n(x)%lfﬁ'.
IOg m (26()“ ) ]Og m it
Hence
@ 1
(21) S H(0)d0 =0(a) » exp{—c(na)Z+:} ,
0o
On the other hand, if 0,>60>=«, then
log< 46" )2 log gﬁ
«
so we have, putting A=x(m,)/2,
'R 0. /o
S H(6)do gg exp| —A log 20)510:;‘; 820/6"“““dx
® Ja (04 2
a

- {e(l—A)log 2__ e(l—A)log(Qﬁl/m)}

T 24-1)
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gCa{e(l—A)log2__8(1—A)10g(20,/w)} .
Since

m, —min(m, [(26)-2]) = min(m, (36,)-%) = c(na) %+

and 0,/a is large, we have

(22) SﬁlH(ﬁ)dﬁ < ca exp{—cn(m,)} < ca exp{— c(na)ﬁl?l} .
Thus we have by and
23) S:‘H(o)da —0(a) - exp{— c(na) 1} .

Finally we shall estimate H(0) for 6,<<0<1/2. Our starting
point is the following expansion;

log G(e—wwnw) :i L Z e—wrpk+27[iﬂrpk'

r=1 ¥ p=m

Put now

Sg(t) =Z e2ni0pk

P=EL

for integer #>1, then

33 et = 33 (S,g(t) — Syt — Lo "

=
=i2: Sa@)(e ™ —e= ") 1S, (m)e="
Since S (¢)=x=(¢), we have
log H(8) =1 log Gie™** ) log G(e™*) =3} = £(1)
where
&) =3 (RS (1) — w(B) e~ ) 1 (RS, om) — nom)le="

The following lemma follows from the results of Vinogradov
and Hua.

LEMMA 2. Let N be sufficiently large integer and 1/2>=|0]=
(log N) - N *, where 0=2°%*> then we have

Yoa(N)=—¢ -
(24) RSN)—r(N) = —¢ - T -
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PROOF. Since Sv,(N):So(N) for ¢/ =641, it is sufficient to prove
(24) for 6 such that

P

(25) (log N)7 4y _ (log N)”
<0< o

Putting r=N*log N)=° we pick up the subintervals
1
PO L S Y
q T q T -

from the interval [, 1—7"'], where % and ¢ are integers such that
l=h<<g=(log Ny, (h g)=1.
If 6 does not belong to any I,, then we have uniformly in 6

N
26 SyN :0(%)
(26) AN =0(,
(Hua [2]).
If o<1, , then 0 can be written in the form
0=" 1z lal=L
q T
and we have
1% Nezm‘zx’“ N
27 Sy(N) = Wha ax+0| )
“0 i l(v) 82 log x g log’N
where
Chal L
Wie= 25 €™«

l
«,

1
)=1

_

and the constants in the error term of are independent of ¢ and /4.
(This formula [27) can be easily obtained in the same manner as in
Vinogradov [6]). Since W, ,=0(¢**) (Hua [1], [2] and 1/e(q)=0(g""")
(Landau [3], Satz 245), there exists an integer ¢, depending on &
alone and

1 Whal < 1
?(9) 2
for ¢>=g¢,. Therefore, noting that |W, ,|<<¢(g) for ¢>2, we see that

b,=max 1 Whal < max Wl <1

> 9(q) e>>2 - 9(q)
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and consequently

\ 1+b N

28 SN | < 0 .
(28) |Se(N) | = 2 log N
for 0 =1, , with ¢=38.

When 0=1/2+2z, |z|< "', then

N o 2 k N

29 m N — COS anzx d O( )
(29) Se(N) Sz log x o log’N |’

since W, ,=—1, ¢(2)=1.
Assume first 0<{z<<(4N¥*)"', then cos2z2x*>0 for 2<x<N,
which means that

N
R <
(80) SyN) < on' N

for large N.
Next assume z>(4N*)~'. Since n* '/logu is a decreasing func-
tion of # for #>1, we have

N k N a1 ana
(31) _ S cos 2rzx® 4. _ S u*~' cos 2rnzu du
2 logx a® log

& a—1
< S u*' cos 2rzu du,
log u#

4z

where é:min(N’“, —fL) Furthermore, the application of the second
z

mean value theorem for integral to the right hand side of gives

_Se u*™" cos 2rzu du.:_;(‘lz)lhaﬁgv cos 2nzu du
1+ logu log *_ Y-
! & 4z |
_ 4" l-sin2mp - 47 1-—sin2mz
og L 2z log(e/d) 2zt
4z ,

where 7<¢&.
Now, if N¥*<(2z)"', then 2zz7<=, so that

2nz° = ¢ T 27

On the other hand, N*>(2z) ' implies that

1—811’127CZ7L£ li‘éréa N
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1—sin 2zzy - 1 - 2“_N

2rz” nz* T
Thus we have
& a-1
(32) _S u*~' cos 2rzu
1 log u
= 23-a N < ﬁ2N

="z  klog N—logld(log N)) — 8log N
and it follows from and combined with and that

3N
33 RSN — =5
(33) o(N) = Llog N
for 61, ,.
Collecting the results [(26), and (383), we see that there exists
a positive constant ¢,<C1 independent of N such that

N
(34) RSy(N)=<¢, log N
for sufficiently large N and 1/2>|0|=7"".

Our lemma follows then from at once.

Now we shall apply to the estimation of log H(6).
Let M, be the set of integers »>=1 such that min(v0—[r0], 1+[70]
—70) =m;*(log m,)’s where we put m,=[m"/C**D]. Since m is suffici-
ently large, it follows from that

t
logt¢

RSO —7() = —c

for t=m, and r & M,
Hence we have for r& M,

g(r) étmz_l {RS, () — n(t)}(e‘“”k gt 1)}0) + (RS, 5(m) — n(m)}e—m"m’c

=g

c L= - rtk - r(t+1)k -—wrmk
e P DL G R R
t=mg

e ety ez [
log m tmy 1

and consequently
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(35) log H(O) <3 %g(r)
'IEMﬁ
C 1, %

Since

k v
mgalgc(loﬂ)aﬁ 2(1&’;@‘
m m,

for large m, it follows that 1& M, Therefore we have

c__ min(1, ma®)
m, a*log m

(36) log H(A) < — ¢ Sme“”"’”kdx_é_ —
log m

< —cna < —c(na)”?—logn

1
for m=n*.

1
When m <<n*, we must consider the following inequality derived
from (35):
1

log H(ﬁ)g— ¢ E —rggme_wrwkdx,
logm iew v Jnm,

where M’ is the set of » such that r&M, 1<r<(ma*)'. (Note
that ma® is very small in this case). Since arm*<1 for r&M’, we
have

8 logHO)=——°" > L oimomy<—_m %

logm & r log m o

om [ty 1)
logm r=1 Y reM’”’ ¥y

<__om (log 1 1 )’
log m mo’  iem gy
where M is the set of » such that r M, 1<r<(ma*)"".

We shall congsider here Farey dissection of order r,/4, where
t,=m,*(log m,)~°. Let &/q, #'|q’ be the consecutive points of this dis-
section such that z/g=60=>H4'|q'. We see then kg’ —Hh'q=1 and q=q’'.
Furthermore g, ¢’ >2, since '

k
6201_2_0( 1Ogﬂ)2k+3 gi
m 7



442 T. Mitsur

for large m.

Now we shall define, in x-y plane, for a pair of non-negative
integers s and ¢, a parallelogram B(s,#) and two segments I and [’
contained in B(s,#) as follows;

B(s, )={(ug-+vq’y uh+vh'); s<u<<s+1, t<v<<t+1},
I={((s+1)g+1q'y, (s+L)h+th—2z); 0<z<rt"},
I'={(sq+(t+1)q"y sh+(@E+1) +2); 0<<z<<t{'}.

The area of B(s,f) is equal to 1 and only one point with integral
coordinates is contained in B(s,#). Furthermore we denote by /; a
straight line y=6x.

Let (b, 6b), (b+1,6(b+1)),--+, (b, 6b') be all points in B(s,#) N, of
which x-coordinates are integers. This set may be empty. When
it is not empty, we see that »cE M, for b<<r<¥p' if and only if »
satisfies one of the following three conditions;

(i) r=b=sq+1tq .
(i)  r=@6+lg+ted, (@oNSIN.
(iii) r=sq+({+1), (rorye=I'ni,.

We shall show here that /; cannot have common points with [/
and /I’ at the same time. If there exist the points (x, y) &IN/J, and
«,y)yerni, then

- ’

p= Y=Y _h—W—2-2
x—x' q—q

where 0<<z,2'<r'. Since (z-+2')max(q, ¢')<2¢;'7,/4=1/2 and Aq —
hq=1, we have
ﬁ_i: 1-(z+2)q =0
q q(q—4q')

(when ¢>¢'),

q q'(qd' —q)
which is contrary to A/g=0=Hh'|q’. Therefore at least one of /;N7
and ;NI is empty. It follows then that the number of » such that

reE My, b<r<b' is at most two. Furthermore we have for these
r £ M,
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(s+1)q, (when r=b=sq+1q),
(38) r=

(s+£+1)g, (when (r,0r)c1 or I'),.
where g,=min(g, ¢') =2.

Let (s, 2)y (55 8,)y 55 (S, 2,) be all pairs of integers with s, <s,<
-<s, and £, <¢t,<---<t,, for which B(s;,#)N/J, are not empty and
$q+tq' < (ma*)~! (1=1,2,--,#). Then we have from

1 1 & 1 + 1 1

39 1 -1 1 s 1
) Zy =g Harnil a & s+t

where J is the set of integers j such that
1<, (s,9+149"s s;h+tH)E 1, .
After simple examination, we see that
S =8+1, #,, =t+1 (when {+1&))
(40)
Siv tti =s+t+1 (when ¢+1¢:])

for i=1,2,..., n—1. Since s,+¢,<v=[(gma*)""], it follows from
and (40) that

y+1
(1) w15l o1 qoninyr
rem’”’ y qo s=1 8§ qO
1 1 1 2 1
<1 ( 1) 12, i
=g 8 g T T =g %

Considering that m is sufficiently large, we have by and

logH(())g_i,C,m_log L __ em_,, nilog'm

og m ma* ~ logm mite

= _._m logn < — cm ——logmn
log m log m

1
for m<<mi*.
Thus we have, by (36) and the result just proved,

(42) log H(0) < —c(na)?—log n
for 9,<<6<1/2. Furthermore it follows from and that

Sl/itj(a)do ~0 (a + L) oxD(—clna) )
0o ’ n
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=0(-~71;-

1
)- exp{—c(na)*+i},
We have similar result for —0,>6>=-—1/2 and finally

1
n

(43) llzlg[g

Z‘ZWL S:f;le(ﬁ)dﬂ*—:O( )-exp{—c(na)ﬁlﬁ} .

Since we have v A,=0(/n/a)=0() by [A8) and [I8), so it fol-
lows from and that

(44) L+1,=— {1+0((”“)—‘2’£7)}+0(n‘1) -exp{—c(na)ﬁ}

1 S
= {1+0((na) +3)}.
2A, { (na) )}
Putting this result in (5), we now complete the proof of

our Theoreml

4. We shall now consider special cases.
First assume that m = (n log’n)/®*), then

m n \ir T TR
1 =\ Toein] c(nlogn) 1 = a>=c(nlogn) #1,
ogm og'n

k
am® > c(log n)#+1 .

Applying (7) to the case r=s=1 and f=a, we obtain

x m k —
f :S - X dx_i_O(e—cs/logm).a-l—a’
p=m gapr” —1 2% (e* —1)log x

where

S;n G —xlk)log x dx:S + Sw-a/‘z =0(a™)

1 Samk ua
alt® Ja'? (e*—1)log(u/a)
We transform the integral in the right hand side as follows;

—~1/2 o172 "

Sm’c—gw +Sm —Sm —O(e-c“'1’2)+g +0E ™)
w1/2 a—1/2 w1/2 wm,k “1/2

a~12 u®

a2 (e*—1)log(u/x)

—O(exp(—c(log =)+
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Since
;14:“,1,;_‘( n (1_0%&))
log(u/a) log 1/« log «
for a”?<u<a %, we have
—-1/2 —~1/2
® u° 1 @ a 1
du= —S —= - d +O(~—f—\————» )
Salﬂ (e*—1)log(u/x) “ log 1/a Ja'? ¢ —1 “ |log a|?

1 S‘” ua~du(1+0( 1 )):I’(1+a)g’(1+a)(1+0(_1_>).

B lagﬂlé/; 0o e*—1 log n log 1/ log »n
Therefore we nave
m k
g ! X Cdr— I’(llia)C(IJra) (1+O(— 1 ))
2 (ewx —1)10g x a log l/a log n

and consequently

2 e e 0l )

As a consequence of our definition of «, it must satisfy the
relation

n:,F(H@C(lﬂ)A(HO(. ,1_))
a'**log 1/a logn/l’

which gives an asymptotic expansion of « stated in [Corollary 1l
Now applying (6) and (7) to A, and A,, we have generally

)  A=-\ 1og(110;;—w) dx+0( 10g(1— e =" ) | e /5 )

+O(e—c»/logm) et™® min(l, maa) .
m x2k eka e . .
(46) A,= R — 2= dx+O(e " ™) s * min(l, ma®) .-
2 (e —1)’log x
After similar calculations as above, we have

(" log(l—e*") , TI'l+a)A+a) 1
"52 log x dx== aa‘logr/‘a“(lw( ' ))

g,x_ dp TC+a)1 +az(1+o( 1 ))
2 (e'”‘”k—l)zlog x a’telog l/a )
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Therefore

=T ol L)

={I'2+a)( +a)}7c‘+kT<E§i;)"iT(1 ~»%%]%gg% +O(«~*1~) ) :

A,—TC+a)ld+a) (1 L0 ( ‘1&.&) )

a’**log 1/a logn
2kl log n LB klog log n 1
— (g [AA_.___;W]M (1+ﬁ‘~_*+o(~)).
(1-+am Ir'éec+ae)Xl+a (k+1)logn logn

Thus we obtain [Corollary 1.

— 1 —_—
Assume now m<ntt, then

m g( n )‘kii, a:()( _m_ ), amk:O( 1 )
log m log*n log m

In this case, we have

i m k -
DY S S
PEM ewp ~_]_ 2 (ewx _l)logx
where
m k m k
G N N g 10/ P
2 (eax _1)10gx o J2 logx

= g m (“O(i‘a;—m)) '

Therefore we have

2 140l
p;meapk_l alogm logm

and consequently

Since

_ Sm log(l—e=*") ;. _ Sml_ogj«zc_eg"wqux I
2 log x 2 log x
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=" Jog. LI (1+O(;1))—km,
logm log m
" e 1 ~ 1+0(ax’) ;
2 (=" —1)log x a’ e logx

- a0k
a2logm( +0 logm
we have by (45) and (46)

Al———;m‘logﬁl—-(l—klogm+0( ! ))

logm a log1/a logm
_ m log nlog m -(1+O( 1 ))
log m met! log m ’
A= "7 *(1+o< 1 )):”2“’%’";(1+0(;1. 4))
a’log m log m m log m

Corollary 2 is thereby proved.
University of Tokyo.
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Note

An asymptotic formula for 7'(w,n;1) was obtained by Haselgrave and Temperley
(Cambridge Phil. Soc., 50 (1954), 225-241). Their method is very different from ours.
They make use of a function with two variables as their generating function and
contour integrals. '



	On the partitions of a ...
	1.
	THEOREM. Let ...

	2.
	3.
	4.
	References


