On the representation of complemented modular lattices.

By Ichiro Amemiya

(Received Dec. 30, 1955)
(Revised March 15, 1957)
J. von Neumann [1] has established a beautiful theory of representation of complemented modular lattices, resulting in a generalization of the coordinatization theorem of the projective geometry to the case of the complemented modular lattice with homogeneous basis of degree $\geqq 4$. His theory is presented in a book [2] of F. Maeda, where simplification of proofs obtained by Kodaira and Huruya [3] is taken into accout. However, there still remain considerable difficulties in the construction of the auxiliary ring, and also in the final step of the induction to attain the regular ring representation of the lattice. The purpose of this paper is to simplify further this theory so as to obtain the same results through proofs which present no such difficulties.

Our method is based on the fundamental theorem in §1 which asserts the existence of the lattice-automorphisms of a certain type. In § 2 , we shall construct certain automorphism groups of the lattice and investigate the relations among these groups which will lead us, in $\S 3$, naturally to the definition of the auxiliary ring. In $\S 4$, we shall attain the coordinatization theorem; we shall meet with no 'final step difficulty' (cf. footnote (5)).

To write this paper the author has had frequent consultations with the book of F. Maeda [2]. He also wishes to express his hearty thanks to Professor S. Iyanaga for his encouragement and advices.

§ 1. Fundamental theorem.

Let L be a complemented modular lattice throughout this paper.
First we shall introduce some notions analogous to those used in the combinatorial topology. Let s and c be two elements of L such that $s \neq 1^{1)}$ and $s \geqq c$. These elements s, c will be fixed once for all

1) 1 denotes the maximum element of L, and 0 the minimum element.
throughout this paragraph. A finite sequence $a_{i}(i=1,2, \cdots, p+1)$ of complements of s is said to be a (oriented) p-simplex if the join of all a_{i} is orthogonal to c, and we denote it by $a_{1} a_{2} \cdots a_{p 1}$. (More precisely, this must be called a p-simplex relative to s, c, but as we shall consider only such simplexes in this paragraph, we shall not have to add this specification.) A linear combination of p-simplexes with integral coefficients is said to be a p-chain and the totality of p-chains will be considered as usual as an additive group. The boundaries of simplexes or chains are also defined as usual, i.e. $\partial\left(a_{1} a_{2} \cdots a_{p+1}\right)=$ $\sum^{p+1}(-1)^{i+1}\left(a_{1} \cdots a_{i-1} a_{i+1} \cdots a_{p+1}\right)$ for $p \geqq 1$; boundaries of 0 -chains being 0 . A chain whose boundary is 0 is said to be a cycle and if a cycle C is the boundary of some chain, then we say that C is homologous to 0 and write $C \sim 0$.

Put $S=\{x ; x \cap s=0\}$ and $S_{x}=\{y \in S ; y \cap s=x \cap s\}$ for every $x \in S$. Then $S_{x} \supset y$ is equivalent to $S_{x}=S_{y}$. If in particular x is any complement of s, then S_{x} is the totality of complements of s. We denote it with S^{0}. The simplexes hitherto considered have their vertices in S^{0}. We shall now consider also simplexes with vertices in S_{x} (for a fixed x) the condition, that the join of vertices should be orthogonal to c, remaining as before and the chains formed with these simplexes. They will be called chains of S_{x}. (When we say just simplex or chain, we shall mean it in the original sense, i. e. that of S^{0}.)

If any element a of S^{0} is decomposed in the form $a=a_{1} \oplus a_{2}{ }^{2)}$ then we have a direct sum decomposition $S^{0}=S_{a_{1}} \oplus S_{a_{2}}$, i. e. for every $x \in S^{0}$, we put $x_{1}=x \cap\left(a_{1} \cap s\right), x_{2}=x \cap\left(a_{2} \cup s\right)$ and have $x=x_{1} \oplus x_{2} . x_{i}$ is said to be a_{i}-part of $x(i=1,2)$. It is evident that $a_{1} \cup x_{2}$ and $a_{2} \cup x_{1}$ are in S^{0}. Then also every chain C is decomposable in the form $C=C_{1} \oplus C_{2}$ where C_{i} is a chain of $S_{a_{i}}$. For the purpose, we have only to decompose every vertex of simplexes of C. We have then $\partial C=\partial C_{1} \oplus \partial C_{2}$. To any decomposition $a=a_{1} \oplus \cdots \oplus a_{k}$ of an element a of S^{0} corresponds thus a decomposition $S^{0}=S_{a_{1}} \oplus \cdots \oplus S_{a_{k}}$ of S^{0}, with which a decomposition of chains $C=C_{1} \oplus \cdots \oplus C_{k}$ is associated. A cycle C is said to be semi-homologous to 0 and we denote it by $C \approx 0$, if there exists a decomposition

$$
C=C_{1} \oplus C_{2} \oplus \cdots \oplus C_{k},
$$

[^0]where all $C_{i}(i=1,2, \cdots k)$ are homologous to 0 .
Now we shall prove
Lemma 1. If there exists an element $p \leqq s$ such that p is perspective to a complement of s and $p \cap c=0$, then every 0 -chain with index 0 is homologous to 0.

Proof. Let $a \in S^{0}$ be perspective to p and x an arbitrary element of S^{0}. Put $x_{1}=x \cap(a \cup c)$, and let x_{2} be a relative complement of x_{1} with respect to x, so that we have $x=x_{1} \oplus x_{2}$. Then we obtain the corresponding decomposition $a=a_{1} \oplus a_{2}$ of a and we can see easily that $\left(a_{2} \cup x_{1}\right) x$ is a 1 -simplex. Since a is perspective to p, there exists an element $b \in S^{0}$ such that we have $a \oplus b=b \oplus p=p \oplus a$ and consequently $a b$ and $b\left(a_{2} \cup x_{1}\right)$ are simplexes. Therefore $x-a$ is the boundary of the 1-chain $a b+b\left(a_{2} \cup x_{1}\right)+\left(a_{2} \cup x_{1}\right) x$ and $x-y=(x-a)-$ $(y-a)$ is homologous to 0 for every $x, y \in S^{0}$.

Corollary. If we have $a \oplus b \oplus c=1$ and a, b and c are mutually perspective, then they are also perspective to every complement of $b \cup c$.

Proof. In general we can prove easily that $x \cup y \perp z, x \sim y$ and $y \sim z$ imply $x \sim z$. As s, c in the definition of simplexes and chains, we take now $b \cup c$ and c. Suppose $x y$ is a simplex. It means then that we have $x \cup y \perp c$, and that x, y are complements of $b \cup c$, so that $x \sim y$. If $x \sim c$, it follows from the above fact that we have also $y \sim c$. Now let x be any complement of $b \cup c$. By our lemma $x-a$ is the boundary of a 1 -chain $a x_{1}+x_{1} x_{2}+\cdots+x_{r-1} x_{r}$ with $x_{r}=x$. As $a x_{1}$ is a 1 -simplex and $a \sim c$ by assumption, we have $x_{1} \sim c$. It follows then successively $x_{2} \sim c, \cdots, x_{r}=x \sim c . \quad x \sim b$ follows by symmetry of our assumption and $x \sim a$ is obvious.

Lemma 2. If there exist $p, q \leqq s$ such that we have $(p, q, c) \perp^{3)}$ and both p and q are perspective to a complement of s (hence to all the complements of s), then every 1-cycle is semi-homologous to 0.

Proof. Every 1-cycle (or more generally 1-cycle of S_{x}) can be represented as a linear combination of cycles of the following type

$$
\begin{equation*}
C=x y+y z+z t+t u+\cdots+w x, \tag{1}
\end{equation*}
$$

where the number of vertices x, y, z, \cdots, w is said to be the rank of C. A cycle C of type (1) is said to be reducible if for some decomposition $C=C_{1} \oplus \cdots \oplus C_{k}$ every $C_{i}(i=1,2, \cdots, k)$ can be represented as a sum of cycles whose ranks are all less than that of C. It is said to

[^1]have the property $\left(p_{1}\right)$, if $x \cup c \geqq z$; $\left(p_{2}\right)$ if the rank is >3, and $x \cup c$ $\geqq z, y \cup c \geqq t ;\left(p_{3}\right)$ if the rank is >4, and $x \cup c \geqq z, y \cup c \geqq t, z \cup c \geqq u$; and the property (p) if $x \cup y \cup c \geqq z, \cdots, w$. It is to be noticed that $\left(p_{1}\right),\left(p_{2}\right), \cdots,\left(p_{r-2}\right)$, where r is the rank of C, imply (p).

We shall now show that every cycle C of rank >3 is decomposable in the form $C=C_{1} \oplus \cdots \oplus C_{k}$ where C_{1}, \cdots, C_{k-1} are reducible and C_{k} has the property (p). In fact, if the rank of C defined by (1) is >3 and $x z$ is a simplex, then we can write

$$
C=(x y+y z+z x)+(x z+z t+\cdots+w x),
$$

showing that C is reducible. Suppose now $x \cup c \nsupseteq z$. Then we have a decomposition $z=z_{1} \oplus z_{2}$ with $z_{2}=(x \cup c) \cap z$. Let $C=C_{1} \oplus C_{2}$ be the corresponding decomposition of C. We may write $C_{i}=x_{i} y_{i}+y_{i} z_{i}+z_{i} t_{i}+$ $\cdots+w_{i} x_{i}, i=1,2$. As $z_{1} \perp z_{2}$, we have $x \cup c \perp z_{1}$ and so $x_{1} \cup c \perp z_{1}$ i. e. $x_{1} z_{1}$ is a simplex. In virtue of what we have proved above, C_{1} is reducible and C_{2} has the property $\left(p_{1}\right)$. If C_{2} has already the properties $\left(p_{2}\right)$, $\cdots,\left(p_{r-2}\right)$, we have attained our aim. If C_{2} has not these properties, then we decompose it into a 'reducible factor' and another factor possessing at least the property (p_{2}), and come to our end after finite number of steps.

Now it is sufficient to prove the lemma for 1-cycle of rank 3 and for 1-cycle with the property (p).

Let $C=x y+y z+z x$ be any 1 -cycle of rank 3 . We shali show that either C itself has the property (p) or C is decomposable in the form $C_{1} \oplus C_{2}$ where C_{1} has the property (p), and $C_{2} \sim 0$. In fact, if $x \cup y \cup c$ $\geqq z$, we have a decomposition $z=z_{1} \oplus z_{2}^{*}$ with $z_{1}=(x \cup y \cup c) \cap z$. It is easy to see that the corresponding decomposition $C=C_{1} \oplus C_{2}$ of C has the required property, as $x_{2} y_{2} z_{2}$ is a 2 -simplex and $C_{2}=\partial\left(x_{2} y_{2} z_{2}\right)$.

Now let C be a 1 -cycle (1) with the property (p). We shall show $C \approx 0$, under the assumptions of our lemma. First assume $x \cup y \cup c \perp p$. As p is perspective to x, we can find an axis a of the perspectivity such that $a \leqq p \cup x$. Then we have $x \oplus a=a \oplus p=p \oplus x$, and all $x y a$, $y z a, \cdots, w x a$ form simplexes, so that C becomes the boundary of a 2 chain $x y a+y z a+\cdots+w x a$.

Next, assume $(x \cup y) \cap s \leqq p \cup c$. Then we have $x \cup y \perp q$ as $(p, q, c) \perp$, and so $x \cup y \cup c \perp q$. Replacing p by q in the above considerations, we see again $C \sim 0$.

We consider now the general case. Put $y_{1}=(x \cup p \cup c) \cap y, y=y_{1} \oplus y_{2}$ and let $C=C_{1} \oplus C_{2}$ be the corresponding decomposition of C. It is
easily seen that $\left(x_{1} \cup y_{1}\right) \cap s \leqq p \cup c, x_{2} \cup y_{2} \cup c \perp p$, so that C_{1}, C_{2} satisfy respectively the second and first of our above assumptions. We have therefore $C_{1} \sim 0, C_{2} \sim 0, C \approx 0$.
Q. E. D.

Now we shall prove the following theorem which is fundamental in our theory.

Theorem 1. Under the conditions of Lemma 2, there exists for any two complements a, b of s such that $a \cup c=b \cup c$ one and only one automorphism f of L which maps a to b and satisfies the following condition:

$$
\begin{equation*}
s \geqq x \text { or } c \leqq x \text { implies } f(x)=x \tag{}
\end{equation*}
$$

Proof. We shall devide the proof in several steps.
(i) If $x y$ is a simplex of S_{x}, there exists a perspective isomorphism of $\left.L_{x \cup c}{ }^{4}\right)$ to $L_{y \cup c}$ by the axis $(x \cup y) \cap s$. Hence if $C=x u+u v+$ $\cdots+w y$ is a chain of S_{x}, we obtain a projective isomorphism $\varphi(C)=\varphi$ of $L_{\lambda \cup c}$ to $L_{y U c}$:

$$
\begin{equation*}
\varphi=h_{\circ} \ldots \circ g_{\circ} f \tag{1}
\end{equation*}
$$

where f, g, \cdots, h are the above perspective isomorphisms of $L_{x U_{c}}$ to $L_{u \cup c}, L_{u \cup c}$ to $L_{v \cup c}, \cdots$ and $L_{w \cup c}$ to $L_{y \cup_{c}}$ respectively.

We shall prove that φ is determined by x and y only independently of the choice of u, v, \cdots. For that purpose it is sufficient to prove that $\varphi(C)$ is identity if C is a cycle. This is true if C is the boundary of a 2 -simplex $x u v$, because then the intermediate perspective mappings have a common axis $(x \cup u \cup v) \cap s$. Therefore $\varphi(C)$ is identity if $C \sim 0$. By Lemma 2, we can decompose any cycle C as $\boldsymbol{C}=\boldsymbol{C}_{1} \oplus \boldsymbol{C}_{2} \oplus \cdots \oplus \boldsymbol{C}_{k}$ such that $\boldsymbol{C}_{i} \sim 0(i=1,2, \cdots, k)$. As $\varphi(C)$ is already shown as identity in case $k=1$, we shall consider now the case $k \geqq 2$. Let $x=x_{1} \oplus x_{2} \oplus \cdots \oplus x_{k}$ be the corresponding decomposition of x, then $\varphi=\varphi(C)$ is identity on every $L_{x_{i} \cup c}$. On the other hand, φ is also obviously identity on L_{x}. Now $L^{\prime}=\left\{y \in L_{\alpha U_{c}} ; \varphi(y)=y\right\}$ is a sublattice of $L_{x \cup c}$ including $L_{x_{i} \cup c}(i=1,2, \cdots, k)$ and L_{x}. Then we have $L^{\prime} \supset$ $L_{x_{1} \cup x_{2} \cup c}$, because an arbitrary element of $L_{x_{1} \cup x_{2} \cup c}$ can be written as $z_{1} \cup z_{2} \cup y$ where $z_{1} \in L_{x_{1} \cup c}, z_{2} \in L_{x_{2} \cup c}$ and y is orthogonal to both $x_{1} \cup c$ and $x_{2} \cup c$, and hence

$$
y=\left[\left\{\left(x_{1} \cup y\right) \cap\left(x_{2} \cup c\right)\right\} \cup x_{1}\right] \cap\left[\left\{\left(x_{2} \cup y\right) \cap\left(x_{1} \cup c\right)\right\} \cup x_{2}\right] \in L^{\prime} .
$$

4) L_{x} means the totality of the element $y \in L$ such that $y \leqq x$.

Thus we have $L^{\prime}=L_{x \cup c}$ if $k=2$. Similarly we can conclude also in case $k \geqq 3$ that $L^{\prime}=L_{x \cup c}$, that is, φ is identity on whole $L_{x \cup c}$.

The projective isomorphism φ defined by (1) is said to be the canonical isomorphism (abbr. c. i.) with respect to $x \rightarrow y$ of $L_{x \cup c}$ to $L_{y \cup c}$, or simply of x to y.
(ii) Let φ, ψ be the c.i. of x to y and of y to z respectively. Then $\psi \circ \varphi$ is the c.i. of x to z. If $L_{x \cup c}=L_{y \cup c}$ the c.i. of x to y will be called a canonical automorphism (abbr. c.a.) of $L_{x \cup c}$. The totality of c.a. 's of $L_{x \cup c}$ constitutes a group. Now we shall prove that this group is commutative. We can suppose x to be a complement of s without loss of generality. For any two c.a. 's of $L_{x \cup c}, \varphi$ and ψ, let $\varphi_{1}, \varphi_{2}, \psi_{1}$, and ψ_{2} be the c.i. of x to y, y to $\varphi(x), x$ to z and z to $\psi(x)$ respectively, where $y(z)$ is an axis of the perspectivity between x and $p(q)$ such that $y \leqq x \cup p(z \leqq x \cup q)$. Then we have $\varphi=\varphi_{2} \circ \varphi_{1}$, $\psi=\psi_{2} \circ \psi_{1}$. Since ψ_{1} and ψ_{2} are perspective mappings with axis orthogonal to $p \cup c$, we can extend $\psi_{1}\left(\psi_{2}\right)$ to the perspective isomorphism $\bar{\psi}_{1}\left(\bar{\psi}_{2}\right)$ of $L_{x \cup p \cup c}$ to $L_{z \cup p \cup c}\left(\right.$ of $L_{z \cup p \cup c}$ to $L_{\psi(x) \cup p \cup c}$). Then we can extend ψ to the automorphism $\bar{\psi}=\bar{\psi}_{2} \circ \bar{\psi}_{1}$ of $L_{x \cup p \cup_{c}}\left(=L_{\psi(x) \cup p \cup c}\right)$. Since $\varphi_{i}(i=1,2)$ is a perspective mapping with axis in $L_{p U_{c}}$ and $\bar{\psi}$ fixes every element of $L_{p \cup c}, \bar{\psi} \circ \varphi_{i} \circ \bar{\psi}^{-1}$ is also a perspective mapping with the same axis as φ_{i} and hence coincides with φ_{i}. Thus we have

$$
\psi \circ \varphi \circ \psi^{-1}=\bar{\psi} \circ \varphi_{2} \circ \bar{\psi}^{-1} \circ \bar{\psi} \circ \varphi_{1} \circ \bar{\psi}^{-1}=\varphi_{2} \circ \varphi_{1}=\varphi .
$$

(iii) Let φ be the c.i. of x to $\varphi(x)$ and suppose $y \perp s, x \cup c=y \cup c$. Then $\varphi(x) \leqq x \cup u$ for $u \leqq s$, implies $\varphi(y) \leqq y \cup u$. In fact, if $x \varphi(x)$ is a simplex of S_{x}, then φ is a perspective isomorphism and our assertion is trivial. If φ is a c.a. of $L_{x \cup c}$, then φ commutes with the c.i. ψ^{r} of x to y, and hence,

$$
\varphi(y)=\varphi(\psi(x))=\psi(\varphi(x)) \leqq \psi(x \cup(u \cap c))=y \cup(u \cap c) \leqq y \cup u .
$$

In the general case, decompose $\varphi(x)$ into $\varphi(x) \cap(x \cup c) \oplus$ (an element orthogonal to $\varphi(x) \cap(x \cup c)$), and let $x=x_{1} \oplus x_{2}, y=y_{1} \oplus y_{2}$ be the corresponding decompositions of x and y. Then we have $\varphi\left(x_{1}\right)=\varphi(x) \cap$ $(x \cup c)$, and the c.i. of x_{1} to $\varphi\left(x_{1}\right)$ is the restriction of φ to $L_{x_{1} \cup c}$ and a c. a. of $L_{x_{1} \cup c}$, whereas the c.i. of x_{2} to $\varphi\left(x_{2}\right)$ is a perspective isomorphism. By what we have seen above, we have $\varphi\left(y_{1}\right) \leqq y_{1} \cup u$, $\varphi\left(y_{2}\right) \leqq y_{2} \cup u$ and hence $\varphi(y) \leqq y \cup u$.
(iv) Now we shall define $f(x)$ for every $x \in S$ as follows. Let
a^{\prime} and b^{\prime} be the x-parts of a and b respectively and φ the c.i. of a^{\prime} to x, then we define $f(x)$ to be $\varphi\left(b^{\prime}\right)$. If we exchange a and b, then we obtain the inverse mapping of f. So f is a one-to-one order preserving mapping of S onto S. We shall show that $y \leqq x \cup u$ implies $f(y) \leqq f(x) \cup u$ for $x, y \in S$ and $u \leqq s$. Let x^{\prime} be the y-part of x, and ψ the c.i. of x^{\prime} to y, then we have $\psi\left(x^{\prime}\right) \leqq x^{\prime} \cup u$, and hence, $\psi\left(f\left(x^{\prime}\right)\right)$ $\leqq f\left(x^{\prime}\right) \cup u$ as proved in (iii). Since we can see easily by the definition of f that $\psi\left(f\left(x^{\prime}\right)\right)=f(y)$, we have $f(y) \leqq f(x) \cup u$.
(v) Now we shall extend f to the whole L. An arbitrary element of L can be written as $x \cup u$ where $x \perp s$ and $u \leqq s$. Then we define $f(x \cup u)=f(x) \cup u$. If $x \cup u \leqq y \cup v$ for another pair y, v such that $y \perp s, v \leqq s$, then we have $f(x) \cup u \leqq f(y) \cup v$ as proved in (iv). Thus $f(x \cup u)$ is determined only by $x \cup u$, and f is a one-to-one order preserving mapping of L onto L, and hence f is an automorphism of L. f satisfies obviously the conditions of our theorem.
(vi) We have nothing more to prove than the uniqueness of f. Suppose there exists another automorphism f^{\prime} satisfying the conditions of the theorem. To see $f=f^{\prime}$, we have only to prove that $f(x)=f^{\prime}(x)$ for every complement x of s. Let φ be the c.i. of a to x, then φ is also the c. i. of $f^{\prime}(a)=b$ to $f^{\prime}(x)$, since every c. i. is defined by perspective mappings between $L_{y \cup c}(y \perp s)$ with axis in L_{s} and f^{\prime} keeps these axis invariant. By the construction of f, we have

$$
f(x)=\varphi(b) \text { and hence } f(x)=f^{\prime}(x) . \quad \text { Q. E. D. }
$$

An automorphism f of L is said to be normal for an element $s \in L$, if f fixes every element x such that $x \leqq s$ or $x \geqq s$, and there exists $c \leqq s$ for which we have $(y \cup f(y)) \cap s=c$ for every complement y of s. If f is normal for s, then the element c above is said to be the axis of f in s and we denote $c=\pi_{s}(f)$ (or simply $\pi(f)$).

Then we have
Corollary to Theorem 1. The automorphism f in Theorem 1 is normal for s, and the totality of automorphisms f of L which are normal for s and for which $\pi_{s}(f) \leqq c$, constitutes a commutative group.

§ 2. Automorphism groups.

We suppose the existence of a "homogeneous basis" of degree $n \geqq 4$ in the rest of the paper, that is, we suppose that there exist mutually perspective elements $a_{i}(i=1,2, \cdots, n)$ such that we have
$a_{1} \oplus a_{2} \oplus \cdots \oplus a_{n}=1$.
We write \bar{a}_{i} for $\bigcup_{j \neq i} a_{j}, L_{i}$ for $L_{a_{i}}$ and \bar{L}_{i} for $L_{\bar{a}_{i}}$. Let $G_{i j}$ be the set of all automorphisms f of L such that f is normal for \bar{a}_{i} and $\pi(f) \leqq a_{j}$. If we put $s=\bar{a}_{i}$ and $c=a_{j}$ for s and c in $\S 1$, then we see by Theorem 1 that $G_{i j}$ constitutes a commutative group and $\left\{f\left(a_{i}\right)\right.$; $\left.f \in G_{i j}\right\}$ is the totality of complements of a_{j} in $L_{a_{i} \cup a_{j}}$. If $f \in G_{i j}$ and $g \in G_{i k}$ for $j \neq k$, then we have $f g=g f$. In fact, $f g f^{-1}$ is obviously normal for a_{i} and we have $\pi\left(f g f^{-1}\right) \leqq a_{k}$ and hence, $f g f^{-1} \in G_{i k}$. Similarly, we have $g f^{-1} g^{-1} \in G_{i j}$. Then $f g f^{-1} g^{-1}$, being an element of the intersection of $G_{i j}$ and $G_{i k}$, is obviously identity.

Therefore the group G_{i} which is generated by all $G_{i j}$ for $j \neq i$ (i fixed) is commutative.

Now we shall prove
Proposition 1. For any two complements x, y of \bar{a}_{i} there exists one and only one automorphism f in G_{i} which maps x to y.

Proof. In case $x \cup a_{j}=y \cup a_{j}$, our assertion is Theorem 1 itself. If we have $x \cup a_{j} \cup a_{k}=y \cup a_{j} \cup a_{k}$, then $z=\left(x \cup a_{j}\right) \cap\left(y \cup a_{k}\right)$ is another complement of a_{i} and we have $x \cup a_{j}=z \cup a_{j}, y \cup a_{k}=z \cup a_{k}$, so that the existence of our automorphism follows from the first case. Similarly we can proceed further and prove the existence of f in the most general case. If f fixes a complement of a_{i} then it also fixes all the complements of a_{i} by virtue of the commutativity of G_{i} and hence it is identity. This shows also the uniqueness of above f.

Proposition 2. $f \in G_{i}$ is normal for \bar{a}_{i}, and we have $\pi(f g) \leqq$ $\pi(f) \cup \pi(g)$ for every $f, g \in G_{i}$.

Proof. For every two complements x, y such that $y=g(x), g \in G_{i}$ we have $(x \cup f(x)) \cap a_{i}=(g(x) \cup g f(x)\} \cap a_{i}=(y \cup f(y)) \cap a_{i}$. Thus f is normal for a_{i}. Moreover we have, by virtue of the equality $x \cup g(x)=$ $x \cup \pi(g)$,

$$
x \cup f g(x) \leqq x \cup f(x) \cup f g(x)=x \cup f(x \cup \pi(g))=x \cup \pi(f) \cup \pi(g),
$$

and hence $\pi(f g)=(x \cup f g(x)) \cap a_{i} \leqq \pi(f) \cup \pi(g)$.
It follows from this proposition that $G_{i j}$ is the totality of $f \in G_{i}$ whose axis $\pi(f)$ is in L_{j}, and hence G_{i} is a direct sum of $G_{i j}(j \neq i)$.

Every automorphism f in G_{i} preserves clearly the decomposition relation among the complements of a_{i}, i. e. if we have $x=x_{1} \oplus x_{2}$, then x_{1}-part of $f(x)$ is $f\left(x_{1}\right)$. For such decomposition of x, there exist f_{1} and f_{2} in G_{i} such that $f_{1}(x)=f\left(x_{1}\right) \cup x_{2}$ and $f_{2}(x)=x_{1} \cup f\left(x_{2}\right)$. Then f_{1} (or
f_{2}) fixes all the x_{2}-part (x_{1}-part), and coincides with f on x_{1}-parts (x_{2} parts) of elements, and hence we have $f=f_{1} f_{2}$. We can see easily that this decomposition of f determines a decomposition of G_{i} to a direct sum. We call f_{1} the x_{1}-part of f. It is determined by x_{1} and x_{2}, and not by x_{1} alone, though the x_{1}-parts of elements are determined by x_{1} alone.

Next we shall investigate the relation between different G_{i} and G_{j}. We shall make use of the following notations: $b=a_{i} \cup a_{j} \cup \cdots \cup a_{k}$ where i, j, \cdots, k are all different from 1 and 2 , and

$$
H_{1}=\left\{f \in G_{1} ; \pi(f) \leqq b\right\}, H_{2}=\left\{f \in G_{2} ; \pi(f) \leqq b\right\} .
$$

Proposition 3. For every $g \in H_{2}$ and $f \in G_{1}$ we have

$$
g f g^{-1} \in G_{1} \text { and } \pi\left(g f g^{-1}\right)=g(\pi(f)) .
$$

Proof. Let x be any complement of \bar{a}_{1}. Since $g^{-1}(x)$ is also a complement of \bar{a}_{1}, we have

$$
x \cup g f g^{-1}(x)=g\left(g^{-1}(x) \cup f g^{-1}(x)\right)=g\left(g^{-1}(x) \cup \pi(f)\right)=x \cup g(\pi(f)),
$$

and hence $g f g^{-1}$ is normal and $\pi\left(g f g^{-1}\right)=g \pi(f)$. Then applying the uniqueness part of Theorem $1, \bar{a}_{1}$ as s and $g(\pi(f))$ as c we see that $g f g^{-1}$ is in G_{1}.

Corollary. Every element of H_{1} is permutable with that of H_{2}.
Proof. If f is in H_{1} in the proposition, then we have $\operatorname{gfg}^{-1}\left(a_{1}\right)$ $=f\left(a_{1}\right)$ since $f\left(a_{1}\right)$ is in \bar{L}_{2}, and hence $g f=f g$.

We write in the sequel $f \otimes g$ for $f g f^{-1} g^{-1}$, then for every $f \in G_{1}$ and $g \in H_{2}, f \otimes g$ is in H_{1}, because we have $g(x)=g^{-1}(x)=x$ for every $x \geqq b$ and hence $f \otimes g\left(a_{1} \cup b\right)=a_{1} \cup b$.

In particular we have $G_{i j} \otimes G_{j k} \subset G_{i k}$.
Proposition 4. For every $f, f^{\prime} \in G$, and $g, g^{\prime} \in H_{2}$, we have

$$
\begin{aligned}
& f \oplus g g^{\prime}=(f \otimes g)\left(f \otimes g^{\prime}\right), \\
& f f^{\prime} \otimes g=(f \oplus g)\left(f^{\prime} \otimes g\right)
\end{aligned}
$$

Proof. Since $f g f^{-1}=(f \otimes g) g$ is permutable with H_{1} and H_{2}, we have $f \otimes g=g^{-1} f g f^{-1}=f^{-1} g^{-1} f g$, and hence $f(f \otimes g)=g^{-1} f g$. Therefore we have $(f \otimes g)\left(f \otimes g^{\prime}\right) g g^{\prime}=\left(f g f^{-1}\right)\left(f g^{\prime} f^{-1}\right)=\left(f \otimes g g^{\prime}\right) g g^{\prime}$ and $f f^{\prime}(f \otimes g)$ $\left(f^{\prime} \otimes g\right)=\left(g^{-1} f g\right)\left(g^{-1} f^{\prime} g\right)=f f^{\prime}\left(f f^{\prime} \otimes g\right)$. Q. E. D.

Let $a_{1}=u \oplus v$. Then we can see easily that if u-part of f is f_{1}, then u-part of $f \otimes g$ is $f_{1} \otimes g$.

Proposition 5. For every $f \in H_{1}$ and $g \in H_{2}$, we have $\pi(f) \leqq \pi(g)$
if and only if there exists $h \in G_{12}$ such that we have $f=h \otimes g$.
Proof. Put $f=h \otimes g$, then we have

$$
\pi(f) \leqq \pi(h) \cup \pi\left(g h^{-1} g^{-1}\right)=\pi(h) \cup g(\pi(h)) \leqq a_{2} \cup g\left(a_{2}\right)=a_{2} \cup \pi(g),
$$

and hence $\pi(f) \leqq\left(a_{2} \cup \pi(g)\right) \cap b=\pi(g)$. Conversely $\pi(f) \leqq \pi(g)$ implies $\left(a_{1} \cup g\left(a_{2}\right)\right) \cup a_{2}=a_{1} \cup g\left(a_{2}\right) \cup \pi(g) \cup a_{2}=f\left(a_{1}\right) \cup \pi(f) \cup g\left(a_{2}\right) \cup a_{2}=\left(f\left(a_{1}\right) \cup g\left(a_{2}\right)\right)$ $\cup a_{2}$, and we have always $\left(a_{1} \cup g\left(a_{2}\right)\right) \cap a_{2}=g\left(a_{2}\right) \cap a_{2}=\left(f\left(a_{1}\right) \cup g\left(a_{2}\right)\right) \cap a_{2}$. Then there exists a perspectivity between $a_{1} \cup g\left(a_{2}\right)$ and $f\left(a_{1}\right) \cup g\left(a_{2}\right)$ axis in L_{2}, and we can find h in G_{12} such that $h\left(a_{1}\right)$ coincides with the image of a_{1} by this perspective mapping, in other words, we have $h\left(a_{1}\right) \cup g\left(a_{2}\right)=f\left(a_{1}\right) \cup g\left(a_{2}\right)$ or $g^{-1} h g\left(a_{1}\right) \cup a_{2}=f\left(a_{1}\right) \cup a_{2}$. Since the left side of the latter equality equals to $h^{-1} g^{-1} h g\left(a_{1}\right) \cup a_{2}$ we have $(h \otimes g)\left(a_{1}\right)=f\left(a_{1}\right)$, that is, $h \otimes g=f$.

Corollary. If we have $a_{2} \cap g\left(a_{2}\right)=0$, then the mapping $h \rightarrow h \otimes g$ is an isomorphism of G_{12} onto $\{f ; \pi(f) \leqq \pi(g)\}$, a subgroup of H_{1}.

Proof. If $h \otimes g$ is identity, then we have $\pi(h)=\pi\left(g h g^{-1}\right)=g(\pi(h))$ and hence $\pi(h)=\pi(h) \cap g(\pi(h))=0$. This shows that h is identity.

PROPOSITION 6. If we have $\pi(h)=a_{2}$ and $h\left(a_{1}\right) \cap a_{1}=0$ for $h \in G_{12}$, then the mapping $g \rightarrow h \otimes g$ is an isomorphism of H_{2} onto H_{1}, and we have $\pi(g)=\pi(h \otimes g)$.

Proof. $h=g h g^{-1}$ implies $g\left(a_{2}\right)=g(\pi(h))=\pi(h)=a_{2}$, and hence the mapping is an isomorphism. Let f be an arbitrary element of H_{1}. Since $h\left(a_{1}\right)$ is a complement of \bar{a}_{2} and we have $h\left(a_{1}\right) \cup b=f h\left(a_{1}\right) \cup b$, there exists $g \in H_{2}$ such that $g^{-1} h\left(a_{1}\right)=f h\left(a_{1}\right)\left(=h f\left(a_{1}\right)\right)$. Then we have

$$
h \otimes g\left(a_{1}\right)=g h^{-1} g^{-1} h\left(a_{1}\right)=g f\left(a_{1}\right)=f\left(a_{1}\right)
$$

and hence the mapping is onto. Moreover, since we have

$$
\pi(f)=\{x \cup f(x)\} \cap b
$$

for every complement x of a_{1}, putting $x=h\left(a_{1}\right)$ we have

$$
\pi(f)=\left(x \cup g^{-1}(x)\right) \cap b=(x \cup g(x)) \cap b=\pi(g) .
$$

Corollary. By the perspective isomorphism of $L_{a_{2} \cup b}$ to $L_{a_{1} \cup b}$ with axis $h\left(a_{1}\right)$, the image of $g\left(a_{2}\right)$ is $h \otimes g\left(a_{1}\right)$.

Proof. Putting $f=h \otimes g$, we have

$$
\begin{aligned}
h\left(a_{1}\right) \cup f\left(a_{1}\right) & =g\left(g^{-1} h\left(a_{1}\right) \cup f\left(a_{1}\right)\right)=g f\left(h\left(a_{1}\right) \cup a_{1}\right) \\
& =g f\left(h\left(a_{1}\right) \cup a_{2}\right)=h\left(a_{1}\right) \cup g\left(a_{2}\right) .
\end{aligned}
$$

For the associativity of the operation \otimes we shall prove

Proposition 7. For every $f \in G_{i j}, g \in G_{j k}$ and $h \in G_{k l}$ where i, j, k and l are all different, we have

$$
(f \otimes g) \otimes h=f \otimes(g \otimes h)
$$

Proof. Since $h^{-1} f h=f$, we have

$$
\begin{aligned}
(f \otimes g)\{(f \otimes g) \otimes h\} & =h^{-1}(f \otimes g) h=f \otimes h^{-1} g h \\
& =f \otimes\{g(g \otimes h)\}=(f \otimes g)\{f \otimes(g \otimes h)\} .
\end{aligned}
$$

§ 3. Auxiliary ring.

To establish definite isomorphisms among all $G_{i j}$, we take first from every $G_{1 i}(i=2,3, \cdots, n)$ an automorphism $\Gamma_{1 i}$ such that $\pi\left(\Gamma_{1 i}\right)=a_{i}$ and $\Gamma_{1 i}\left(a_{1}\right) \cap a_{1}=0$. As we have shown in $\S 2$, there exist following isomorphisms:

$$
G_{i j} \ni f \rightarrow \Gamma_{1 i} \otimes f \in G_{1 j}, \quad \text { and } \quad G_{i 1} \ni f \rightarrow f \otimes \Gamma_{1 j} \in G_{i j}
$$

Now we determine $\Gamma_{i j}$ for $i, j \neq 1$ by the equation $\Gamma_{1 i} \otimes \Gamma_{i j}=\Gamma_{1 j}$. Then we have

$$
\begin{equation*}
\Gamma_{i j} \otimes \Gamma_{j k}=\Gamma_{i k} \text { for every } i, j, k \neq 1 \tag{*}
\end{equation*}
$$

because we have $\Gamma_{1 i} \otimes\left(\Gamma_{i j} \otimes \Gamma_{j k}\right)=\left(\Gamma_{1 i} \otimes \Gamma_{i j}\right) \otimes \Gamma_{j k}=\Gamma_{1 k}$.
Every $\Gamma_{i 1}$ is determined by the equation $\Gamma_{i 1} \otimes \Gamma_{1 j}=\Gamma_{i j}$, where $\Gamma_{i 1}$ does not depend on j, because we have for another k

$$
\Gamma_{i 1} \otimes \Gamma_{1 k}=\Gamma_{i 1} \otimes \Gamma_{1 j} \otimes \Gamma_{j k}=\Gamma_{i j} \otimes \Gamma_{j k}=\Gamma_{i k}
$$

The equation $\Gamma_{i j} \otimes \Gamma_{i 1}=\Gamma_{i 1}$ is also valid since we have $\left(\Gamma_{i j} \otimes \Gamma_{j 1}\right) \otimes \Gamma_{1 k}$ $=\Gamma_{i j} \otimes \Gamma_{j k}=\Gamma_{i k}$ where k is different from $1, i, j$. Therefore (*) is true for every different i, j, k.

Since by Proposition 6 we have $\pi\left(\Gamma_{i j}\right)=a_{i}$ and $\Gamma_{i j}\left(a_{i}\right) \cap a_{i}=0$ for every i, j, we obtain a definite isomorphism of $G_{i j}$ to $G_{k j}: f \rightarrow \Gamma_{k i} \otimes f$ and that of $G_{i j}$ to $G_{i k}: f \rightarrow f \otimes \Gamma_{j k}$.

Now we consider every pair $(i, j)(1 \leqq i, j \leqq n, i \neq j)$ as a point of the Cartesian plane with co-ordinates i, j, and we denote such points by P, Q, R, S, T, \cdots. If $P=(i, j)$ we write G_{P} for $G_{i j}$. If $P \neq Q$ and the line $\overline{P Q}$ is parallel to one of the co-ordinates axis, then we assign to the vector $\overrightarrow{P Q}$ the isomorphism of G_{P} to G_{Q} which is defined above. If $\overrightarrow{P Q}, \overrightarrow{Q R}, \cdots, \overrightarrow{S T}$ are vectors in succession each of which is parallel to one of the co-ordinate axis, and such that the
end point of one vector coincides with the origin of the following vector, then we say $P Q R \ldots S T$ forms a pass. To every such pass $P Q R \ldots S T$ we assign the isomorphism of G_{P} to G_{T} composed of the isomorphisms corresponding to the vectors $\overrightarrow{P Q}, \overrightarrow{Q R}, \cdots, \overrightarrow{S T}$. We write $P Q R \cdots S T \sim P Q^{\prime} R^{\prime} \cdots S^{\prime} T$ if these two passes determine the same isomorphism. We consider also $P P$ as a pass and denote it by 0 , and assign to it the identity mapping of G_{P}. If P, Q and R are on the same line which is parallel to one of the axis, then we have by (*), $P Q R$ $\sim P R$ and $P Q P R \sim P Q R \sim P R$ and hence $P Q P \sim 0$. Moreover every rectangular pass $P Q R S P$ is ~ 0, since we have $P Q R \sim P S R$ as an immediate consequence of the associativity of the operation \otimes. Then we can see easily that every closed pass is ~ 0. We have namely only to 'decompose' the closed pass into rectangular passes. In doing so, we must take into consideration that G_{P} is not defined for points $P=(i, i)$. We can, however, easily arrange the 'decomposition', so that these points do not appear as vectors of rectangular passes, since we have $n \geqq 4$ by hypothesis. Thus $P=(i, j), T=(k, l)$ being any two points under cosideration, every pass joining P with T determine the same definite isomorphism of G_{P} to G_{T}.

Let R be a group which is isomorphic to $G_{P}=G_{i j}$. The isomorphic image of $\alpha \in R$ in $G_{i j}$ will be denoted by $(\alpha)_{i j}$. By what we have proved, we can take $(\alpha)_{i j}$ for every i, j, so that the relations $\Gamma_{i j} \otimes(\alpha)_{j k}=(\alpha)_{i j} \otimes \Gamma_{j k}=(\alpha)_{i k}$ hold.

We write $\alpha+\beta$ for the group multiplication of α and β in R, and we define the new multiplication $\alpha \beta$ as:

$$
(\alpha \beta)_{i k}=(\alpha)_{i j} \otimes(\beta)_{j k}
$$

We can see easily by the associativity of \otimes that $(\alpha)_{i j} \otimes(\beta)_{j k}$ is independent of j, so that this definition has a sence, and by virtue of Proposition 4 and $7, R$ can be considered as a ring by addition and multiplication thus defined, and it has the unit 1 for which we have $(1)_{i j}=\Gamma_{i j}$.
R is said to be the auxiliary ring of L determined by the frame $\left\{a_{i}, \Gamma_{i j} ; i, j=1,2, \cdots, n\right\}$.

By Proposition $6 \pi\left((\alpha)_{i j}\right)$ does not depend on i, so we put $\pi_{j}(\alpha)=$ $\pi\left((\alpha)_{i j}\right)$. Then we can see easily that the image of $\pi_{i}(\alpha)$ by the perspective isomorphism of L_{i} to L_{j} with axis $\Gamma_{i j}\left(a_{i}\right)\left(=\Gamma_{j_{i}}\left(a_{j}\right)\right)$ is $\pi_{j}(\alpha)$. Let $a_{i}=u \oplus v$ be a decomposition of a_{i}. This induces the decomposition of every element of G_{i} as defined in $\S 2$, hence in particular of
$\Gamma_{i j}$. Let $\varepsilon_{i j}$ be the u-part of $\Gamma_{i j}$, where ε is an element of R. Then for every $\alpha \in R$, the u-part of $(\alpha)_{i k}=\Gamma_{i j} \otimes(\alpha)_{j k}$ is clearly $(\varepsilon)_{i j} \otimes(\alpha)_{j k}$ Since decomposition operator is idempotent, ε is an idempotent element, and the v-part of $(\alpha)_{i k}$ is obviously $((1-\varepsilon) \alpha)_{i k}$. Moreover we have $\pi_{j}(\varepsilon)=\left(a_{i} \cup(\varepsilon)_{i j}\left(a_{i}\right)\right) \cap a_{j}=\left(u \cup \Gamma_{i j}\left(a_{i}\right)\right) \cap a_{j}$ and hence $\pi_{i}(\varepsilon)=u$ and similarly $\pi_{2}(1-\varepsilon)=v$. Let $f \in G_{i}$, and $f=(\alpha)_{i j}(\beta)_{i k} \cdots$ be the direct sum decomposition of G_{i} to $\prod_{j \neq i} G_{i j}, \alpha, \beta, \cdots$ being elements of R. Furthermore, let ξ be any element of R. We shall denote with ξf the element of G_{i} which has the decomposition $(\xi \alpha)_{i j}(\xi \beta)_{i k} \cdots$. Then $\varepsilon f=$ $(\varepsilon \alpha)_{i j}(\varepsilon \beta)_{i k} \cdots$ is obviously the u-part of f and we have $\pi(f)=\pi(\varepsilon f) \cup$ $\pi((1-\varepsilon) f)$ because $\pi(\varepsilon f) \leqq \pi(f)$.

By virtue of Proposition 5 we have $R \alpha \supset R \beta$ if and only if $\pi_{2}(\alpha)$ $\geqq \pi_{t}(\beta)$ for any i. Hence $R \alpha \rightarrow \pi_{t}(\alpha)$ gives one-to-one and orderpreserving mapping of all principal left ideals of R onto L_{i}. Therefore we see that for every element α of R, there exists an idempotent ε such that we have $R \alpha=R \varepsilon$. A ring which has this property is said to be regular. We can see easily that the totality of the principal left ideals of a regular ring R constitutes a complemented modular lattice, denoting $L(R)$, as a sublattice of the lattice of all left ideals of R. (Also the totality of the principal right ideals of R constitutes a complemented modular lattice, but we make exclusively use of $L(R)$.)

Thus we have proved
Theorem 2. The auxiliary ring R of L is regular and $L(R)$ is isomorphic to L_{i} by the correspondence : $R \alpha \leftrightarrows \pi_{i}(\alpha)$.

§4. Representation.

Let R be a regular ring. R may be considered as a module with the ring mutiplication from the left as operators. We write R^{n} for the direct sum of n modules which are all isomorphic to $R . L\left(R^{n}\right)$ will denote the set of all finitely generated submodules of R^{n}.

Then we shall prove
THEOREM 3. $L\left(R^{n}\right)$ conslitutes a complemented modular lattice as a sublattice of the lattice $\bar{L}\left(R^{n}\right)$ of all submodules of R^{n} and it has a frame (with a homogeneous basis of degree n) which determines (if $n \geqq 4$) the auxiliary ring of $L\left(R^{n}\right)$, which is isomorphic to R.

Proof. Let $e_{i}(i=1,2, \cdots, n)$ be a basis of R^{n} as R-module: $R^{n}=$ $\boldsymbol{R} \boldsymbol{e}_{1}+\boldsymbol{R e}_{2}+\cdots+\boldsymbol{R} \boldsymbol{e}_{n}$. Let $M_{n}(R)$ be the n-square matrix ring over R,
and S a submodule of R^{n}. We denote with \bar{S} the left ideal of $M_{n}(R)$ consisting of all matrices whose row-vectors are in S. The correspondence $S \leftrightarrows \bar{S}$ gives an isomorphism between the lattice of all submodules of R^{n} and that of all left ideals of $M_{n}(R)$.

First we shall prove that every element S of $L\left(R^{n}\right)$ has a complement in $\bar{L}\left(R^{n}\right)$. We prove it by induction. This is true for $n=1$, as R is a regular ring. We suppose that it is true for R^{n-1} and put $R^{\imath}=\boldsymbol{R e}_{1}+R_{2}$ where $R_{2}=\boldsymbol{R} \boldsymbol{e}_{2}+\cdots+\boldsymbol{R} \boldsymbol{e}_{n}$. Let S be an arbitrary element of $L\left(R^{n}\right)$ with generators $\boldsymbol{a}_{1}, \boldsymbol{a}_{2}, \cdots, \boldsymbol{a}_{m}$. If S_{1} is the image of S by the projection of R^{n} to $R e_{1}$, we can find an idempotent ε in R such that $S_{1}=R \varepsilon e_{1}$. There exists an element a in S of the form $\boldsymbol{a}=\varepsilon \boldsymbol{e}_{1}+\cdots$, so we can determine $\boldsymbol{a}_{i}^{\prime}(i=1,2, \cdots, m)$ such that $\boldsymbol{a}_{i}^{\prime}$ are in \boldsymbol{R}_{2} and $\boldsymbol{a}_{i}=\alpha_{i} \boldsymbol{a}+\boldsymbol{a}_{\boldsymbol{i}}^{\prime}$ for some α_{i} in R, then $\boldsymbol{a}_{\boldsymbol{i}}^{\prime}$ generate a submodule S_{2} which obviously coincides with $S \cap R_{2}$. Let S_{1}^{\prime} be a complement of S_{1} in $\bar{L}\left(\boldsymbol{R e}_{1}\right)$ and S_{2}^{\prime} be that of S_{2} in $\bar{L}\left(R_{2}\right)$, then we can see easily that $S_{1}^{\prime} \cup S_{2}^{\prime}$ is a complement of S in $\bar{L}\left(R^{n}\right)$.

Therefore every principal left ideal of $M_{n}(R)$ has a complement in the lattice of all left ideals, and hence $M_{n}(R)$ is a regular ring. Then $L\left(R^{n}\right)$, being isomorphic to $L\left(M_{n}(R)\right)$, is a complemented modular lattice.
$\boldsymbol{R} \boldsymbol{e}_{i}(i=1,2, \cdots, n)$ obviously constitute a homogeneous basis of $L\left(R^{n}\right)$, because $R\left(\boldsymbol{e}_{i}+\boldsymbol{e}_{j}\right)$ is a complement of both $\boldsymbol{R} \boldsymbol{e}_{i}$ and $\boldsymbol{R} \boldsymbol{e}_{j}$ in $\boldsymbol{R} \boldsymbol{e}_{i}+\boldsymbol{R} \boldsymbol{e}_{j}$.

For every $\alpha \in R$ there exists an automorphism of R^{n} (denoted by $\left.(\alpha)_{i j}\right)$ which maps \boldsymbol{e}_{i} to $\boldsymbol{e}_{i}-\alpha \boldsymbol{e}_{j}$ and fixes every $\boldsymbol{e}_{k}(k \neq i) . \quad(\alpha)_{i j}$ can be considered as an automrphism of the lattice $L\left(R^{n}\right)$. We can see easily that $(\alpha)_{i j}$ is normal for $\sum_{j \neq i} R \boldsymbol{e}_{j}$ and the totality of them, for all $\alpha \in R$, constitues a group isomorphic to the addition group of R. This group corresponds to $G_{i j}$ defined in $\S 2$. Moreover by simple calculations we have $(\alpha)_{i j} \otimes(\beta)_{j k}=(\alpha \beta)_{i k}$. Thus $\left\{\boldsymbol{R e}_{i},(1)_{i j} ; i, j=1,2, \cdots \boldsymbol{n}\right\}$ constitutes a frame, which determines the auxiliary ring isomorphic to R.

Thus the proof is completed.
The above theorem, together with the following will complete our theory.

Theorem 4. Let L and L^{*} be complemented modular lattices with homogeneous basis $\left\{a_{i} ; i=1,2, \cdots, n\right\},\left\{a_{i}^{*} ; i=1,2, \cdots, n\right\}$ of the same degree $n \geqq 4$. If the auxiliary ring R of L determined by a frame $\left\{a_{i}, \Gamma_{i j}\right.$; $i, j=1,2, \cdots, n\}$ is isomorphic to the auxiliary ring R^{*} of L^{*} determined
by a frame $\left\{a_{i}^{*}, \Gamma_{i j}^{*} ; i, j=1,2, \cdots, n\right\}$, then L is isomorphic to L^{*}.
Proof. The isomorphic mapping of R to R^{*} will be denoted by ${ }^{*}$. This sign * will be also used to indicate the corresponding objects in various senses, easy to be understood in each case. E.g. the homogeneous basis $\left\{a_{i} ; i=1,2, \cdots, n\right\}$ of L will determine the groups $G_{i j}$ introduced at the beginning of $\S 2$. The corresponding groups determined by $\left\{a_{i}^{*} ; i=1,2, \cdots, n\right\}$ will be denoted by $G_{i j}^{*}$. Then there exists an isomorphic mapping $(\alpha)_{i j} \rightarrow\left(\alpha^{*}\right)_{i j}$ of $G_{i j}$ to $G_{i j}^{*}$ and this isomorphism can be extended to an isomorphism of G_{i} to G_{i}^{*}. Here we remark that if $f \in G_{1, g} g \in G_{2}$ and $\pi(g) \leqq a_{3} \cup \cdots \cup a_{n}$, then we have obviously $(f \otimes g)^{*}=f^{*} \otimes g^{*}$, and hence

$$
\left(g^{-1} f g\right)^{*}=(f(f \otimes g))^{*}=f^{*}(f \otimes g)^{*}=f^{*}\left(f^{*} \otimes g^{*}\right)=g^{*-1} f^{*} g^{*}
$$

Putting $L_{(i)}=L_{a_{i} \cup a_{i, 1} \cup \cdots \cup a_{n}}, G_{(i)}=\prod_{j=i, 1}^{n} G_{i j}$ and $L_{(i)}^{*}=L_{a_{i}^{*} \cup \ldots \cup a_{n}^{*}}^{*}, G_{(i)}^{*}=$ $\prod_{j=i+1}^{n} G_{i j}^{*}$, we shall prove the following proposition $\left(P_{i}\right)$ for every $i=1$, $2, \cdots, n$.
$\left(P_{i}\right):$ There exists an isomorphism: $L_{(i)} \ni x \rightarrow x^{*} \in L_{(i)}^{*}$ such that we have

$$
\begin{array}{llll}
\text { (i) } & \pi_{j}(\alpha)^{*}=\pi_{j}\left(\alpha^{*}\right) & \text { for every } & j \geqq i, \alpha \in R, \tag{i}\\
\text { (ii) } & f(x)^{*}=f^{*}\left(x^{*}\right) & \text { for every } & f \in G_{(i)}, \text { and } \\
\text { (iii) } & \pi(f)^{*}=\pi\left(f^{*}\right) & \text { for every } & f \in G_{(i)} .
\end{array}
$$

$\left(P_{n}\right)$ is true, because every element of $L_{(n)}$ may be written as $\pi_{n}(\alpha)$, and $\pi_{n}(\alpha) \rightarrow \pi_{n}\left(\alpha^{*}\right)$ gives the desired isomorphism. $\left(P_{i}\right), i=1,2$, $\cdots, n-1$ will be proved, if we show $\left(P_{i}\right) \rightarrow\left(P_{i-1}\right)$ for $i=n, \cdots, 2$. We shall show $\left(P_{2}\right) \rightarrow\left(P_{1}\right)$, as $\left(P_{i}\right) \rightarrow\left(P_{i-1}\right)$ for other i 's will be shown in the same way. ${ }^{5}$

Let $x \rightarrow x^{*}$ be an isomorphism of $L_{(2)}$ to $L_{(2)}^{*}$ satisfying (i), (ii), (iii) (for $i=2$). We shall first prove that $\pi(f)^{*}=\pi\left(f^{*}\right)$ for $f \in G_{1}$. If $\pi(f) \leqq a_{3} \cup a_{4} \cup \cdots \cup a_{n}$ then we have $\Gamma_{21} \otimes f \in G_{(2)}$ and hence $\pi(f)^{*}=$ $\pi\left(\Gamma_{21} \otimes f\right)^{*}=\pi\left(\Gamma_{21}^{*} \otimes f^{*}\right)=\pi\left(f^{*}\right)$. If there exist g in $G_{(2)}$ and $f_{1}=(\alpha)_{12}$ in G_{12} such that $f=g^{-1} f_{1} g$, then by Proposition 3 we have $\pi(f)=$ $g^{-1} \pi\left(f_{1}\right)=g^{-1}\left(\pi_{2}(\alpha)\right)$ and hence $\pi(f)^{*}=g^{*-1}\left(\pi_{2}\left(\alpha^{*}\right)\right)=\pi\left(g^{*-1} f_{1}{ }^{*} g^{*}\right)=\pi\left(f^{*}\right)$. We can reduce the proof of $\pi(f)^{*}=\pi\left(f^{*}\right)$ for general $f \in G_{1}$ to the above two cases. An arbitrary $f \in G_{1}$ can be written as $f=(\alpha)_{12} \cdot h$

[^2]where $\pi(h) \leqq a_{3} \cup \cdots \cup a_{n}$. Let ξ be an element of R such that $\alpha=\alpha \xi \alpha$, then $\varepsilon=\alpha \xi$ is idempotent. Now put $g=\Gamma_{21} \otimes \xi h$, then g is in $G_{(2)}$ and $\varepsilon f=(\varepsilon \alpha)_{12} \cdot \varepsilon h=(\alpha)_{12} \cdot \alpha(\xi h)=(\alpha)_{12} \cdot\left((\alpha)_{12} \otimes g\right)=g^{-1}(\alpha)_{12} g$, and hence $\pi(\varepsilon f)^{*}$ $=\pi\left(\varepsilon^{*} f^{*}\right)$. On the other hand we have
$$
\pi((1-\varepsilon) f)=\pi((1-\varepsilon) h) \leqq a_{3} \cup \cdots \cup a_{n}
$$
so we have also $\pi((1-\varepsilon) f)^{*}=\pi\left(\left(1-\varepsilon^{*}\right) f^{*}\right)$. Therefore
$$
\pi(f)^{*}=\pi(\varepsilon f)^{*} \cup \pi((1-\varepsilon) f)^{*}=\pi\left(\varepsilon^{*} f^{*}\right) \cup \pi\left(\left(1-\varepsilon^{*}\right) f^{*}\right)=\pi\left(f^{*}\right)
$$

Now we shall extend the isomorphism $x \rightarrow x^{*}$ of $L_{(2)}$ to $L_{(2)}^{*}$ and $\pi_{1}(\alpha) \rightarrow \pi_{1}\left(\alpha^{*}\right)$ of L_{1} to $L_{1}{ }^{*}$ (we write $x \rightarrow x^{*}$ also in the latter case) to an isomorphism of $L_{(1)}=L$ to $L_{(1)}^{*}=L^{*}$.

Suppose we have proved the equivalency of two inequalities $f(x) \cup u \leqq g(y) \cup v$ and $f^{*}\left(x^{*}\right) \cup u^{*} \leqq g^{*}\left(y^{*}\right) \cup v^{*}$ for every $f, g \in G_{1}, x, y$ $\leqq a_{1}$, and $u, v \in L_{(2)}$. Then the element $f^{*}\left(x^{*}\right) \cup u^{*}$ of L^{*} is determined uniquely by an element $f(x) \cup u$ of L, independently of its expression. Since every element of L can be written as $f(x) \cup u$, an order-preserving one-to-one mapping of L onto L^{*} is defined by $f(x) \cup u \rightarrow f^{*}\left(x^{*}\right) \cup u^{*}$. For this mapping (i), (ii) and (iii) of (P_{1}) are obviously satisfied.

Thus we have only to prove that $f(x) \cup u \leqq g(y) \cup v$ implies $f^{*}\left(x^{*}\right)$ $\cup u^{*} \leqq g^{*}\left(y^{*}\right) \cup v^{*}$, since the converse is then also true by reason of symmetry.
$f(x) \cup u \leqq g(y) \cup v$ implies obviously $x \leqq y, u \leqq v$ and hence $x^{*} \leqq y^{*}$, $u^{*} \leqq v^{*}$. Let $\varepsilon \in R$ be an idempotent such that $\pi_{1}(\varepsilon)=x$. Then we have

$$
\begin{aligned}
\varepsilon g^{-1} f\left(a_{1}\right) & =g^{-1} f(x) \leqq y \cup v \\
\pi\left(\varepsilon g^{-1} f\right) & =\left(\varepsilon g^{-1} f\left(a_{1}\right) \cup a_{1}\right) \cap \bar{a}_{1} \leqq\left(v \cup a_{1}\right) \cap \bar{a}_{1}=v
\end{aligned}
$$

and hence $\pi\left(\varepsilon^{*} g^{*-1} f^{*}\right) \leqq v^{*}$. From the last inequality, we have

$$
g^{*-1} f^{*}\left(x^{*}\right)=\varepsilon^{*} g^{*-1} f^{*}\left(a_{1}^{*}\right) \leqq a_{1}^{*} \cup v^{*}
$$

and also $g^{*-1} f^{*}\left(x^{*}\right) \leqq\left(a_{1}^{*} \cup v^{*}\right) \cap\left(y^{*} \cup \bar{a}_{1}^{*}\right)=y^{*} \cup v^{*}$. Thus we obtain the inequality $g^{*-1} f^{*}\left(x^{*}\right) \cup u^{*} \leqq y^{*} \cup v^{*}$ which is equivalent to $f^{*}\left(x^{*}\right) \cup u^{*}$ $\leqq g^{*}\left(y^{*}\right) \cup v^{*}$.

We have thus proved $\left(P_{1}\right)$ and this implies our theorem as $L_{(1)}=$ $L, L_{(1)}^{*}=L^{*}$.

References

[1] Neumann, J. von, Lecture on continuous geometries I, II, III, princeton, 193637.
[2] Maeda, F., Continuous geometries (in Japanese), Iwanami, 1952.
[3] Kodaira, K. and Huruya, S., On continuous geometries I, II, III, (in Japanese) Zenkoku Shijo Sugaku Danwakai, 168 (1938), 514-531; 169 (1938), 593-609; 170 (1938), 638-656.

[^0]: 2) $\boldsymbol{a} \oplus b$ means $a \cup b$ and only used in the case $a \cap b=0$.
[^1]: 3) (a, b, c) \perp means the independency of a, b, c, i. e. that the join of any two among a, b, c is orthogonal to the resting one.
[^2]: 5) In the proof of von Neumann, the step $\left(P_{2}\right) \rightarrow\left(P_{1}\right)$ requires special considerations, whereas $\left(P_{i}\right) \rightarrow\left(P_{i-1}\right), i=n, \cdots, 3$ are proved by the same method. In our proof, all steps $\left(P_{i}\right) \rightarrow\left(P_{i-1}\right), i=n, \cdots, 2$ are treated in the same way.
