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In 1928, M. S. Knebelman [7] proved that a group of projective
transformations in an n-dimensional affinely connected manifold pre-
serves a projectively related affine connection if the group is of order
$r\leqq n$ . In this respect, it seems to be interesting to ask whether a
group of conformal transformations of a Riemannian metric preserves
or not another Riemannian metric. In \S 1 we shall show that a
group $G$ of projective transformations of an affine connection leaves
another projectively related affine connection invariant if $G$ is compact.
For a transitive group $G$ we shall further prove that the same
remains valid, if the isotropy group of $G$ is compact, or, if the
identity component of the linear isotropy group of $G$ is irreducible
and the space is projectively non-fiat. In \S 2 we shall obtain, con-
cerning groups of conformal transformations, some results analogous
to those proved in \S 1.

On the other hand, the compactness, the completeness or the
irreducibility of a Riemannian manifold implies strong restrictions on
affine, conformal or isometric transformations [1, 3, 6, 8, 10, 11, 19, 20].
In this respect, in \S 3 we shall study groups of projective transfor-
mations preserving the Ricci tensor in an affinely connected manifold
and obtain the fact that such groups are affine in a space, which is
complete, or, whose homogeneous holonomy group has no invariant
hyperplane. In \S 4 such groups will be discussed in a complete or
compact Riemannian manifold. In \S 5 we shall study groups of
conformal transformations leaving the Ricci tensor invariant in a
complete or compact Riemannian manifold and obtain some results
analogous to those proved In \S 4.

The last section is devoted to the proof of a lemma used In \S 1
concerning groups of affine motions of the ordinary affine space.
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\S 1. Groups of projective transformations.

Let $M$ be an n-dimensional manifoldi) with an affine connection
$\Gamma_{j^{i}k}$ having no torsion2), $i$ . $e$ . $\Gamma_{j^{i}/e}=\Gamma_{kj}^{i3)}$ . If a transformation $s$ of $M$

onto itself carries a point $p$ of $M$ into a point $p^{\prime}$ of $M$, and if $U$ and
$V$ are coordinate neighborhoods of $p$ and $p^{\prime}$ respectively, then the
restriction of $s$ to $U\cap s^{-1}(V)$ can be represented by a coordinate
transformation:

$\overline{x}^{j}=\overline{x}^{j}(x^{1}, x^{9},\cdots, x^{7})$ ,

where $(x)$ and $(\overline{x}^{j})$ are systems of local coordinates in $U$ and $V$ re-
spectively. Denoting by $(\Gamma_{j^{i}k})_{q}$ the components of the affine connection
at a point $q\in U\cap s^{-1}(V)$ with respect to $(x^{j})$ , we obtain a new con-
nection $\overline{\Gamma}_{j^{i}k}$ in $s(U)\cap V$ whose components at $q^{\prime}=s(q)$ are given by

$(\overline{\Gamma}_{J}^{a_{k}})_{q^{\prime}}\frac{\partial x^{i}}{\partial\overline{x}^{a}}=\frac{\partial x^{b}\partial x^{a}\wedge}{\partial\overline{x}^{j}\partial\overline{x}^{k}}(\Gamma_{b^{i}c})_{q}+\frac{\partial^{2}x^{i}}{\partial\overline{x}^{j}\partial\overline{x}^{k}}$

with respect to $(\overline{x}^{j})$ , where all derivatives respresent their values at
the point $q^{\prime}$ . It is easily seen that the affine connection $\overline{\Gamma}_{jk}^{i}$ thus locally
constructed defines globally an affine connection in $M$. We have hence
in $M$ an affine connection denoted also by $\overline{\Gamma}_{j^{i}k}$ , which is called the
affine conneclion induced from $\Gamma_{j^{i}k}$ by $s$.

In the manifold $M$ the system of paths is defined by differential
equations

$\frac{d^{2}x}{d_{0^{2}’}}+\Gamma_{b^{i}c}\frac{dx^{b}}{d_{0}}\frac{dx-\prime}{d\sigma}=0$ ,

where $\Gamma_{;^{i_{k}}}$ is the affine connection of $M$. Such a parameter $\sigma$ of a
path is determined up to an affine transformation

$\sigma^{\prime}=a\sigma+b$ ,

$a$ and $b$ being constant, and $\sigma$ is called an affine parameter of the
path. If a transformation $s$ of $M$ preserves the system of paths

1) Throughout the paper, we assume that manifolds of geometric objects, trans-
formations etc. are differentiable and of class $C^{\infty}$ . Moreover, we suppose that $\dim M$

$=n>1$ . For simplicity we assume that any manifold is connected.
2) We consider only affine connections without torsion.
3) Indices $a,$ $b,$ $c,$ $i,j,$ $k,$ $l$ take the values in the range $t^{1,2,\cdots,n\}}$ . The usual sum-

mation convention is used with respect to this system of indices.
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and the affine character of the parameter $\sigma$ on each path, then $s$ is
called an affne transformation of the connection $\Gamma_{j^{i}k}$ or simply of the
manifold $M$, and we say that $s$ leaves the connection $\Gamma_{j^{i}k}$ invariant
[14]. If $s$ leaves the system of paths invariant, the affine character
of the parameter $\sigma$ being not necessarily preserved, then $s$ is called
a projective transformation of the affine connection $\Gamma_{j^{i}k}$ or simply of $M$

$[14, 16]$ .
A transformation $s$ of $M$ is affine, if and only if

(1.1) $\Gamma_{j^{i}k}(s)=\Gamma_{j^{i}k}$ ,

where $\Gamma_{j^{i}k}(s)$ denotes the affine connection induced from $\Gamma_{j^{i}k}$ by $s[14]$ .
The transformation $s$ is projective in $M$, if and only if there exists
a certain covariant vector field $\varphi(s)$ such that

(1.2) $\Gamma_{j^{i}k}(s)=\Gamma_{j^{i}k}+\delta_{j}^{i}\varphi_{k}+\delta_{k}^{i}\varphi_{j},$ $\delta_{j}^{i}=\left\{\begin{array}{l}1, if i=j,\\0, if i\neq j,\end{array}\right.$

where $\varphi_{j}$ denote the components of the field $\varphi(s)[14,16]$ . By virtue
of (1.2), if $s$ and $t$ are two projective transformations, we find4)

(1.3) $\varphi(sl)=\varphi(s)+\hat{s}\cdot\varphi(t)$ .
When, for two affine connections $\Gamma_{j^{i}k}$ and $\overline{\Gamma}_{j^{i}k}$ , there exists a certain

covariant vector field $\psi$ with components $\psi_{j}$ such that

$\overline{\Gamma}_{jk}^{i}=\Gamma_{j^{i}k}+\delta_{j^{i}}\psi_{k}+\delta_{k}^{i}\psi_{j}$ ,

they are projectively related to each other, by definition. Let $G$ be a
group of projective transformations of the affine connection $\Gamma_{j^{i}k}$ . If
there exists a certain projectively related affine connection for which
$G$ is a group of affine transformations, then the group $G$ is said to
be essentially affine with respect to the connection $\Gamma_{jk}^{i}$ .

4) Let $s$ be a transformation of $M$ and $X$ a tangent vector of $M$ at a point
$p\in M$ Then the differential mapping $ds$ of $s$ carries $X$ into a tangent vector $d_{S}\cdot x_{-}^{\varpi}$

at the point $s(p)$ . Since $s$ is a homeomorphism, $cts$ is an isomorphism $\tau_{p}\rightarrow\prime 1_{p^{r}}^{\gamma}$ ,
where $\tau_{p}$ and $\tau_{p^{r}}$ are the tangent spaces of $M$ respectively at $p$ and $p^{\prime}=s(p)$ .
Thus the dual mapping of $ds$ is also an isomorphism. Then we denote simply by
the simbol $ s\wedge$ the inverse of the dual mapping of $ds$ . Therefore, for a covariant
vector $u$ at a point $p\in M,$ $ su\wedge$. is a covariant vector at the point $s(p)$ .

Given a covariant vector field $\varphi$ in $M$, we denote by $[\varphi]_{p}$ the value of the field
$\varphi$ at a point $p\in M$ We shall define a covariant vector field $\psi$ by $[\psi]^{\wedge}p^{\prime}=s\cdot[\varphi]p$ and
denote by $ s\varphi\wedge$. the field $\psi$ thus obtained, where $p$ is an arbitrary point and $p^{\prime}=s(p)$ .
If follows hence $[s\wedge.\varphi]_{S(p)}=s\wedge.[\varphi]p$ .
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We shall now consider projective transformations of a Riemannian
manifold. A transformation $s$ of a Riemannian manifold5) $M$ with
the metric tensor $g_{ij}$ is called projective if it is projective with
respect to the affine connection determined by the Christoffel symbols
$\{_{j^{i}k}\}$ of $g_{ij}$ . If $s$ is affine with respect to $\{_{j^{i}k}\}$ , it is called an affine
transformation of $M$.

M. S. Knebelman [7] proved the following theorem:
If a given affine connection admits a finile continuous group $G$ of

projective or affine collineations, lhere exisls projectively relaled affine
connections for which $G$ is a group of affine collinealions, where $G$ is
of order $r\leqq n$. The delermination of lhese projeclively related connec-
lions depends upon $n$ funclions which are arbitrary in $n-r$ of the
coordinales.

In this regard, we have the following
THEOREM 1. Let $G$ be a compact group6) of projective transfor-

malions of an affinely connected manifold M. Then $G$ is essenlially
affine with respect to the affine connection of $M$.

PROOF. We shall construct an affine connection which is projec-
tively related to the given connection $\Gamma_{j^{i}k}$ and invariant under $G$.
For this purpose, we define a covariant vector field $\psi$ as follows.
Denoting by $\Delta$ the total measure of the compact group $G$, we con-
struct a covariant vector field $\psi$ by

$[\psi]_{p}=\frac{1}{\Delta}\int[\varphi(t)]_{p}dt$ ,

$p$ being an arbitrary point of $M,$ where $\varphi(t)$ is the $CO^{\backslash }1^{\gamma}ariant$ vector
field given by (1.2) corresponding to an element $t$ of $G$ and the
integral is extended over the whole group manifold of $G$. For the
sake of simplicity let us put

(1.4) $\psi=\frac{1}{\Delta}\int\varphi(l)dt$ .
Denoting by $\psi_{j}$ the components of the field $\psi$ , we shall introduce an
affine connection by

(1.5) $\overline{\Gamma}_{jk}^{i}=\Gamma_{j^{i}k}+\delta_{j}^{i}\psi_{k}+\delta_{k}^{i}\psi_{j}$ .

5) We consider only Riemannian manifolds whose metric tensor is positive
definite.

6) We consider only Lie groups throughout the paper.
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For an element $s$ of $G$ we denote by $\overline{\Gamma}_{jk}^{i}(s)$ the affine connection
induced from $\overline{\Gamma_{j^{i}k}}$ by $s$. Then, it follows that $s$ is a projective trans-
formation of $\overline{\Gamma}_{j^{i}k},$

$i$ . $e$ .
(1.6) $\overline{T^{1}}_{j^{i}k}(s)=\overline{\Gamma}_{j^{i}k}+\delta_{j}^{i}\psi_{k}(s)+\delta_{k}^{i}\psi_{j}(s)$

with a covariant vector field $\psi(s)$ having $\psi_{j}(s)$ as its components,
since the new connection $\overline{1^{\urcorner}}_{j^{i}k}$ is projectively related to the original
connection $\Gamma_{j^{i}k}$ for which $s$ is projective. As a consequence of (1.2),
(1.5) and (1.6), we have easily

$\psi(s)=\varphi(s)+\hat{s}\cdot\psi-\psi$ ,

where $\varphi(s)$ is the covariant vector field defined by (1.2).
Substituting (1.4) in the second term of the right-hand side, we

obtain

$\psi(s)=\frac{1}{\Delta}\int(\varphi(s)+\hat{s}\cdot\varphi(l))dt-\psi$ ,

because we have from the definitions

$\hat{s}\cdot\int\varphi(t)dt=\int\hat{s}\cdot\varphi(t)dt$ .
Therefore, by virtue of (1.3) it follows

$\psi(s)=\frac{1}{\Delta}\int\varphi(st)dt-\psi$ .

On the other hand, we have

$\zeta\varphi(st)dt=\int\varphi(t)dl$ ,

since the invariant measure over the compact group is two-sided
invariant. Consequently, we can conclude

$\psi(s)=0$ .
This shows by virtue of (1.6) that the affine connection $\overline{\Gamma}_{j^{i}k}$ is invariant
under the group $G$. The proof of Theorem 1 is therefore completed.

We shall, from now on, consider transitive groups of projective
transformations. First we have the following

THEOREM 2. Let $G$ be a lransitive group of projeclive transforma-
lions in an affinely connected manifold M. If $lhe$ isolropy group of $G$

at a point of $M$ is compacl, then $G$ is essenlially affine with respect to
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$lhe$ affine connection of $M$.
PROOF. Since the isotropy group $H$ of $G$ at a point $O$ is compact,

as a consequence of Theorem 1, we may suppose that the given affine
connection $\Gamma_{j^{i}k}$ is invariant under the group $H$. Thus the covariant
vector field $\varphi(s)$ defined by (1.2) corresponding to any $s\in H$ vanishes.
Moreover, if $s^{\prime}s^{-1}\in H$, we have

$\varphi(s)=\varphi(s^{\prime})$ .
In fact, putting $s^{\prime}s^{-1}=i$, we find from (1.3)

$\varphi(s^{\prime})=\varphi(st)=\varphi(s)+\hat{s}\cdot\varphi(t)$ .
This implies immediately $\varphi(s)=\varphi(s^{\prime})$ because $\varphi(t)=0$ .

We shall construct a projectively related affine connection which
is invariant under $G$. For this purpose, we define a covariant vector
field $\psi$ as follow. For a point $p$ of $M$ we put7)

(1.7) $[\psi]_{p}=[\varphi(s)]_{p}$ ,

where $s$ is an element of $G$ such that $s(O)=p$ . The right-hand side
of (1.7) is independent of the choice of $s$ such as $s(O)=p$, since we
have $\varphi(s)=\varphi(s^{\prime})$ for $s$ and $s^{\prime}$ such as $s^{\prime}s^{-1}\in H$. If we put

$\overline{\Gamma}_{j^{i}h}=\Gamma_{j^{i}k}+\delta_{j}^{i}\psi_{k}+\delta_{k}^{i}\psi_{j}$ ,

$\psi_{j}$ being the components of the field $\psi$ defined by (1.7), then we can
assign to any element $s$ of $G$ a covariant vector field $\psi(s)$ defined by
(1.6), where

$\psi(s)=\varphi(s)+\hat{s}\cdot\psi-\psi$ .
Thus the connection $\overline{\Gamma_{j^{i}k}}$ is invariant under $G$ , if $\psi(s)=0$ for any $s$

of $G$.
Let $q$ be an arbitrary point of $M$ and $t$ an element of $G$ such

that $t(O)=q$ . From (1.7) we have
$[\psi]_{q}=[\varphi(t)]_{q}$

and then
$[\hat{s}\cdot\psi]_{s(q)}=[\hat{s}\cdot\varphi(t)]_{s(q)}$

for any $s\in G$. Thus it follows
$[\varphi(s)+\hat{s}\cdot\psi]_{s(q)}=[\varphi(s)+\hat{s}\cdot\varphi(t)]_{s(q)}$ .

7) See the footnote 4).
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Therefore, by virtue of (1.3) we obtain

$[\varphi(s)+\hat{s}\cdot\psi]_{s(q)}=[\varphi(sl)]_{s(q)}=[\varphi(st)]_{st(0)}=[\psi]_{s(q)}$ .
It follows consequently

$[\psi(s)]_{s(q)}=[\varphi(s)+\hat{s}\cdot\psi]_{s(q)}-[\psi]_{s(q)}=0$ .
This shows that the field $\psi(s)$ vanishes identically, since $q$ is an
arbitrary point of $M$. Thus the proof of Theorem 2 is completed.

Let $L$ and $\tilde{L}$ be respectively the group of all non-singular matrices
of the form

(1.8) $\sigma=\left(\begin{array}{ll}1 & a^{o_{j}}(\sigma)\\0 & a_{j}^{i}(\sigma)\end{array}\right)$

and the group of all non-singular ( $n$ , n)-matrices. The correspondence
$\sigma\rightarrow(a^{i_{j}}(\sigma))$ defines a homomorphism $\beta$ of $L$ onto $\tilde{L}$.

In the previous paper [4] the author has proved the following
propositions:

(i) If $G$ is a group of projective transformations in an affinely
connected manifold $M$, then the isotropy group $H$ of $G$ at a point $O$

is homomorphic to a group $K_{o}$ of matrices of the form (1.8). If $G$

is effective on $M$, two groups $H$ and $K_{o}$ are isomorphic to each other.
The homomorphism of $H$ onto $K_{o}$ is denoted by $\alpha:H\rightarrow K_{o}$ .

(ii) Let $s$ be an element of $H$ and $\varphi(s)$ the covariant vector field
defined by (1.2) corresponding to $s$. Putting

$\alpha(s)=\left(\begin{array}{ll}1 & a^{o_{j}}(s)\\0 & a_{j}^{i}(s)\end{array}\right)$ , $s\in H$ ,

we see that the covariant vector $[\varphi(s)]_{0}$ , the value of the field $\varphi(s)$

at $O$, has $a^{0_{j}}(s)$ as its components in the natural way.
(iii) The linear isotropy group8) $\tilde{H}$ of $G$ at $O$ is given by $\tilde{H}=$

$\beta(K_{0})$ . Then, for an element $s$ of $H$ the linear transformation

$\beta\circ\alpha(s)=(a_{j}^{i}(s))$

of the tangent space $T_{o}$ of $M$ at $O$ is nothing but the linear trans-

8) The isotropy group $H$ of $G$ at a point $O$ induces a group $\tilde{H}$ of linear trans-
formations of the tangent space $T_{o}$ at $O$ . The linear group $H$ is called as usual
the linear isotropy group of $G$ at $O$ .
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formation induced in $T_{o}$ by the differential mapping of $s$.
Denoting by $N$ the kernel of the homomorphism $\beta;L\rightarrow\tilde{L}$, we

have obtained in [4] the following
LEMMA 1. Let $G$ be a transitive group of projective transformations

in an affinely connected manifold M. Then the affine connection of $M$

is projeclively flat, if $\dim N\cap K_{o}>0$ .
We need here the following lemma for the later use.
LEMMA 2. Let $\Gamma$ be a subgroup of the group $L$ and $\tilde{\Gamma}$ the subgroup

of $\tilde{L}$ defined by $\tilde{\Gamma}=\beta(\Gamma)$ . If $lhe$ kernel $ N\cap\Gamma$ of the homomorphism $\beta$

in $\Gamma$ is discrete, and, if the identiiy component of $\tilde{\Gamma}$ is an irreducible
group of matrices, then there exists a matrix

(1.9) $T=\left(\begin{array}{ll}1 & \xi_{j}\\0 & \delta_{j}^{i}\end{array}\right)$

such that

(1.10) $T\sigma T^{-1}=\left(\begin{array}{ll}1 & 0\\0 & a^{i_{j}}(\sigma)\end{array}\right)$

for any matrix $\sigma$ of $\Gamma$ .
The proof of Lemma 2 will be given in \S 6.
From (1.10) it follows easily that

$\xi_{j}=a_{j}^{a}(\sigma)\xi_{a}+a_{j}^{o}(\sigma)$

for any matrix $\sigma$ of $\Gamma$. This implies the following
LEMMA 2’. Let $G$ be a group of projective transformations in an

affinely connected manifold M. If the kernel $N\cap K_{o}$ of the homomor-
phism $\beta:K_{o}\rightarrow\tilde{H}$ is discrete, and, if the identity component of $\tilde{H}$ is
irreducible in the tangent space $T_{o}$ , lhen there exists a covariant veclor
$u=(u_{1}, u_{2},\cdots, u_{n})$ at the point $O$ such that

$u_{j}=a_{j}^{a}(s)u_{a}+a_{j}^{\circ}(s)$

or equivalently

(1.11) $u=[\varphi(s)]_{0}+\hat{s}\cdot u$

for all $s\in H$, where $a^{0_{j}}(s)$ and $a_{j}^{i}(s)$ are coefficients of the malrix $\alpha(s)$ .
THEOREM 3. Let $G$ be a transitive group of projeclive lransforma-

lions of a manifold with an affine connection zvhich is not projectively
flat. If $lhe$ identity component of the linear isotropy group of $G$ at a



Groups of proiective transformations. 203

point is irreducible in the tangenl space at $lhe$ point, then $G$ is essen-
lially affine with respect to the affine connection.

PROOF. Keeping notations as above, we see by virtue of Lemma
1 that the kernel $N\cap K_{o}$ of $\beta;K_{o}\rightarrow\tilde{H}$ is discrete, since $G$ is transitive
and the affine connection $\Gamma_{j^{i}k}$ is not projectively flat. Further, because
the identity component of $\tilde{H}$ is irreducible, Lemma 2’ implies that
there exists at the point $O$ a covariant vector $u$ satisfying (1.11) for
all $s\in H$.

We shall now define a covariant vector field $\psi$ in $M$ as follows.
Taking an arbitrary point $p$ of $M$ and an element $s$ of $G$ such that
$s(O)=p$, we put

(1.12) $[\psi]_{p}=[\varphi(s)]_{p}+\hat{s}\cdot u$ ,

where $\varphi(s)$ is the field defined by (1.2) corresponding to $s$. Here, the
sum in the right-hand side is independent of the choice of $s$ such
that $s(O)=p$. In fact, if $s^{\prime}$ is another element of $G$ such that $s^{\prime}(O)$

$=p$, then $s^{\prime}s^{-1}=t\in H$. Consequently, we have

$[\varphi(s^{\prime})]_{p}+\hat{s}^{\prime}\cdot u=[\varphi(st)]_{p}+(st)u\wedge$.
$=[\varphi(s)+\hat{s}\cdot\varphi(t)]_{p}+\hat{s}\circ t\cdot u$

$=[\varphi(s)]_{p}+\hat{s}\cdot\{[\varphi(l)]_{0}+t^{A}\cdot u\}$ .
On the other hand, since the covariant vector $u$ satisfies (1.11), it
follows

$u=[\varphi(t)]_{0^{+}}t\cdot u$ ,

where $t$ belongs to $H$ Thus we find
$[\varphi(s)]_{p}+\hat{s}\cdot u=[\varphi(s^{\prime})]_{p}+\hat{s}^{\prime}\cdot u$ .

Hence, we can define a covariant vector field $\psi$ by (1.12).
The covariant vector field $\psi$ thus defined satisfies the equation

(1.13) $\psi=\varphi(s)+\hat{s}\cdot\psi$

for any $s\in G$. In fact, let $q$ be an arbitrary point of $M$ and $t$ an
element of $G$ such that $l(O)=q$ . Then we have from (1.12)

$[\psi]_{q}=[\varphi(l)]_{q}+i\cdot u$

and hence for any $s\in G$

$[\hat{s}\cdot\psi]_{s(q)}=[\hat{s}\cdot\varphi(t)]_{s(q)}+(s^{A}l)\cdot u$ .
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It follows thus

$[\varphi(s)+\hat{s}\cdot\psi]_{s(q)}=[\varphi(s)+\hat{s}\cdot\varphi(l)]_{s(q)}+(st)u\wedge.$ .
Therefore, as a consequence of (1.13), we obtain

$[\varphi(s)+\cdot\hat{s}\psi]_{s(q)}=[\varphi(st)]_{s(q)}+(st)u=\wedge.[\psi]_{st(0)}=[\psi]_{s(q)}$ .
This implies the required relation (1.13), since the point $q$ is arbi-
trarily chosen.

Next, we construct an affine connection

$\overline{\Gamma}_{jk}^{i}=\Gamma_{j^{i}k}+\delta_{j}^{i}\psi_{k}+\delta_{k}^{j}\psi_{j}$ ,

where $\psi_{j}$ are the components of the covariant vector field $\psi$ defined
by (1.12). Then the connection $\Gamma_{jk}^{i}$ is invariant under $G$. In fact, if
$\psi(s)$ is the covariant vector field defined by (1.6) corresponding to an
element $s\in G$, then we obtain

$\psi(s)=\varphi(s)\dashv\hat{s}\cdot\psi-\psi$ .
Therefore, from (1.13) it follows

$\psi(s)=0$ .
This means that the connection $\overline{\Gamma_{j^{i}k}}$ is invariant under $G$. Thus the
proof of Theorem 3 is completed.

It is well known that in a Riemannian manifold $M$ the affine
connection determined by its Christoffel symbols is projectively flat,
if and only lf $M$ has constant sectional curvature.9) Thus the follow-
ing corollary holds good.

$CoROLLARY$ . Let $G$ be a transilive group of projective transforma-
tions in a Riemannian manifold whose seclional curvalure is not conslant.
If the idenlily componenl of $lhe$ linear isolropy group of $G$ at a point
is irreducible in the tangent space at the point, then $G$ is essentially
affine with respect to the affine connection determined by $lhe$ Christoffel
symbols.

\S 2. Groups of conformal transformations in a Riemannian
manifold.

Let $M$ be a Riemannian manifold with the metric tensor $g_{if}$ . A
transformation $s$ of $M$ onto itself induces naturally a tensor field

9) See, for example, Kurita [9].
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$g_{ij}(s)$ from the metric tensor $g_{ij}$ . When we have especially

(2.1) $g_{ij}(s)=\rho(s)g_{ij}$

with a positive scalar field $\rho(s)$ determined by $s$ , we call $s$ a conformal
transformation of $M[14,16]$ . That is to say, a conformal transfor-
mation of $Mpre^{Q}.erves$ the angle of intersection of any two curves.
When $\rho(s)$ is a constant field, $s$ is called a homothetic transformation
of $M$, which is affine as well as conformal in $M[18]$ . If $\rho(s)$ is
identically equal to 1 in $M$, so $s$ is obviously an isometry of $M$.
From (2.1) it follows easily

(2.2) $\rho(st)=\rho(s)(\hat{s}\cdot\rho(l))$

for any two conformal transformations $s$ and $t^{10)}$

Let $\overline{g}_{ij}$ be another Riemannian metric in $M$, for which there
exists a field of positive scalars $\rho$ such that

$\overline{g}_{ij}=\rho g_{ij}$ ;

then we say that $\overline{g}_{ij}$ is conformally related to the original metric
tensor $g_{ij}$ . Let $G$ be a group of conformal transformations of $M$.
If there exists in $M$ a certain conformally related Riemannian metric
which is invariant under $G$, then we say that $G$ is essenlially isometric
with respect to $g_{ij}$ . We have now the following

THEOREM 4. Let $G$ be a compact group of conformal transforma-
lions of a Riemannian manifold $M$ with $lhe$ melric tensor $g_{ij}$ . Then
$G$ is essentially isomelric with respect $log_{ij}$ .

PROOF. For an element $s$ of $G$ we denote by $\rho(s)$ the scalar field
defined by (2.1). We shall now construct a scalar field $\lambda$ in $M$ as
follows. Denoting by $\Delta$ the total measure of the compact group $G$,
we put

$[\lambda]_{p}=\frac{1}{\Delta}\int[\rho(l)]_{p}dt$ ,

$p$ being an arbitrary point of $M$, where the integral is extended
over the whole group manifold of $G$. For the sake of simplicity, let
us put

10) Let $s$ be a transformation of $M$ and $\lambda$ a scalar at a point $p$ of $M$ Then
we can define a scalar $\gamma/$ at the point $s(p)$ by $\lambda^{\prime}=\lambda$ . The scalar $\lambda^{\prime}$ is denoted by
$ s\wedge.\lambda$ . If $\rho$ is a scalar field in $M$, denoting by $[\rho]p$ the value of the field $\rho$ at a point
$p\in M$, we can define a scalar field $\rho^{\prime}$ in $M$ by $[\rho^{\prime}]_{S(p)}=s\wedge.[\rho 1\rho\cdot$ Denoting by $ s\rho\wedge$. the
field $\rho^{\prime}$ thus introduced, we have $[s\wedge.\rho]_{S(p)}=s\wedge.[\rho 7p\cdot$
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(2.3) $\lambda=\frac{1}{\Delta}\int\rho(t)dl$ .

Defining a metric tensor field $\overline{g}_{i}$ by

$\overline{g}_{ij}=\lambda g_{ij}$ ,

we shall prove that $G$ is a group of isometries with respect to $\overline{g}_{ij}$ .
Let $\overline{g}_{ij}(s)$ be the tensor field induced from $\overline{g}_{ij}$ by $s\in G$. We find

then

$\overline{g}_{ij}(s)=\overline{\rho}(s)\overline{g}_{ij}$ ,

where $\overline{\rho}(s)$ is given by

$\overline{\rho}(s)=\div\rho(s)(\hat{s}\cdot\lambda)$ .

That is, $s$ is a conformal transformation with respect to $\overline{g}_{ij}$ , since $s$

is a conformal transformation with respect to $g_{ij}$ which is conformally
related to $\overline{g}_{ij}$ . Hence, we have $\overline{\rho}(s)=1$ for any element $s$ of $G$. In
fact, substituting (2.3) in the above equation, we find

$\overline{\rho}(s)=\div\frac{1}{\Delta}\int\rho(s)(\hat{s}\cdot\rho(t))dl$ ,

because we have from the definitions

$\hat{s}\cdot\int\rho(t)dl=\int\hat{s}\cdot\rho(t)dt$ .
Thus, from (2.2) it follows

$\overline{\rho}(s)=\frac{1}{\lambda}\frac{1}{\Delta}\int\rho(st)dt$ .
Further, the above equation implies

$\overline{\rho}(s)=\div\frac{1}{\Delta}\int\rho(t)dt=\div\lambda=1$ ,

since the invariant measure over the compact group is two-sided
invariant. Slnce $\overline{\rho}(s)$ is equal to 1, we have $\overline{g}_{ij}(s)=\overline{g}_{ij}$ for any $s$ of
$G$. This proves the theorm.

In the previous paper we have obtained some properties of the
group of conformal transformations. In this regard, as a consequence
of Theorem 4, we can prove the following theorem in an analogous
manner as in the proof of Theorem 2.
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THEOREM 5. Let $G$ be a lransitive group of conformal transfor-
malions of a Riemannian manifold $M$ with the metric tensor field $g_{ij}$ .
If the isolropy group of $Gal$ a poinl is compact, then $G$ is essentially
isometric with respect to $g_{ij}$ .

\S 3. Groups of projective transformations leaving the Ricci
tensor invariant.

We shall consider in this section groups of projective transfor-
mations preserving the Ricci tensor in an affinely connected manifold.
We shall first, for the sake of simplicity, introduce some notations as
follows:

For an affinely connected manifold or a Riemannian manifold $M$,
$A(M)$ is the group of all affine transformations of $M$ ;
$P(M)$ is the group of all projective transformations of $M$ ;
$P^{\star}(M)$ Is the group of all projective transformations of $M$

which preserve the Ricci tensor.
For a Riemannian manifold $M$,

$I(M)$ is the group of all isometries of $M$ ;
$H(M)$ is the group of all homothetic transformations of $M$ ;
$C(M)$ is the group of all conformal transformations of $M$ ;
$C^{\star}(M)$ is the group of all conformal transformations of $M$

which leave the Ricci tensor invariant.
$A_{0}(M)$ means the identity component of the group $A(M)$ and

analogous notations are introduced for the other groups.
It is easily seen that in an affinely connected manifold or a

Riemannian manifold $M$

$P(M)\supset P^{\star}(M)\supset A(M)$

holds and that in a Riemannian manifold $M$ the following inequalities
hold:

$P(M)\supset P^{\star}(M)\supset A(M)\supset H(M)\supset I(M)$ ,
$C(M)\supset C^{\star}(M)\supset H(M)\supset I(M)$ .

We shall now give some remarks concerning the projective
transformation which leaves the Ricci tensor invariant. Let $s$ be a
projective transformation in an n-dimensional affinely connected mani-
fold $M$ with the affine connection $\Gamma_{j^{i}k}$ . Denote by $\varphi_{j}$ the covariant
vector field defined by (1.2) corresponding to $s$. The curvature tensor
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$\overline{R}_{jkl}$ of the affine connection $\overline{\Gamma}_{j^{i}k}$ induced from $\Gamma_{jk}^{i}$ by $s$ is given as
follows [14]:

$\overline{R}_{jhl}^{i}=R_{;kl}^{i}+\delta_{j^{j}}(\varphi_{k;l}-\varphi_{l;k})+\delta_{k}^{i}\varphi_{j;l}-\delta_{l}^{i}\varphi_{j;k}+\delta_{l}^{i}\varphi_{j}\varphi_{k}-\delta_{h}^{i}\varphi_{j}\varphi_{l}$ ,
where the curvature tensor $R_{j^{i}kl}$ of $\Gamma_{j^{i}k}$ has been defined by

$R_{jkl}^{i}=\frac{\partial\Gamma_{jh}^{i}}{\partial x^{l}}-\frac{\partial\Gamma_{jl}^{i}}{\partial x^{h}}+\Gamma_{jk}^{a}\Gamma_{al}^{i}-\Gamma_{jl}^{a}\Gamma_{ah}^{i}$ .
Contracting indices $i$ and 1, we find

(3.1) $\overline{R}_{jk}=R_{jk}+\varphi_{k;j}-n\varphi_{j;k}+(n-1)\varphi_{j}\varphi_{k}$ ,

where $R_{jk}=R_{jka}^{a}$ and $\overline{R}_{jk/,a}=\overline{R}_{j}\iota t$ are the Ricci tensors of $\Gamma_{j^{i}k}$ and $\overline{\Gamma}_{j^{i}k}$

respectively. Suppose that $s$ preserves the Ricci tensor, $i$ . $e.\overline{R}_{jk}=R_{jk}$ .
Then, from (3.1) it follows

$\varphi_{h;j}-n\varphi_{j;k}+(n-1)\varphi_{J}\varphi_{k}=0$

and hence
$(n^{2}-1)\varphi_{k,j}=(n^{2}-1)\varphi_{h}\varphi_{j}$ .

Provided $n\neq 1$ , it follows thus

(3.2) $\varphi_{j;k}=\varphi_{j}\varphi_{k}$ .
Summing up, we have the following proposition:
Let $s$ be a projective transformation preserving the Ricci tensor in

an affinely connecled manifold, then the covarianl vector field $\varphi_{j}$ cor-
responding to $s$ satisfies (3.2). This implies that a projeclive transfor-
malion preserves $lhe$ Ricci tensor, if and only if it leaves $lhe$ curvalure
tensor invariant.

LEMMA 3. If there exists a non-trivial covariant veclor field $\varphi_{j}$

satisfying (3.2) in an affinely connecled manifold $M$, lhen $lhe$ homo-
geneous holonomy group of $M$ has an invarianf hyper-plane and $lhe$

restricted homogeneous holonomy group12) of $M$ has an invariant
covariant vector.

PROOF. Let $C:x^{j}=x^{i}(\tau\cdot)(0\leqq\tau\leqq 1)$ be an arbitrary curve in $M$.
Denote by $p_{0}$ the end point of $C$ corresponding to $\mathcal{T}=0$ . We shall

11) The covariant differentiation with respect to $r_{j^{i}k}$ is denoted by semi-colon
followed by an index.

12) In the homogeneous holonomy group the subgroup consisting of all ele-
ments corresponding to a closed curve, which is homotopic to zero, is the restricted
homogeneous holonomy group.
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define a function on $C$ by

$\varphi(\tau)=\int_{0}^{\tau}\varphi_{a}dx^{a}$ $(0\leqq\tau\leqq 1)$ ,

which is taken along $C$. From (3.2) it follows that the relation

$\frac{\delta\varphi_{j}}{d_{T}}=\varphi_{j}\frac{d\varphi}{d_{T}}$

holds at any point of $C$, where the left-hand side has been defined
by

$\frac{\delta\varphi_{i}}{d_{T}}=\frac{d\varphi_{j}}{d_{T}}-\Gamma_{b^{a}j}\varphi_{a}\frac{dx^{b}}{d_{T}}$ .
If we put along $C\psi_{j}=e^{-\varphi}\varphi_{j}$ , by virtue of (3.2) we find easily

$\frac{\delta\psi_{i}}{d_{T}}=0$ .

This means that the family of vectors $\psi_{j}$ is parallel along $C$ and
$\psi_{j}=\varphi_{j}$ at $p_{0}$ .

When the curve $C$ is closed, we denote by $\alpha$ the element associ-
ated to $C$ in the homogeneous holonomy group $\Phi$ . Denoting by $[\varphi]_{0}$

the value of the field $\varphi_{j}$ at $p_{0}$ , we have then by means of the above
discussions

(3.3) $\alpha\cdot[\varphi]_{0}=eb[\varphi]_{0}$ ,

where $b$ denotes the line-integral extended along the whole curve $C$,
$i$ . $e$ .
(3.3) $b=\int_{c}\varphi_{a}dx^{\zeta l}$ .
Since the curve $C$ is arbitrarily chosen, by means of (3.3) the group
$\Phi$ leaves invariant a hyperplane defined by the covariant vector $[\varphi]_{0}$

in the tangent space at $p_{0}$ . The proof of the first part in Lemma 3
is thereby completed.

To prove the second part, we suppose now that the closed curve
$C$ is honotopic to zero. Then the line-integral (3.3) vanishes, since
the field $\varphi_{j}$ satisfies

$\varphi_{j;k}-\varphi_{k;j}=0$

as a consequence of (3.2) and $C$ is homotopic to zero. Taking account
of this fact, we see from (3.3) that the transformation $\alpha$ leaves the
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covariant vector $[\varphi]_{0}$ invariant. Therefore the restricted homogene-
ous holonomy group of $M$ preserves the covariant vector $[\varphi]_{0}$ in the
tangent space at $p_{0}$ . Lemma 3 is thereby proved completely.

If $M$ in Lemma 3 is especially a Riemannian manifold, then the
factor $e^{-b}$ in (3.3) must be equal to 1, that is, for any closed curve $C$

$\int_{c}\varphi_{a}dx^{a}=0$ ,

since the homogeneous holonomy group of a Riemannian manifold is
a group of orthogonal transformations. This means that there exists
a function $\varphi$ in $M$ such as

$\frac{\partial\varphi}{\partial x^{;}}=\varphi_{j}$ .

Thus the vector field defined by $\psi_{j}=e^{-\varphi}\varphi_{j}$ is parallel by virtue of (3.3).
Lemma 3 implies the following
THEOREM 6. Let $M$ be an affinely connected manifold. If $lhe$

homogeneous holonomy group of $M$ has no invariant hyper-plane, $or$, if
the restricted homogeneous holonomy group of $M$ has no invariant
covariant vector, then $P^{\star}(M)=A(M)$ . If, moreover, the Ricci tensor
of $M$ vanishes identically, then $P(M)=A(M)$ .

An affinely connected manifold $M$ is said to be complete, if any
affine parameter on any path of $M$ takes any values in the range
$(-\infty, +\infty)$ . Now, we have the following lemma concerning the
complete affinely connected manifold.

LEMMA 4. In a complete affinely connected manifold, if a covariant
vector field $\varphi_{j}$ satisfying
(3.2) $\varphi_{jih}=\varphi_{j}\varphi_{k}$

has no singularity at any point, then $\varphi_{j}$ vanishes identically.
PROOF. Let $g:x^{j}=x^{j}(\sigma)$ be an arbitrary path in the given affinely

connected manifold $M$, where $\sigma$ is an affine parameter of $g$. If we
put

$\varphi=\varphi_{a}\frac{dx^{a}}{d\sigma}$ ,

then along $g$ the function $\varphi$ is a solution of the following differential
equation

$\frac{d\varphi}{d\sigma}=\varphi^{2}$ ,
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because the tangent vector $dx^{i}/d_{0}$ of $g$ is parallel along $g$ and $\varphi_{j}$

satisfies (3.2).
We assume for a moment that the function $\varphi$ does not vanish on

$g$. Then, integrating the above differential equation, we have

$\varphi=-\frac{1}{\sigma-A}$

on $g$, where $A$ is a constant. Since $M$ is complete, there exists on $g$

a point $p$ such that $\sigma=A$ at $p$. Thus the function $\varphi$ has a singularity
at the point $p$. This contradicts the assumption of the lemma. Con-
sequently, $\varphi$ must vanish identically on $g$. Since the path $g$ is arbi-
trarily chosen, it is easily seen that the given convariant vector field
$\varphi_{j}$ vanishes identically in $M$. This proves the lemma.

Lemma 4 implies the following theorem, since the covariant
vector field corresponding to $a$ . projective transformation is regularly
distributed in the manifold.

THEOREM 7. If $M$ is a complele affinely connected manifold, then
$P^{\star}(M)=A(M)$ . If, moreover, the Ricci tensor of $M$ vanishes identically,
then $P(M)=A(M)$ .

It is easily seen that a Riemannian manifold is complete, if it is
compact. We have thereby the following

$CoROLLARY$ . If a Riemannian manifold $M$ is compacl, lhen $P^{\star}(M)$

$=A(M)$ . If, moreover, the Ricci lensor of $M$ vanishes idenlically in $M$,
then $P(M)=A(M)$ .

We shall show by an example that the completeness of $M$ in
Theorem 7 is necessary. In an n-dimensional Euclidean space, let $\Sigma$

be the set of all points such that $\sum_{i=1}^{n}(x^{j})^{2}<1$ , where $(x^{i})$ is a system
of rectangular coordinates. It is obvious that $\Sigma$ is not complete.
Denote by $G$ the group of all projective transformations leaving $\Sigma$

invariant in the Euclidean space. Then we have $G=P^{\star}(\Sigma)$ , since $\Sigma$

is locally flat. It is easily seen that any element of $G$ is not affine,
unless it is an isometry. It follows thus $P^{\star}(\Sigma)\neq A(\Sigma)$ , since $\dim G$

$=n(n+1)/2$ and $\dim I(\Sigma)=n(n-1)/2$.

\S 4. Groups of projective transformations leaving the Ricci
tensor invariant in a Riemannian manifold.

Recently, several interesting theorems have been proved concern-
ing infinitesimal transformations in a Riemannian manifold.
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THEOREM A. In a compact orienlable Riemannian space wilh positive
definile metric, there exists no vector $\xi^{i}$ which defines $a$ one-parameter
group of conformal lransformations and salisfies the relalion

$R_{jk}\xi^{j}\xi^{k}\leqq 0$ ,

unless we have $\xi_{j,h}=0$ . If $lhe$ space has negalive Ricci curvature every-
where, then the exceptional case cannot arise [1, 19, 20].

THEOREM B. In a compact orientable Riemannian space wilh posi-
live definile melric, any one-parameler group of affine collineations must
be that of molions [3, 19, 20].

THEOREM C. Let $M$ be a complete Riemannian manifold whose
reslricted homogeneous holonomy group has no invariant vector. Then
any infinitesimal affine lransformation in $M$ is a Killing vector field $[6, 3]$ .

It might be interesting to attack analogous problems regarding
projective or conformal transformations preserving the Ricci tensor.
First, we have the following theorem, as an immediate consequence
of Theorems 6 and C.

THEOREM 8. If the reslricted homogeneous holonomy group of a
complele Riemannian manifold $M$ has no invariant vector, then $P_{0}^{\star}(M)$

$=I_{0}(M)$ . If, moreover, the Ricci lensor of $M$ vanishes identically, then
$P_{0}(M)=I_{0}(M)$ .

As has been proved recently [3, 6, 8, 11], in a complele irreducible
Riemannian manifold13) any affine transformaiion is necessarily an
isometry, Thus, as a consequence of Theorem 6, we have the follow-
ing proposition:

If $M$ is complete irreducible Riemannian manifold, then $P^{\star}(M)$

$=I(M)$ . If, moreover, the Ricci tensor of $M$ vanishes identically, then
$P(M)=I(M)$ .

Further, we have the following theorem as a consequence of
Theorem $B$ and the corollary to Theorem 7.

THEOREM 9. If $M$ is a compact Riemannian manifold, then $P_{0}^{\star}(M)$

$=I_{0}(M)$ .
As a corollary to Theorem 9, we have the following proposition:
In a compact Riemannian manifold with vanishing Ricci tensor

any vector field defining an infinitesimal projeclive transformalion is
necessarily a Killing vector field.

13) If the restricted homogeneous holonomy group at a point of a Riemannian
manifold $M$ is irreducible in the tangent space of $M$ at the point, $M$ is said to be
irreducible. If $\dim M=1$ , we say that $M$ is not irreducible.
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This implies together with Theorem A the following
$CoROLLARY$. In a compact Riemannian manifold with vanishing

Ricci tensor any veclor field defining an infinitesimal projective trans-
formation is parallel.

Now, we shall give a proof of the corollary to Theorem 7, when
the manifold $M$ is Riemannian. Let $s$ be a projective transformation
in a compact Riemannian manifold $M$ and $\varphi_{j}$ be the covariant vector
field defined by (1.2) corresponding to $s$. Suppose that $s$ preserves
the Ricci tensor. Then, if $M$ is orientable, $\varphi_{j}$ satisfying (3.2), it
follows $\varphi_{;a}^{a}=\varphi^{a}\varphi_{a}(\varphi^{i}=g^{ia}\varphi_{a})$ and then

$\int\varphi^{a}\varphi_{a}dv=\int\varphi_{;a}^{a}dv=0$ ,

where $dv$ is the volume element of $M$ and the integral is extended
over the whole manifold $M$. Hence, we find $\varphi_{j}=0$ because of $\varphi^{a}\varphi_{a}\geqq 0$ .
This shows that the given transformation $s$ is affine in $M$. When $M$

is not orientable, there exists a compact orientable covering manifold
$\tilde{M}$ which covers $M$ twice. Let $\tilde{\varphi}_{j}$ be the vector field in $\tilde{M}$ induced
from $\varphi_{j}$ Then, we find $\tilde{\varphi}_{j;k}=\tilde{\varphi}_{j}\tilde{\varphi}_{k}$ as a consequence of (3.2). We can
therefore conclude $\tilde{\varphi}_{j}=0$ just as in the above discussions. Consequent-
ly, it follows $\varphi_{j}=0$ , which proves the first part of the corollary to
Theorem 7 for a Riemannian manifold $M$. The second part of the
corollary is an immediate consequence of the first.

\S 5. Groups of conformal transformations leaving the Ricci
tensor invariant.

As is well known, the problems of transformations are reduced
to those of infinitesimal transformations, as far as connected groups
are concerned. We shall give some well known formulas concerning
infinitesimal conformal transformations for the sake of completeness,
according to [17]. Let $M$ be a Riemannian manifold with the metric
tensor $g_{ij}$ . Denote by $X$ the Lie derivation with respect to an in-
finitesimal transformation $\xi^{j}$ in $M$. Then, if for an infinitesimal
transformation in $M$ the relation

(5.1) $Xg_{ij}=2\emptyset g_{i\mathfrak{j}}$

holds with a scalar field $\phi,$
$\xi^{j}$ is called an infinilesimal conformal

transformalion in $M[17]$ . If $\phi$ is a constant, $\xi^{j}$ is called an infini-
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tesimal homothetic transformalion in $M[18]$ . If $\phi$ is equal to zero
identically, then $\xi^{j}$ is nothing but a Killing vector field. It is known
that an infinitesimal homothetic transformation is affine as well as
conformal [18].

For an infinitesimal conformal transformation $\xi^{i}$ we find [17]

(5.2) $XR_{jkl}^{i}=-\delta_{\iota}^{i}\emptyset_{J;k}+\delta_{k}^{i}\phi_{j;l}-g_{\dot{j}}h\phi_{;l}^{i}+g_{jl}\phi_{:k}^{i}$ ,

where we have put

$\emptyset_{!}=\frac{\partial\phi}{\partial x^{j}}$ and $\emptyset^{i}=g^{ia}\phi_{a}$ .

Contracting indices $i$ and $l$ in (5.2), we find

(5.3) $XR_{jk}=-(n-2)\emptyset_{i;k}-g_{jk}\phi_{;a}^{a}$ ,

where $R_{jk}=R_{j}^{a_{ka}}$ . We have here the following proposition:
Let $M$ be a Riemannian manifold of $n$ dimensions. If an $infin_{\vee}^{i_{-}}$

fesimal conformal lransformalion $\xi^{l}$ in $M$ preserves $lhe$ Ricci tensor,14)
$i$. $e$ . if $XR_{jk}=0$ , then $lhe$ field $\phi_{j}=\partial\phi\int\partial x^{;}$ is parallel for $n>2$ , where
the function $\phi$ is defined by (5.1) corresponding to $\xi^{j}$.

In fact, from (5.3) it follows

$-(n-2)\phi_{j;k}-g_{jk}\phi_{ia}^{a}=0$

because of $XR_{jk}=0$ . Thus, multiplying $g^{jk}$ and contracting, we find

$-2(n-1)\phi_{;}^{a_{a}}=0$

and hence $\phi_{a}^{a}=0$ . We have therefore

$-(n-2)\phi_{j;k}=0$

and, consequently
$\emptyset_{J;h}=0$ ,

which proves the proposition, since $n>2$ .
By means of the above proposition, we can conclude that $an$

infinitesimal conformal transformalion preserves the Ricci tensor if and
only if it leaves the curvalure tensor invariant. This fact holds also
for a conformal transformation.

We have here the following proposition:
In an n-dimensional Riemannian manifold $M$, if the homogeneous

holonomy group has no invariant veclor, then $C_{0}^{*}(M)=H_{0}(M)$ for $n>2$ .
14) If the Lie derivative of a tensor with respect to an infinitesimal transfor-

mation $\sigma$
; vanishes identically, then we say that $\xi^{\oint}$ preserves the tensor.
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If, moreover, the Ricci tensor of $M$ vanishes identically, then $C_{0}(M)$

$=H_{0}(M)$ .
The first part is an immediate consequence of the above proposi-

tion. If $n>2$ , the second part follows from the first. When $n=2$ ,
there exists no Riemannian manifold satisfying the second conditions.
In fact, as is well known, we have

$R_{11}=-g^{22}R_{1212}$ , $R_{12}=R_{21}=g^{12}R_{1212}$ , $R_{22}=-g^{11}R_{1212}$ .
Thus, $R_{jk}=0$ implies $R_{jkl}^{i}=0,$ $i$ . $e$ . $M$ is locally flat. This shows that
any two-dimensional Riemannian manifold with vanishing Ricci tensor
is locally flat.

Let $s$ be a conformal transformation in an n-dimensional Rieman-
nian manifold $M$ with the metric tensor $g_{ij}$ and $\rho^{2}(\rho>0)$ be the
function given in (2.1) corresponding to $s$, i. e.

$\overline{g}_{if}=\rho^{2}g_{ij}$ ,

where $\ell>ij\overline{\sigma}$ is the tensor field induced from $g_{ij}$ by $s$. Denoting by
$\overline{R}_{j^{i}kl}$ the curvature tensor of $\overline{g}_{ij}$ , then we find [14]

$\overline{R}_{jkl}^{i}=R_{jkl}^{i}-\rho_{jk}\delta_{l}^{i}+\rho_{jl}\delta_{k}^{i}-g_{jk}\rho_{l}^{i}+g_{jl}\rho^{i_{k}}$ ,

where $\rho_{j}=\partial\log\rho/\partial x^{i}$ and

$\rho_{jk}=\rho_{j;k}-\rho_{j}\rho_{k}+\frac{1}{2}g^{ab}\rho_{a}\rho_{b}g_{jk}$ ,

$\rho_{j}^{i}$ being defined by $\rho_{j}^{i}=g^{ia}\rho_{aj}$ . Contracting indices $i$ and $l$, we have

$\overline{R}_{jk}=R_{jk}-(n-2)_{\beta_{jk}}-g^{ab_{\beta_{ab}}}g_{jk}$ ,

where $\overline{R}_{jk}=\overline{R}_{jka}^{a}$ . We now suppose that $s$ leaves the Ricci tensor
invariant, I. $e.\overline{R}_{jk}=R_{jk}$ . Then we find

(5.4) $(n-2)_{\beta_{jk}}+g^{ab_{\beta_{ab}}}g_{jk}=0$ .
Multiplying $g^{jk}$ and contracting, we obtain from (5.4)

$2(n-1)g^{2}b\rho_{ab}=0$ .
Since $n\neq 1$ , it follows

$g^{\iota b}\rho_{ab}=0$ ,
$i$ . $e$ .
(5.5) $\rho_{;a}^{a}+\frac{n-2}{2}\rho^{a}\rho_{a}=0$ ,



216 S. ISHIHARA

where $\rho^{j}=g^{ia_{\beta_{a}}}$ . If we substitute (5.5) in (5.4), we find

$(n-2)\rho_{jk}=0$ .
Supposed $n>2$, we find thus $\rho_{jk}=0$ , i. e.

$\rho_{j;k}=\rho_{j}\rho_{k}-\frac{1}{2}\rho^{a}\rho_{a}g_{jk}$ .

Then we have obtained the following proposition:
If a conformal lransformalion $s$ preserves the Ricci fensor in an

n-dimensional Riemannian manifold, then $lhe$ function $\rho$ corresponding
to $s$ salisfies (5.5). If, moreover, $n>2$ , the equation (5.6) holds.

We have next the following lemma.
LEMMA 5. In a complete Riemannian manifold, if a vector field

$\rho_{j}$ satisfying

(5.6) $\rho_{j_{i}k}=\rho_{j}\rho_{k}--\frac{1}{2}\rho^{a}\rho_{a}g_{jk}$

has no singularity at any point, then the field $\rho_{i}$ vanishes identically.
PROOF. We suppose for a moment that the vector field $\rho_{i}$ does

not vanish identically. A curve $x^{i}=x^{i}(l)$ defined by

$\frac{dx^{i}}{dt}=\rho^{i}$

is called a $\rho$-curve. Multiplying $\rho^{k}$ and contracting in (5.6), we find

$\rho_{j;a}\rho^{a}=\frac{1}{2}(\rho^{a}\rho_{a})\rho_{j}$ .

This shows that any $\rho$-curve is a geodesic. Multiplying $\frac{dx^{k}}{d\sigma}\frac{dx^{j}}{d\sigma}$ and

contracting in (5.6), we find that along a $\rho$-curve $x^{i}=x^{j}(\sigma)$ the relation

$\rho_{a;b}\frac{dx^{\iota}}{d\sigma}\frac{dx^{b}}{d\sigma}=\frac{1}{2}\rho^{a}\rho_{a}$

holds, where $\sigma$ denotes the arc-length of the $\rho$-curve. Since any $\rho-$

curve is a geodesic, its unit tangent vector $\frac{dx}{d\sigma}$ is parallel along the

$\rho$-curve itself. The above relation thus implies

$\frac{d\lambda}{d\sigma}=\frac{1}{2}\lambda^{2}$ ,
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where we have defined $\lambda$ by $\lambda=\sqrt{\rho^{a}\rho_{a}}$. Now we suppose that the
function $\lambda$ does not vanishes identically along the p-curve. Then,
integrating the above differential equation, we have

(5.7) $\lambda=-\frac{2}{\sigma-A}$

along the $\rho$-curve, where $A$ is a constant.
Since any $\rho$-curve is a geodesic and the given Riemannian mani-

fold is complete, on the $\rho$-curve there exists a point $p$ such that
$\sigma=A$ at $p$. Thus the function $\lambda$ has a singularity at the point $p$ by
means of (5.7). This contradicts the assumption of the lemma. Con-
sequently, the function $\lambda$ must be identically zero on the $\rho$-curve.
This implies that the vector field $\rho_{j}$ vanishes identically in the given
manifold. The proof of Lemma 5 is thereby completed.

Lemma 5 implies the following lemma, since the function $\rho^{2}$

define $d$ by (1.2) corresponding to a conformal transformation is re-
gularly distributed in the manifold.

LEMMA 6. If $M$ is a complele Riemannian manifold of $n$ dimen-
sions, then $C^{\star}(M)=H(M)$ for $n>2$ . If, moreover, $lhe$ Ricci tensor of
$M$ vanishes identically, then $C(M)=H(M)$ for $n>2$ .

We note here the following lemma [5].
LEMMA 7. Let $M$ be a complete, connected Riemannian manifold

which is not locally flat, then $H(M)=I(M)$ .
Lemmas 6 and 7 imply the following
THEOREM 10. If $M$ is a complete, non-flat Riemannian manifold

of $n$ dimensions, then $C^{\star}(M)=I(M)$ for $n>2$ . If, moreover, the Ricci
tensor of $M$ vanishes ideniically, then $C(M)=I(M)$ .

We shall show by an example that the completeness of $M$ in
Lemma 6 is necessary. In a Euclidean space of dimension $n>2$, we
denote by $\Sigma$ the set of all interior points of the unit sphere as in
the example of \S 3. Obviously, the set $\Sigma$ is not complete. Let $G$ be
the group of all conformal transformations leaving $\Sigma$ invariant in
the Euclidean space. We have then $G=C^{*}(\Sigma)$ , since $\Sigma$ is locally flat.
But it is easily seen that any element of $G$ is homothetic if and only
if it is an isometry. It follows thereby $C^{\star}(\Sigma).\neq H(\Sigma)$ , since $\dim G$

$=n(n+1)/2$ and $\dim I(\Sigma)=n(n-1)/2$ .
LEMMA 8. If $M$ is a compact Riemannian manifold, then $H(M)$

$=I(M)$ .
PROOF. Let $s$ be a homothetic transformation in $M$ ; then the
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function defined by (2.1) corresponding to $s$ is a constant $A^{2}(A>0)$ ,
$i$ . $e$ .

$\overline{g}_{ij}=A^{2}g_{ij}$ ,

where $\overline{g}_{ij}$ is the tensor field induced from $g_{i_{1}}$ by $s$. Suppose that $M$

is orientable. If we denote by $V$ and $\overline{V}$ the total volume measured
by $g_{ij}$ and $\overline{g}_{ij}$ respectively, then we have

$\overline{V}=A^{2}V$ ,

since $A$ is a constant. However, it is obvious $\overline{V}=V$. We have con-
sequently $A=1$ . This means $s\in I(M)$ , i. e. $H(M)=I(M)$ . The lemma
is thus proved, if $M$ is orientable.

When $M$ is not orientable, there exists a compact orientable
covering manifold $\tilde{M}$ which covers $M$ twice. Le $ts$ be a homothetic
transformation of $M$, then there exists a transformation $ s\sim$ in $\tilde{M}$ such
that $ s\circ f=f\circ s\sim$, where $f:\overline{M}\rightarrow M$ is the projection of the covering. It

is easily seen that $ s\sim$ is homothetic in $\tilde{M}$ with respect to the metric
tensor $\tilde{g}_{ij}$ in $\tilde{M}$ which is induced from $g_{ij}$ by $f$. From the above
discussions it follows thus that $ s\sim$ is an isometry with respect to $\tilde{g}_{ij}$ .
This implies that $s$ is an isometry in $M$. The lemma is thereby
proved completely.

Finally we have the following
THEOREM 11. If $M$ is a compact Riemannian manifold, then

$C^{\star}(M)=I(M)$ . If, moreover, the Ricci tensor vanishes identically, then
$C(M)=I(M)$ .

PROOF. First, we assume that $M$ is orientable. If $s$ is an ele-
ment of $C^{\star}(M)$ , then the function $\rho^{2}(\rho>0)$ corresponding to $s$ satisfies
(5.5). Then it follows

$\frac{n-2}{2}\int\rho^{a}\rho_{a}dv=-\int\rho_{za}^{a}dv=0$ ,

where $dv$ is the volume element of $M$ and the integral is extende $d$

over the whole manifold $M$. We assume moreover $n>2$ . Thus the
above relation implies

$\int\rho^{a}\rho_{a}dv=0$ .
Consequently, it follows $\rho_{j}=0,$

$i$ . $e$ . that $\rho$ is a constant, since $\rho^{a}\rho_{a}\geqq 0$ .
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Therefore, we have $C^{\star}(M)=H(M)$ for $n>2$ . When $n=2$, it follows
from (5.5)

$\rho_{ia}^{a}=0$ .
Then, $\rho_{j}$ is a harmonic vector field, since it is a gradient. We see
thus $\rho_{j}=0$ , because in a compact orientable Riemannian manifold any
harmonic vector field which is a gradient vanishes identically. We
have hence $C^{\star}(M)=H(M)$ also for $n=2$ , if $M$ is orientable.

When $M$ is not orientable, denoting by $\tilde{\rho}^{2}$ the function in $\tilde{M}$

induced from $\rho^{2}$ , we see that $\tilde{\rho}_{j}$ satisfies (5.5), where $\tilde{M}$ is a compact
orientable covering manifold which covers $M$ twice. Thus, by means
of the above discussions, it follows that $\tilde{\rho}$ is a constant in $\tilde{M}$, and
hence that $\rho$ is so in $M$. This proves $C^{\star}(M)=H(M)$ .

Summing up, we have $C^{\star}(M)=H(M)$ for a compact Riemannian
manifold $M$. This implies, by virtue of Lemma 8, $C^{\star}(M)=I(M)$ .
The first part of Theorem 11 is thus proved. The second part is an
immediate consequence of the first. Thus Theorem 11 is completely
proved.

\S 6. The proof of Lemma 2

In the present section we shall prove Lemma 2 given in \S 1.
For this purpose, some lemmas are required. Keeping notations and
assumptions as in Lemma 2, we first prove

LEMMA 6.1. The restriction of the homomorphism $\beta$ to $\Gamma$ is an
isomorphism of $\Gamma$ onto $\tilde{\Gamma}$.

PROOF. Since the kernel $ N\cap\Gamma$ of $\beta$ in $\Gamma$ is a discrete normal
subgroup of $\Gamma,$ $ N\cap\Gamma$ is contained in the center of $\Gamma$ . Let $\tau$ and $\sigma$

be any elements of $ N\cap\Gamma$ and $\Gamma$ respectively. Then, by virtue of
$\tau\cdot\sigma=\sigma\tau$ , we find

(6.1) $a_{j}^{a}(\sigma)a_{a}^{0}(\tau)=a^{0_{j}}(\tau)$ .
The matrix $\sigma$ being arbitrary, this shows that the covariant vector
$(a_{1}^{0}(\tau), a_{2}^{0}(\tau),\cdots,$ $a_{n}^{0}(\tau))$ is invariant under $\tilde{\Gamma}$ and also under the identity
component $\tilde{\Gamma}_{0}$ of $\tilde{\Gamma}$ . Hence, $\tilde{\Gamma}_{0}$ being irreducible, the covariant vector
vanishe $s$ and so does each of the $n$ numbers $a^{0_{j}}(\tau)$ . Therefore, the

15) The author wishes to express his thanks to M. Obata who has given the
author valuable advices concerning the proof of Lemma 2,
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matrix $\tau$ is reduced to the unit matrix, $i$ . $e$ . the kernel $ N\cap\Gamma$ is the
trivial group $\{e\}$ . This proves Lemma 6.1.

Let $\Sigma$ be a set of (n, n)-matrices. Then $\Sigma$ is regarded naturally
as a set of endomorphisms of a vector space $V$ of $n$ dimensions.
Suppose that, for any subspace $P$ of $V$ invariant under $\Sigma$ , there
exists a subspace $Q$ of $V$ invariant under $\Sigma$ such that $V=P+Q$
(direct sum). Then $\Sigma$ is said to be semi-simple. If there exists a
non-trivial subspace invariant under $\Sigma$ we say that $\Sigma$ is reducible,
otherwise, it is said to be irreducible. Let $G$ be a group and $\rho$ a
representation of $G$. If the image $\rho(G)$ of $G$ by $\rho$ is semi-simple as
a set of matrices, the representation $\rho$ is called semi-simple. Thus,
it is well known that any representation of a compact group is semi-
simple. Further, any representation of semi-simple Lie algebra is
always semi-simple [15].

Let $\mathfrak{L}$ be the Lie algebra of all complex (real) matrices of the
form

(6.2) $A=\left(\begin{array}{ll}0 & \alpha^{o_{j}}(A)\\0 & \alpha_{\dot{j}}^{i}(A)\end{array}\right)$

and $\tilde{\mathfrak{L}}$ be the Lie algebra of all complex (real) ( $n$, n)-matrices. Then,

there exists a homomorphism $ee\beta:\mathfrak{L}\rightarrow\overline{\mathfrak{L}}$ such that

$\star_{\beta(A)=(\alpha_{j}^{i}(A))}$

for any matrix $A$ of $\mathfrak{L}$ represented by (6.2).

LEMMA 6.2. Let $\Sigma$ be a semi-simple subset of $\mathfrak{L}$ and $\tilde{\Sigma}$ the subset

of $\tilde{\mathfrak{L}}$ defined by $\tilde{\Sigma}=\star\beta(\Sigma)$ . If $\tilde{\Sigma}$ is irreducible, then there exists a
matrix $T$ of the form (1.9) such that

(6.3) $TAT^{-1}=\left(\begin{array}{ll}0 & 0\\0 & \alpha^{i_{j}}(A)\end{array}\right)$

for any matrix $A$ of $\Sigma$ .
PROOF. $\Sigma$ being semi-simple, there exists a matrix

(6.4) $T=\left(\begin{array}{ll}t & t_{j}\\t^{j} & l_{j}^{i}\end{array}\right)$

such that
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(6.5) $TAT^{-1}=\left(\begin{array}{ll}0 & 0\\0 & \alpha^{i_{j}}(A)\end{array}\right)=\prime A$

for any $A$ of $\Sigma$. Now, we can assume without loss of $ge$nerality
that $l=1,$ $l^{i_{j}}=\delta_{j}^{i}$ . In fact, if $t\neq 1$ , or, if $t^{i_{j}}\neq\delta_{j}^{i}$ , we put

$S=\left(\begin{array}{ll}t^{-1} & 0\\0 & s_{j}^{i}\end{array}\right)$ ,

where $s_{a}^{i}l^{a_{j}}=\delta_{j}^{i}$ . Then, denoting by ‘ $T$ the product $ST$, we have

$T=\left(\begin{array}{ll}1 & u_{j}\\u^{j} & \delta_{j}^{i}\end{array}\right)$ .

Further, we find
$‘ TA=STA=S^{\prime}AT=S^{\prime}AS^{-1}$ ‘ $T$

and hence
‘TA $T^{-1}=S^{\prime}AS^{-1}$ ,

where $S^{\prime}AS^{-1}$ has the same form as that of $A$ . Thus, from the
beginning we assume that $t=1,$ $l^{i_{j}}=\delta_{j}^{i}$ in (6.4).

Under this assumptions, we find that

$\alpha_{a}^{i}(A)t^{a}=0$

holds for any $ A\in\Sigma$ , because $TA=\prime AT$. This means that the vector
$(t^{1}, t^{2},\cdots, t^{n})$ is invariant under $\tilde{\Sigma}$ . The set $\tilde{\Sigma}$ of matrices being ir-
reducible, the vector vanishes and so also does each of $n$ numbers $t^{j}$.
This proves Lemma 6.2.

Now, we shall introduce some notations and terminologies. Let
$V$ be an n-dimensional vector space over the field of real numbers
and $\{e_{1}, e_{2},\cdots, e_{n}\}$ a basis of $V$. The set of all linear combinations
$\sum_{i\overline{-}}^{n}{}_{1}C_{i}e_{j}$ with complex coefficients $c_{j}$ forms a vector space $V^{c}$ over the
field of complex numbers, which is called the complexification of $V$.
Obviously, $V$ is naturally contained in $V^{c}$. Let $\mathfrak{G}$ be a Lie algebra
over the field of real numbers and $\{X_{1}, X_{2},\cdots, X,\}$ a basis of $\mathfrak{G}$. The
set of all linear combinations $\sum_{a\Leftrightarrow 1}^{f}c_{a}X_{\alpha}$ with complex coefficients $c_{\alpha}$

forms a Lie algebra $\mathfrak{G}^{c}$ over the field of complex numbers, which is
called the complexification of $\mathfrak{G}$ . It is easily seen that $\mathfrak{G}$ is naturally
contained in $\mathfrak{G}^{c}$. Now, concerning the Lie algebra of matrices of the
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form (6.2), we have the following lemma corresponding to Lemma 2.
LEMMA 6.3. Let $\mathfrak{G}$ be a Lie algebra of matrices of the form (6.2).

If the restriclion of the homomorphism $\star_{\beta}$ to $\mathfrak{G}$ is an isomorphism,
and, if $\overline{\mathfrak{G}}_{=}^{\star}\beta(\mathfrak{G})$ is irreducible, then there exists a matrix $T$ of the
form (1.9) such that

TA $T^{-1}=\left(\begin{array}{ll}0 & 0\\0 & \alpha_{j}^{i}(A)\end{array}\right)$

for any matrix $A$ of $\mathfrak{G}$ .
PROOF. Let $\mathfrak{G}^{c}$ and $\tilde{\mathfrak{G}}^{c}$ be the complexifications of $\mathfrak{G}$ and $\tilde{\mathfrak{G}}$

respectively. $\tilde{\mathfrak{G}}$ is regarded naturally as a Lie algebra of endomor-
phisms of a vector space $V$ over the field of real numbers, and then
$\tilde{\mathfrak{G}}^{c}$ is also considered as that of the complexification $V^{c}$ of $V$. Here,

we discuss the following two possible cases; (i) $\tilde{\mathfrak{G}}$ is irreducible in
$V^{c}$ ; (ii) $\tilde{\mathfrak{G}}$ is reducible in $V^{c}$.

(i) In this case the complexification $\tilde{\mathfrak{G}}^{c}$ of $\tilde{\mathfrak{G}}$ is also irreducible
in $V^{c}$. Being irreducible, as is well known, $\tilde{\mathfrak{G}}^{c}$ is the direct product
of the Lie algebra of homothetic endomorphisms of $V^{c}$ and a semi-
simple Lie algebra $\mathfrak{S}$ of endomorphisms of $V^{c}$, or $\tilde{\mathfrak{G}}^{c}$ itself is a semi-
simple Lie algebra $\mathfrak{S}$ of endomorphisms of $V^{c}$, where $\mathfrak{S}$ is irreducible
in $V^{c16)}$ . Denote by ut the Lie algebra of homothetic endomorphisms
of $V^{c}$ , when $\tilde{\mathfrak{G}}^{c}$ is not semi-simple. Let $\tilde{\mathfrak{A}}$ be the trivial Lie algebra
$\{0\}$ , when $\tilde{\mathfrak{G}}^{c}$ is semi-simple. We extend naturally the isomorphism
$\star\beta:\mathfrak{G}\rightarrow\tilde{\mathfrak{G}}$ to that of $\mathfrak{G}^{c}$ onto $\tilde{\mathfrak{G}}^{c}$. Denote by $\mathfrak{A}$ and $\mathfrak{S}$ the inverse
images $\star_{\beta^{-1}(\tilde{\mathfrak{A}})}$ and $\star_{\beta^{-1}(\tilde{\mathfrak{S}})}$ respectively. Then $\mathfrak{G}^{c}$ is the direct pro-
duct of $\mathfrak{A}$ and S.

By virtue of Lemma 6.2, it follows that there exists a matrix $T$

of the form (1.9) such that (6.3) holds for any matrix $A$ of $\mathfrak{S}$ , where
the coefficients $\xi_{j}$ of $T$ are complex numbers in general. On the
other hand, we may assume that $\mathfrak{A}$ is generated by a matrix

$B=\left(\begin{array}{ll}0 & b_{j}\\0 & \delta_{j^{i}}\end{array}\right)$ ,

since or is homothetic in $V^{c}$. Here, we note $B=TBT^{-1}$ . Since $BA$

16) See p. 147 in [2].
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$=AB$ for any matrix $A$ of $\mathfrak{S}$ , we have then $B^{\prime}A=^{J}AB$, where $A$

$=TAT^{-1}$ is the matrix given by (6.5). The $re$fore we have

$\alpha_{j}^{a}(A)b_{a}=0$

for any $A$ of $\mathfrak{S}$ , because $B^{\prime}A=\prime AB$. This means that the covariant
vector $(b_{1}, b_{2},\cdots, b_{n})$ of $V^{c}$ is invariant under $\tilde{\mathfrak{S}}$ . Since $\tilde{\mathfrak{S}}$ is irreducible,
the vector is zero and so also is each of the $n$ numbers $b_{j}$ . Therefore,
(6.3) holds for the matrix $B$ and also for any matrix of $\mathfrak{A}$. Summing
up, we can conclude that (6.3) holds for any matrix of $\mathfrak{G}^{c}$.

The given Lie algebra $\mathfrak{G}$ is a subset of $\mathfrak{G}^{c}$ . Then we have

$TA=\left(\begin{array}{ll}0 & 0\\0 & \alpha_{j}^{i}(A)\end{array}\right)T$ , $A\in \mathfrak{G}$ ,

from which we find by conjugation

$\overline{T}A=\left(\begin{array}{ll}0 & 0\\0 & \alpha_{j}^{i}(A)\end{array}\right)\overline{T}$ ,

since any matrix $A$ of $\mathfrak{G}$ has real coe.fficients $\alpha^{0_{j}}(A)$ and $\alpha I_{j}(A)$ . Thus,
if we put

$U=\frac{1}{2}(T+\overline{\prime 1^{\urcorner}})$ ,

$U$ is a real matrix of the form (1.9) and $UAU$ ’ has the form (6.3)
for any matrix $A$ of $\mathfrak{G}$ . Thus, Lemma 6.3 is proved in the case (i).

(ii) We discuss the case where the Lie algebra $\tilde{\mathfrak{G}}$ is reducible
in $V^{c}$. Since $\tilde{\mathfrak{G}}$ is irreducible in $V,$ $n$ is even, say $n=2m$ , and $V^{c}$ is

the direct product of two subspaces $P$ and $\overline{P}$ of dimension $m^{17)}$

Moreover, we can find a basis $\{e_{1}, e_{2},\cdots, e_{m} ; \overline{e}_{1},\overline{e}_{2},\cdots,\overline{e}_{m}\}$ of $V^{c}$ such that
$\{e_{1}, e_{2},\cdots, e_{m}\}$ and $\{\overline{e}_{1},\overline{e}_{2},\cdots,\overline{e}_{m}\}$ span respectively the subspaces $P$ and $\overline{P,}$

where $\overline{e}_{\alpha}$ is the complex conjugate of $e_{\alpha}(1\leqq\alpha\leqq m)$ . Any element
$\star_{\beta(A)}$ of $\tilde{\mathfrak{G}},$ $A\in \mathfrak{G}$, is expressed by a matrix

$\left(\begin{array}{ll}\phi^{\alpha_{\beta}}(A) & 0\\0 & -\phi_{\beta}^{\alpha}(A)\end{array}\right)$ $(1\leqq\alpha, \beta\leqq m)$

17) See the appendix in [12].
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with respect to the bases $\{e_{\mathcal{O}f}\overline{e}_{\alpha}\},$
$i$ . $e$ . there exists a matrix

(6.6) $\tilde{S}=(s^{i_{j}})$

such that $\tilde{S}1\star_{\beta(A)\tilde{S}}$ is the above matrix for any matrix $A$ of $\mathfrak{G}$ ,
where $-\phi_{\beta}^{\alpha}(A)$ is the complex conjugate of $\phi_{\beta}^{a}(A)$ .

The set
$\tilde{\mathfrak{G}}^{\prime}=\{(\phi_{\beta}^{\alpha}(A))|A\in \mathfrak{G}\}$ $(1\leqq\alpha, \beta\leqq m)$

of matrices forms an irreducible Lie algebra of endomorphisms of
the m-dimensional $ve$ctor space $P$ over the field of complex numbers.
Corresponding to this decomposition of $\tilde{\mathfrak{G}}$, we find

(6.7) SAS $=\left(\begin{array}{lll}0 & \phi_{\beta}^{0}(A) & \Phi_{\beta}^{t)}(A)\\0 & \phi_{\beta}^{a}(A) & 0\\0 & 0 & -\phi_{\theta}^{\alpha}(A)\end{array}\right)$ $(1\leqq\alpha, \beta\leqq m)$ ,

$\Phi_{\beta}^{0}(A)-$. being the complex conjugate of $\phi_{\beta}^{0}(A)$ for any matrix $A$ of $\mathfrak{G}$ ,
where $S$ is the following matrix

$S=\left(\begin{array}{ll}1 & 0\\0 & \tilde{S}\end{array}\right)$

and $\overline{S}$ is the matrix given by (6.6).
The set $\mathfrak{G}^{r}$ of all matrices

$\left(\begin{array}{ll}0 & \phi_{\beta}^{0}(A)\\0 & \phi_{\beta}^{\alpha}(A)\end{array}\right)$ $(1\leqq\alpha, \beta\leqq m)$

forms a Lie algebra isomorphic to the $\mathfrak{G}$ , where $A$ runs over $\mathfrak{G}$ .
Thus, $\mathfrak{G}^{r}$ and $\tilde{\mathfrak{G}}^{r}$ are isomorphic to each other. Since $\tilde{\mathfrak{G}}^{\prime}$ is irreducible
in $P$, as was proved in (i), there exists a matrix

$T=\left(\begin{array}{ll}1 & \xi_{\beta}\\0 & \delta_{\beta}^{\alpha}\end{array}\right)$ $(1\leqq\alpha, \beta\leqq m)$

such that

$ T\left(\begin{array}{ll}0 & \phi_{\beta}^{0}(A)\\0 & \phi_{\beta}^{\alpha}(A)\end{array}\right)=\left(\begin{array}{ll}0 & 0\\0 & \phi_{\beta}^{a}(A)\end{array}\right)’\tau$
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for any matrix $A$ of $\mathfrak{G}$. Putting

$\prime\prime T=($ $001$ $’\tau o^{0}$

/

$0$

),
by virtue of (6.7), we find

$TA=\left(\begin{array}{ll}0 & 0\\0 & \alpha_{j}^{i}(A)\end{array}\right)T$

for any $A$ of $\mathfrak{G}$, where $T=\prime\prime TS$. By conjugation and summation we
have

$UA=\left(\begin{array}{ll}0 & 0\\0 & \alpha^{i_{j}}(A)\end{array}\right)U$ , $U=\frac{1}{2}(T+\overline{T})$ ,

since the coefficients of $A\in \mathfrak{G}$ are real numbers. The real matrix $U$

thus obtained is the required one. Therefore, the proof of Lemma
6.3 is completed.

Summing up the lemmas above proved, we can prove Lemma 2
as follows. $Ke$eping notations as in Lemma 2, by virtue of Lemma
6.1 we see that $\Gamma$ is isomorphic to $\tilde{\Gamma}$. Denote by $\Gamma_{0}$ and $\tilde{\Gamma}_{0}$ the
identity components of $\Gamma$ and $\tilde{\Gamma}$ respectively. Then, Lemma 6.3
implies that Lemma 2 holds good for the group $\Gamma_{0}$ . Thus, we sup-
pose any matrix $\tau$ of $\Gamma_{0}$ has the form (1.10). Let $\sigma$ be a matrix of
$\Gamma$. Since $\sigma\tau\sigma^{-1}=\tau^{\prime}\in\Gamma_{0}$ for any matrix $\tau$ of $\Gamma_{0}$ , we have

$\left(\begin{array}{ll}1 & a_{j}^{0}(\sigma)\\0 & a^{i_{j}}(\sigma)\end{array}\right)\left(\begin{array}{ll}1 & 0\\0 & a_{j}^{i}(\tau)\end{array}\right)=\left(\begin{array}{ll}1 & 0\\0 & a^{i_{j}}(\tau^{\prime})\end{array}\right)\left(\begin{array}{ll}1 & a_{j}^{\eta}(\sigma)\\0 & a^{i_{j}}(\sigma)\end{array}\right)$

and hence

$a_{j}^{q}(\tau)a_{a}^{0}(\sigma)=a^{0_{j}}(\sigma)$

The matrix $\tau$ being arbitrary in $\Gamma_{0}$ , this equation means that the
covariant vector $(a_{1}^{0}(\sigma), a^{0_{-}}(\sigma),\cdots,$ $a_{n}^{0}(\sigma))$ is invariant under $\Gamma_{0}$ . Since
$\Gamma_{0}$ is irreducible, the vector is thus zero and so also is each of the
$n$ numbers $a^{0_{j}}(\sigma)$ . Therefore, the matrix $\sigma$ has the form (1.10).
Consequently, Lemma 2 is proved completely.

REMARK. The dual form of Lemma 2 implies immediately the
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following theorem concerning groups of affine motions in the ordinary
affine space $E_{n}$ . Let $G$ be a group of affine motions $\sigma$ :

$\overline{x}^{\prime}=a_{a}^{i}(\sigma)x^{\prime\iota}\vee+a^{i}(\sigma)$ ,

where $(x^{i})$ are Cartesian coordinates of a point in $E_{n}$ . The corres-
pondence $\sigma\rightarrow(a^{i_{j}}(\sigma))$ defines a homomorphism $\gamma$ of $G$ onto a linear
group

$\tilde{G}=\{a_{j}^{i}(\sigma)|\sigma\in G\}$ .
The formalization of the theorem is as follows:

If the kernel of $r:G\rightarrow\tilde{G}$ is discrete and the idenlity component of
$\tilde{G}$ is irreducible, lhen there exists a point in $E_{n}$ which is fixed by all
elements of $G$.

The theorem is proved by S. Sasaki and M. Goto, when the group
$G$ is compact18). However, for the compact group $G$ the theorem can
be proved by virtue of Lemma 6.2.

Tokyo Metropolitan University.
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