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As for the connections between similarities and isomorphisms
of ideals, the investigations known up to this time seem to be
restricted only to the case of principal ideal domains. In the pre-
sent paper we shall study some relations between these two notions
of equivalence for ideals for the case of a ring which has a unit
element and satisfies the minimum (whence the maximum) condition
for left and right ideals. This’ problem was suggested to me by
Prof. K. Morita and I express my hearty thanks to him.

In Section 1, we shall $estab$}$ish$ our main theorem which asserts
that a left [right] similarity between two left [right] ideals implies
a left [right] operator-isomorphism of them. In Section 2, we shall
deal with the problem: in what ring does every left [right] operator-
isomorphism between two left [right] ideals imply a left [right]
similarity of them? For the validity of this implication, we shall
show that it is not necessary but sufficient that the ring be quasi-
Frobeniusean.

Throughout this paper “isomorphism” will mean “operator-
isomorphism ‘’.

1. Let $A$ be a ring with a unit element 1 satisfying the mini-
mum (whence the maximum) condition for left and right ideals, and
let $N$ be its radical. Then we have the following.1)

THEOREM 1. Let $L$ and $L^{\prime}$ be left ideals of A. If $L$ is left similar
to $L^{\prime}$ , that is, the residue class module $A/L$ is A-isomorphic to the residue
class module $A/L^{\prime}$ , then $L$ is A-isomorphic to $L^{\prime}$ . Furthermore, if, by this
similarity, the residue class 1 (mod $L$) is mapped onto the residue class a
(mod $L^{\prime}$ ), then there exists a regular element $a_{0}$ of $A$ such that $a_{0}\equiv a$

(mod $L^{\prime}$ ) and $L^{\prime}=La_{0}$ . Convsersely if there exists a regular elements $a_{0}$

of $A$ such that $L^{\prime}=La_{0}$ , then $L$ is left similar to $L^{\prime}$ . The same is of
course true for right ideals.

1) Recently the most general extension of our Theorem 1 has been obtained in
[5].
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PROOF. In the first place, we shall remark that the last (con-
verse) part of the theorem is obvious and we have only to prove
that there exists a regular element $a_{0}$ of $A$ such that $a_{0}\equiv a$ (mod
$L^{\prime})$ . This is shown as follows:

Suppose that we possess such a regular element $a_{0}$ . Then if
1 $(mod L)$ is mapped onto $a_{0}(mod. L^{\prime})$ by this similarity, $L$ must
be mapped onto $La_{0}(\equiv 0mod L^{\prime})$ , since $L=L1\equiv 0(mod L)$ . Hence
$La_{0}$ is contained in $L^{\prime}$ . On the other hand, since $a_{0}$ is regular, the
composition length of $L$ is equal to that of $La_{0}$ , and, since $A/L$ is
isomorphic to $A/L^{\prime}$ , the composition length of $L$ is equal to that of
$L^{\prime}$ . Therefore $L^{\prime}$ has the same composition length as that of $La_{0}$ ,
and hence $L^{\prime}=La_{0}$ and consequently $L$ is isomorphic to $L^{\prime}$ .

Now we shall proceed to the proof of the existence of $a_{0}$ . We
distinguish two cases.
Case (1) $N=0$ .

Since $A$ is semi-simple, we can assume that $L=Ae_{1}$ and $L^{\prime}=Af_{1}$

where $e_{1}$ and $f_{1}$ are suitable idempotents. Put $e_{2}=1-e_{1}$ and $f_{2}=1-f_{1}$ .
Now suppose that $Ae_{1}$ be left similar to $Af_{1}$ and that, by this

similarity,
1 $(mod Ae_{1})\rightarrow a(mod Af_{1})$

and $b(mod Ae_{1})\leftarrow 1(mod Af_{1})$ .
Then, since $1=e_{1}+e_{2}=f_{1}+f_{2}$ , the above correspondence is refined as
follows:

$1\equiv e_{2}$ $(mod Ae_{1})\rightarrow a\equiv e_{2}a\equiv e_{2}af_{2}(mod Af_{1})$

$ b\equiv f_{2}b\equiv f_{2}be_{2}(mod Ae_{1})\leftarrow$ $1\equiv f_{2}$ $(mod Af_{1})$ .
We denote $e_{2}af_{2},$ $f_{2}be_{2}$ by $a_{2},$ $b_{2}$ respectively. Evidently $a_{2}b_{2}\equiv 1$ (mod
$Ae_{1})$ , whence we have $a_{2}b_{2}=e_{2}$ by the right multiplication of $e_{2}$ .
Similarly we have $b_{2}a_{2}=f_{2}$ . Hence the mapping: $x\rightarrow xa_{2}(x\in Ae_{2})$

gives an isomorphism between $Ae_{2}$ and $Af_{2}$ .
Moreover, from the Krull-Remak-Schmidt theorem it follows

that there exists an isomorphism between $Ae_{1}$ and $Af_{1}$ , by which,
we suppose that $e_{1}\rightarrow a_{1},$ $b_{1}\leftarrow f_{1}$ and so $a_{1}b_{1}=e_{1},$ $b_{1}a_{1}=f_{1}$ . Put $a_{0}=a_{1}+$

$a_{2}$ and $b_{0}=b_{1}+b_{2}$ . Then it is easily seen that $a_{0}b_{0}=b_{0}a_{0}=1,$ $i$ . $e$ . $a_{0}$ is
regular in $A$ and that $a_{0}\equiv a_{2}\equiv a(mod Af_{1})$ . Thus the existence of
$a_{0}$ is proved. Therefore, according to the above mentioned remark,
our assertion is valid in this csse.
Case (2) $N\neq 0$.
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As a preliminary to the proof, we prove the following
LEMMA. Let $\varphi$ be an A-isomorphism of $A/L$ onto $A/L^{\prime}$ . Then

NU $L/L$ is mapped onto $N\cup L^{\prime}/L^{\prime}$ by $\varphi$

PROOF OF LEMMA. Let, by the given isomorphism between $A/L$

and $A/L^{\prime}$ ,
$\varphi$ : 1 $(mod L)\rightarrow a(mod L^{\prime})$

$\varphi^{-1}$ : $b(mod L)\leftarrow 1(mod L^{\prime})$ .
Then, since $N\cup L\equiv N=N1(mod L)$ , $N\cup L(mod L)$ is mapped onto
$Na(mod L^{\prime})$ which is contained in $N(\equiv N\cup L^{\prime}mod L^{\prime})$ . Namely,
$N\cup L/L$ is mapped into $N\cup L^{\prime}/L^{\prime}$ by $\varphi$ . Similarly by the inverse
isomorphism $\varphi^{-1}N\cup L^{\prime}/L^{\prime}$ is mapped into $N\cup L1L$. Therefore $N\cup L/L$

is mapped onto $N\cup L^{\prime}/L^{\prime}$ by the given isomorphism.
Now suppose that there exists a similarity between $L$ and $L^{\prime}$ ,

by which 1 $(mod L)\rightarrow a(mod L^{\prime})$ . Then, according to the above
lemma, $N\cup L[L$ is isomorphic to $N\cup L^{\prime}/L^{\prime}$ by the very same corre-
spondence between $A/L$ and $A/L^{\prime}$ . Hence, as is well known, there
exists an isomorphism between $A/L/N\cup L/L$ and $A1L^{\prime}1N\cup L^{\prime}/L^{\prime}$ , by

which $\hat{1}(mod N\cup LfL)\rightarrow\hat{a}(mod N\cup L^{\prime}/L^{\prime})$ . Here we denote without
confusion the residue class $x(mod L)$ as well as $x(mod L^{\prime})$ by $\hat{x}$.

Furthermore, in virtue of repeated usage of the Isomorphism
theorem, we have a chain of A-isomorphisms such that

$A/N/N\cup L/N\cong A/N\cup L\cong A/L/N\cup L/L\cong A/L^{\prime}/N\cup L^{\prime}/L^{\prime}$

$\cong A/N\cup L^{\prime}\cong A/N/N\cup L^{\prime}/N$

and that

$(mod N\cup L/N)\overline{1}\rightarrow 1(mod N\cup L)\rightarrow\hat{1}\rightarrow\hat{a}\frac{\backslash }{\nearrow}a(mod N\cup L/L)(mod N\cup L^{\prime}/L^{\prime})(mod N\cup L^{\prime})\rightarrow\overline{a}(mod N\cup L^{\prime}/N)$

Here we understand the residue class $x(mod N)$ by $\overline{x}$.
By the mapping: 1 $(mod N\cup L/N)\rightarrow\overline{a}(mod N\cup L^{\prime}/N),$ $ A/N/N\cup$

$L/N$ is $A-$ ($whence$ A/N-) isomorphic to $A/N/N\cup L^{\prime}/N$. Since $A/N$ is
semi-simple, the conclusion obtained for the Case (1) is applicable.
Thus we have a regular element $\overline{a}^{\prime}$ of $A/N$ such that $\overline{a}^{\prime}\equiv\overline{a}$ (mod
$N\cup L^{\prime}/N)$ and so $a^{\prime}\equiv a(mod N\cup L^{\prime})$ . Hence we can express that
$a^{\prime}-a=n+l^{\prime}$ , where $n\in N$ and $l^{\prime}\in L^{\prime}$ .

Put $a_{0}=a+l^{\prime}=a^{\prime}-n$. Then we have $a_{0}\equiv a(mod L^{\prime})$ and $a_{0}\equiv a^{\prime}$

$(mod N)i$ . $e.\overline{a}_{0}=\overline{a}^{\prime}$ . Since $\overline{a}_{0}$ is regular in $A/N$, $a_{0}$ is of course
regular in $A$. Therefore the existence of a regular element $a_{0}$ is
proved. In view of the remark at the beginning, this completes
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our proof.
2. Now we shall propose the problem: in what ring $A$ does

every A-isomorphism between two left [right] ideals imply a left
similarity of them?

When $A$ is a ring with a unit element satisfying the minimum
(whence the maximum) condition for left and right ideals, this
condition is, in view of Theorem 1, equivalent to the next one :

$(\star)$ Every left [right] ideal A-isomorphic to a given left ideal
$L$ [right ideal $R$] can be expressed as La $[aR]$ by the right [left]
multiplication of a regular element $a$ of $A$. This condition is not
always satisfied, which is shown by the following

EXAMPLE. Let $A=e_{1}P+e_{2}P+nP$ be an algebra over an arbitrary
field $p$, whose multiplication tablc is as follows:

$\overline{e_{2}en^{1}}|^{12}\frac{een}{n^{1}0^{2}0e000en}$

Obviously the radical $N$ is $nP$. It is easy to see that $Ae_{2}\cong Ne_{1}$

and $AfAe_{2}^{\underline{\prime iJ}}A/Ne_{1}$ .
Recently M. Ikeda [4] has, however, obtained the following2).

THEOREM 2. Let $A$ be a quasi-Frobenius ring. Then $A$ satisfies the
condition $(*)$ for every left ideal L. More precisely, every A-isomorphism
between two left [right] ideals is given by the right [left] multiplication
of a regular element of $A$ .

We shall give here a new proof of this theorem which is based
on Theorem 1.

First, we shall define the character module of a given left ideal:
Let $L$ be a left ideal of $A$. Then all A-homomorphisms from $L$ into
$A$, which we express as Char $L$, form an A-right module if we define
$x^{\sigma\cdot a}=(x^{\sigma})a$ for every $x\in L,$ $\sigma\in CharL$ and $a\in A$. This A-module,
Char $L$, is called the character module of $L$.

Now suppose that there exists an isomorphism $\varphi$ between two
left ideals $L$ and $L^{\prime}$ , by which $x\rightarrow x^{\varphi}(x\in L)$ .

Take, for each element $\sigma^{\prime}$ of Char $L$, an element $\sigma$ of Char $L$

2) Cf. Theorem 21. $c$ .
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such as $x^{\sigma}=(x^{\varphi})^{\sigma^{\prime}},$ $(x\in L)$ . Then, by the mapping: $\sigma^{l}\rightarrow\sigma$ we get an
isomorphism of Char $L^{\prime}$ onto Char $L$.

On the other hand, owing to M. Ikeda $[4]^{3)}$, we know that every
A-homomorphism from $L$ into $A$ is given by the right multiplication
of an element of $A$ , when $A$ is quasi-Frobeniusean. Hence Char $L$

is naturally isomorphic to the residue class module $A1r(L)$ where
$r(L)$ is the right annihilator of $L$ in $A$, and, by this isomorphism,
1 in Char $L$ is mapped onto the residue class 1 $(mod r(L))$ . Simi-
larly Char $L^{\prime}$ is isomorphic to $A/r(L^{\prime})$ .

Moreover, the isomorphism $\varphi$ between $L$ and $L^{\prime}$ must be also
given by the right multiplication of an element $a$ of $A;x^{\varphi}=xa$

$(x\in L)$ . Therefore we have a chain of isomorphisms such that

$A/\gamma(L^{\prime})\cong Cha\gamma L^{\prime}\cong Char$ $L\cong A1r(L)$

and that 1 $(mod r(L^{\prime}))\rightarrow 1\rightarrow a\rightarrow a(mod r(L))$ .
In view of the transitivities of isomorphisms, the mapping:

1 $(mod r(L^{\prime}))\rightarrow a(mod r(L))$ gives an isomorphism between $A/r(L^{\prime})$

and $A/r(L)$ . Hence, according to Theorem 1, we see that there exists
a regular element $a_{0}$ such that $a_{0}\equiv a(mod r(L))$ i. e. $xa_{0}=xa(=x^{\varphi})$

for any element $x$ in $L$. Thus we have our assertion.
Furthermore we have
THEOREM 3. Let $A$ be an algebra with a finite rank over an alge-

braically closed field P. If $A$ satisfies the condition $(\star)$ for any simple
left ideal, then $A$ is a quasi-Frobenius algebra4).

PROOF. As is well known, we have a direct-sum decomposition
of $A$ into directly indecomposable left ideals:

$A=\sum_{\kappa\approx 1}^{n}\sum_{i\Leftrightarrow 1}^{f(\kappa)}Ae_{\kappa,i}$

3) Cf. Theorem 11. $c$ .
4) Ikeda [4] considers the following condition $(\alpha)$ (instead of $(*)$ ) on the ring

$A$ with unit satisfying minimum condition for left and right ideals.
$(\alpha)$ Every A-homomorphism between two left ideals of $A$ is given by the right

multiplication of an element of $A$ . Theorem 11. $c$ . asserts that this condition is
necessary and sufficient for $A$ to be quasi-Frobeniusean. Moreover, the following
result is proved as Proposition 1 1. $c$ . : Let $A$ be an algebra with a finite rank over
a field $P$. If $A$ has a left unit element and satisfies $(\alpha)$ for simple left ideals, then
$A$ is a quasi-Frobenius algebra.

No assumption on $P$ is needed here, whereas in our Theorem 3, the assumption
that $P$ is a]gebraically closed is essential as is shown below; our condition $(*)$ for
all simple left ideals is in fact weaker than the condition $(\alpha)$ for the same ideals.
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where $1=\sum_{r=1}^{n}E_{\kappa},$ $E_{\kappa}=\sum_{i=1}^{f(\kappa)}e_{\kappa,i}$ and $e_{\kappa^{i}},(\kappa=1,2,\ldots, n;i=1,2,\ldots,f(\kappa))$ are

mutually orthogonal primitive $i^{1}dempotents$ such that $Ae_{\kappa^{l}},\cong Ae_{\kappa.1}=$

$Ae_{\kappa}$ for $i=1,2,\ldots,f(\kappa)$ and $Ae_{\kappa,i}\not\simeq Ae_{\lambda,j}$ if $\kappa\neq\lambda$ .
Let $r(N)$ be the right annihilator of the radical $N$. Then, since

$A$ satisfies the condition $(!\cdot)$ for any simple left ideals, we see, in
the same way as the proof of Lemma 2 of M. Ikeda [4], that $r(N)E_{\kappa}$

is a simple two-sided ideal for each rc and that there exists a
permutation $\pi$ of $(1, 2,\cdots, n)$ such that $r(N)E_{\kappa}=E_{\pi(\kappa)}r(N)$ . Hence, by
means of Theorem 1 of T. Nakayama [3], it is enough to prove
that $r(N)e_{\kappa}$ is a simple left ideal for each $\kappa$ .

Now let $L$ be any simple left subideal of $r(N)e_{\kappa}$ . Then $\sum_{j=\downarrow}^{f(\kappa)}Lc_{\kappa,1,j}$

is not only a left ideal but also a two-sided ideal, for we have

$A=\sum_{\kappa=1}^{n}\sum_{i,j=1}^{f(\kappa)}c_{\kappa.i.j}P\cup N$ because of our assumption about $P$, where $c_{\kappa^{i,j}}$.
$(\kappa=1,2,\ldots, n;i,j=1,2,\cdots,f(\kappa))$ are matric units such that $c_{\kappa,i,j}c_{\lambda,h,k}=$

$\delta_{\kappa,\lambda}\delta_{j,h}c_{\kappa,i,k}$ for any $\kappa,$
$\lambda,$ $i,$ $j,$ $h,$ $k$ and $c_{\kappa^{i,i}}.=e_{\kappa,t}$ . Moreover, since $\sum_{J=1}^{f(\kappa)}{}^{t}Lc_{\kappa.1,j}$

is contained in the simple two-sided ideal $r(N)E_{\kappa}$ , we obtain $r(N)E_{\kappa}$

$=\sum_{j=\downarrow}^{f(\kappa)}Lc_{\kappa,1,f}$ and so $r(N)e_{\kappa}=Lc_{\kappa,1,1}=L$ by the right multiplication of

$e_{\kappa}$ . Thus $r(N)e_{\kappa}$ is a simple left ideal for each $\kappa$ and hence $A$ is
quasi-Frobeniusean.

REMARK. In case the ground field $P$ of the algebra $A$ is not
algebraically closed, from the assumption $(\#)$ for any left and right
ideal, we can not conclude that $A$ is quasi-Frobeniusean. For
example6), let $A=e_{1}P+e_{2}P+wP+uP+uwP+vP+wvP$ be an algebra
over $P^{6)}$ with the multiplication table:

$\overline{eeu^{2}w^{1}}|^{12}\frac{eewuuwvwv}{e_{1}uuw,0w^{2}-e00wvv000v0uuw000}$

5) We owe this example to Prof. K. Morita.
6) We assume that $P$ has an extension field of degree 2, $i$ . $e$ . $P$ can be taken as

the field of rational numbers.



380 Y. KAWADA

$\overline{wvuvw}|^{12}\frac{eewuuwvwv}{wv000000v0000000uw-u0000}$

Clearly the radical $N$ is $uP+uwP+vP+wvP$ and further we
have $Ne_{1}=e_{2}N=Av=vA\oplus wvA$ and $Ne_{2}=e_{1}N=uA=Au\oplus Auw$. Hence
$A$ is not quasi-Frobeniusean. But we can see easily that $A$ satisfies
the condition $(\star)$ for any left and right ideal.

Chitose High School, Tokyo
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