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On Pr\"ufer rings.
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To find a necessary and sufficient condition for an integral
domain $\Lambda$ to satisfy the following condition (C) : (C) If $A$ and $B$ are
torsion-free $\Lambda$ -modules, then $A\otimes_{\Lambda}B$ is also a torsion-free $\Lambda$ -module. This
is a problem recently proposed by M. Nagata.1)

We know, following J. Dieudonn\’e,2) that (C) is satisfied by any
Dedekind ring, and more generally by any Pr\"ufer ring, as is shown
by H. Cartan and S. Eilenberg in their recent publication.3) In this
paper, we shall prove conversely that a ring satisfying (C) is neces-
sarily a Pr\"ufer ring (Theorem 2). This will solve the above pro-
blem completely, and at the same time yield a characterization of
Pr\"ufer rings.4)

Let $\Lambda$ denote an integral domain (with an identity). Instead of
$A\otimes_{\Lambda}B,$ $Tor_{n}^{\Lambda}(A, B),$ $Hom_{\Lambda}(A, B),$ $Ext_{\Lambda}^{n}(A, B)$ , we shall use simplified
notations $A\otimes B,$ $Tor_{n}(A, B),$ $Hom(A, B),$ $Ext^{n}(A, B)$ , $A$ and $B$ being
$\Lambda$ -modules. (See $HA$, for the definition of these functors).

LEMMA 1. For a finitely $(\Lambda-)$ generated torsion-free $\Lambda$ -module $A$ ,
there exists a free $\Lambda$ -module $F$ on finite basis containing $A$ and such that
the residue class module $F/A$ is a torsim module.

PROOF. We have only to modify the proof of $HA$, Prop. VII.
2.4: Let $Q$ be the quotient field of $\Lambda$, then $A$ is a submodule of
$Q\otimes A$, and a system of $\Lambda$ -generators $\{a_{1},\ldots, a_{r}\}$ is also a system of
Q-generators of the vector space $Q\otimes A$ over $Q$. Hence the set
$\{a_{1}\cdots, a_{r}\}$ contains a Q-basis of $Q\otimes A$, say $\{a_{1},\cdots, a_{s}\}$ . If

$a_{i}=\sum_{j=1}^{s}q_{ij}a_{j}$ , $j=1,\ldots,$ $r$ , $q_{ij}\in Q$ ,

1) S\^ugaku, vol. 6.1 (July, 1954), Problem 6.1.13.
2) J. Dieudonn\’e, Sur les produits tensoriels, Ann. de l’Ecole Norm. Sup. LXIV

(1947), pp. 101-117. Th\’eor\‘eme 3.
3) H. Cartan and S. Eilenberg, Homological algebra, Princeton Univ. Press (1956).

Prop. VII. 4.5. In the following we shall refer to this book by $HA$ .
4) The author published this result already in Sftgaku, vol. 8. (1957).
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take a non-zero $\lambda\in\Lambda$ such that every $\lambda q_{ij}\in\Lambda$. Then the $\Lambda$ -submodule
$F$ of $Q\otimes A$ generated by $\{\lambda^{-1}a_{1},\ldots, \lambda^{-1}a_{s}\}$ satisfies the conditions of
Lemma 1.

The following theorem, which will be used later, will be of
interest in itself.

THEOREM 1. For any two $\Lambda$ -modules $A$ and $B,$ $Tor_{n}(A, B)$ are all
torsion modules $(n=1,2,\ldots)$ .

PROOF. As the functor $Tor_{n}$ commutes with the direct limit
($HA$, Prop. VI. 1.3), the Theorem follows if we prove it under the
assumption that $A$ is finitely generated. Now, if $A$, assumed to be
finitely generated, is moreover torsion-free, then Lemma 1 may be
applied, and we have the isomorphism

$Tor_{n}(A, B)\cong Tor_{n+1}(F/A, B)$ , $n\geqq 1$ ,

since $F$ is a free $\Lambda$ -module. As $F/A$ is a torsion module, so is
$Tor_{n+1}(F/A, B)$ ($HA$, Prop. VI. 1.7), and hence $Tor_{n}(A, B)$ is a torsion
module $(n=1,2,\ldots)$ . If $A$ has the torsion $tA$, we have the following
exact sequence

$Tor_{n}(tA, B)\rightarrow Tor_{n}(A, B)\rightarrow Tor_{n}(A/tA, B)$ .
We know already that both left and right terms of this sequence
are torsion modules, hence the middle term $Tor_{n}(A, B)$ is also a
torsion module.

An integral domain $\Lambda$ is called a Prufer ring if every finitely
generated ideal of $\Lambda$ is inversible in the sense of the multiplicative
ideal theory. Obviously this notion is a generalization of that of a
Dedekind ring. As the projectivity and the inversibility of an ideal
are equivalent, $\Lambda$ is a Pr\"ufer ring if and only if every finitely ge-
nerated ideal of $\Lambda$ is projective (see $HA$, Chap. VII).

THEOREM 2. For an integral domain $\Lambda$ , the following conditions are
equivalent:

a) $\Lambda$ is a Prufer ring.
b) $Tor_{2}(A, B)=0$ for every pair of $\Lambda$ -modules $A$ and $B$.
c) $Tor_{1}(X, A)(\cong Tor_{1}(A, X))=0$ for every $\Lambda$ -module $X$, if $A$ is

torsim-free.
d) $A\otimes B$ is torsion-free, if both $A$ and $B$ are torsion-free. (Condi-

tion (C) at the beginning of this paper).
PROOF. $a$) $\ni b$). See $HA$, Prop. VI. 2.9.
$b)\ni c)$ . As in the Proof of Theorem 1, we may assume that $A$
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is finitely generated. We then apply Lemma 1, and obtain an iso-
morphism

$Tor_{1}(X, A)\cong Tor_{2}(X, F/A)$ .
But the right hand side vanishes under the assumption $b$).

$c)3d)$ . See the proof of $HA$, Prop. VII. 4.5.
$d)\Rightarrow c)$ . Take an exact sequence

$0\rightarrow P^{\prime}\rightarrow P\rightarrow X\rightarrow 0$

where $P$ is a $\Lambda$-projective module. As $P^{\prime}$ is torsion-free, so is $P^{\prime}\otimes A$

by the assumption $d$), and hence $Tor_{1}(X, A)$ , which is a submodule
of $P^{\prime}\otimes A$, is also torsion-free. But $Tor_{1}(X, A)$ is at the same time
a torsion module by Theorem 1. It follows that $Tor_{1}(X, A)=0$ .

The proof of the last step $c$) $\supseteq a$) will be preceded by two
lemmas on the $\Lambda$-homomorphic mapping

$\sigma$ ; $Hom(B, C)\otimes A\rightarrow Hom(Hom(A, B),$ $C$)

defined by
$\sigma(f\otimes a)(g)=f(ga)$ , $f\in Hom(B, C)$ , $g\in Hom(A, B)$ ,

where $A,$ $B,$ $C$ are arbitrary $\Lambda$-modules. It is known that $\sigma$ is an
isomorphism if $A$ is a finitely generated $\Lambda$-projective module $(HA$,
Prop. VI. 5.2).

LEMMA 2. If $A$ is a finitely generated module, and $C$ is $\Lambda- injective$,
then $\sigma$ is an epimorphism.

PROOF. There exists an exact sequence

$0\rightarrow P^{\prime}\rightarrow P\rightarrow A\rightarrow 0$

where $P$ is a finitely generated $\Lambda$-projective module. We consider
the commutative diagram

$Hom(B, C)\otimes P\rightarrow$ $Hom(B, C)\otimes A\rightarrow 0$

$\downarrow\sigma$ $\downarrow\sigma$

$Hom(Hom(P, B),$ $C$) $\rightarrow Hom(Hom(A, B),$ $C$) $\rightarrow 0$

The top row ls exact obviously, and so is moreover the bottom row,
since $Hom(A, B)\rightarrow Hom(P, B)$ is a monomorphism and $C$ is injective.
The Lemma follows immediately since the map $\sigma$ of left hand side
is an isomorphism as is remarked above.

LEMMA 3. Let $\Lambda$ satisfy the cmdition c) of Theorem 2. If $A$ is a
finitely generated torsion-free module, and $B$ is an $\Lambda$-injective mdule (or
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more generally a divisible module), then $\sigma$ is a monomorphism.
PROOF. By $Lemm\partial 1$ , there exists a free $\Lambda$ -module $F$ on finite

basis containing $A$. The exact sequence

$0\rightarrow A\rightarrow F\rightarrow F/A\rightarrow 0$

yields the following commutative diagram with an exact top row:
$Tor_{1}(Hom(B, C),$ $F/A$) $\rightarrow Hom(B, C)\otimes A$ $\rightarrow$ $Hom(B, C)\otimes F$

$\downarrow\sigma$ $\downarrow\sigma$

$Hom(Hom(A, B),$ $C$) $\rightarrow Hom(Hom(F, B),$ $C$)

If $B$ is divisible (especially injective), $Hom(B, C)$ is torsion-free,
hence $Tor_{I}(Hom(B, C),$ $F/A$) $=0$ by the condition $c$). As the map $\sigma$ of
the right hand side is an isomorphism, $\sigma$ of the left hand side is
an monomorphism, as desired.

Now, we shall conclude the proof of Theorem 2 by showing the
implication $c$) $\ni a$). Let $A$ be a fnintely generated torsion-free
$\Lambda$-module, and $Y$ an arbitrary $\Lambda$-module. There exists an exact
sequence

$0\rightarrow Y\rightarrow B\rightarrow X\rightarrow 0$

with $ B\Lambda$-injective, and this yields the following exact sequence:
$Hom(A, B)\rightarrow Hom(A, X)\rightarrow Ext^{1}(A, Y)\rightarrow 0$

Let $C$ be an $\Lambda$-injective module, then we have also the exact sequence
$0\rightarrow Hom(X, C)\rightarrow Hom(B, C)\rightarrow Hom(Y, C)\rightarrow 0$

We consider the following commutative diagram, which is derived
from these two exact sequences:

$Tor_{1}(Hom(Y, C),$ $A$) $\rightarrow Hom(X, C)\otimes A\rightarrow Hom(B, C)\otimes A$

$\downarrow\sigma$ $\downarrow\sigma$

$0\rightarrow Hom(Ext^{1}(A, Y),$ $C$) $\rightarrow Hom(Hom(A, X),$ $C$) $\rightarrow Hom(Hom(A, B),$ $C$)

Both rows of this diagram are clearly exact, $\sigma$ of the left hand
side is an epimorphism by Lemma 2, $\sigma$ of the right hand side
is a monomorphism (actually an isomorphism) by Lemma 3, and
finally $Tor_{1}(Hom(Y, C),$ $A$) $=0$ by the condition $c$). Hence we have
$Hom(Ext^{1}(A, Y),$ $C$) $=0$ . As $C$ is an arbitrary injective module, this
implies $Ext^{1}(A, Y)=0$ (take $e$ . $g$. $C$ containing $Ext^{1}(A,$ $Y)$ ). As this
holds for every $\Lambda$-module $Y,$ $A$ is $\Lambda$-projective. Since an ideal of $\Lambda$

is obviously torsion-free, this implies $a$).
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A ring $\Lambda$ is said to be of weak global dimensim $\leqq 1$ , if $Tor_{2}^{\Lambda}(A, B)$

$=0$ for every pair of $\Lambda$-modules $A,$ $B$. So the equivalence of a) and
b) may be formulated as follows :

COROLLARY. An integeral domain $\Lambda$ is of weak global dimensim
$\leqq 1$ , if and only if $\Lambda$ is a Prufer ring.

A ring $\Lambda$ is called left (right) semi-hereditary, if every finitely
generated left (right) ideal of $\Lambda$ is projective as a $\Lambda$-module. If $\Lambda$

is commutative, the distinction of ‘ left ‘ and ‘ right ’ has no meaning,
and a Pr\"ufer ring is nothing but a semi-hereditary integral domain.
The implication $a$) $\ni b$) is a special case of the corresponding pro-
position for an arbitrary left or right semi-hereditary ring. It
will be of interest to ask for the validity of the converse of this
proposition. As the notion of weak global dimension is of sym-
metrical character, if the converse is true in general, it will then
follow the equivalence of the left and the right semi-hereditarity,
solving a problem of H. Cartan and S. Eilenberg ($HA$ , p. 15). The
above Corollary shows that the converse is true for every integral
domain. But we have not succeeded in general case.

Tokyo University of Education
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