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\S 1. Decomposable spaces

Consider two affinely connected spaces without torsion $A_{p}$ and
$A_{n-p}$ of the dimension $p$ and $n-p$ respectively. Denote by $\Gamma_{j^{1}k^{1}}^{i^{1}}(x^{l}$

’
$)$

and $\Gamma_{j^{2}k}^{i^{2}}:(x^{t^{2}})$ the connections, $(x^{i}$
‘

$)$ and $(x^{i^{2}})$ the coordinates on $A_{p}$ and
$A_{n-p}$ respectively. As to the ranges of indices we shall adopt the
following convention $i,j,$ $k,$ $l=1,\cdots,$ $n;i^{1},j^{1},$ $k^{1},$ $l^{1}$ (indices of the first
kind) $=1,\cdots,p;i^{2},j^{2},$ $k^{2},$ $l^{2}$ (indices of the second kind) $=p+1,\cdots,$ $n$.

The n-dimensional affinely connected space $A_{n}$ with coordinates
$(x^{1}, x^{f2})$ and the connection $\tilde{\Gamma}_{jk}^{i}$ will be called the product space of $A_{p}$

and $A_{n-p}$ , if the components of.the connection with the indices of
different kind vanish and $\tilde{\Gamma}_{j^{1}k^{1}}^{i^{1}}=\Gamma_{j^{1}h^{1}}^{i^{1}}(x^{l^{1}}),\tilde{\Gamma}_{j^{2}k^{2}}^{i^{2}}=\Gamma^{i_{2}^{2}}jk^{2}(x^{l^{2}})$ . In this case
$A_{t2}$ is said to be decomposable, and the coordinates $(x^{1}, x^{2})$ are called
a code. When $(y^{i^{1}})$ and $(y^{i^{2}})$ are normal coordinates on $A_{p}$ and $A_{n-p}$

respectively, then $(y^{i^{1}}, y^{i^{2}})$ is a normal code on $A_{n}$ ([1]).
An object defined on a decomposable $A_{n}$ is said to be breakable

if its components with the indices of different kind are all zero with
respect to a code. If an object is breakable and its components with
indices of the same kind depend, in any code, only on the variables of
that kind, then the object is called a product object.

\S 2. Symmetric affine space

An n-dimensional affinely connected space $A_{n}$ without torsion is
said to be symmetric in Cartan’s sense if the reflexion about any
point in $A_{n}$ is an affine collineation. An $A_{n}$ with connexion $\Gamma_{jh}^{i}$ is
symmetric if and only if the first covariant derivative of the curva-
ture tensor vanishes, I. $e$ .

$R_{j^{i}kl;m}=0$ ,
where

$R_{jkl}^{i}=\Gamma_{jh.l}^{i}-\Gamma_{jl,k}^{i}+\Gamma_{jh}^{h}\Gamma_{hl}^{i}-\Gamma_{jl}^{h}\Gamma_{hk}^{i}$ ;
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and we denote by a semi-colon the covariant differentiation, while by
a comma the partial differentiation.

A symmetric $A_{n}$ admits always a transitive group of affine col-
lineations cosisting of transvections and of isotropic subgroup.

The generators $\xi_{a}^{i}(a=1,\cdots, n)$ of the transvections along the geo-
desics given by

$y^{i}=0$

$y^{a}=s$ $(i\neq a)$

in the normal coordinates $(y^{j})$ at $0$ are given as the solutions of the
differential equations

$\xi^{i_{;j;k}}+R_{jks}^{\star i}\xi^{s}=0$

satisfying the initial conditions

$(\xi_{a}^{i})_{0}=\delta_{a}^{i}$ , $(\frac{\partial\xi_{a}^{i}}{\partial y_{j}})_{0}=0$ ,

where $R_{jkl}^{\star i}$ are the components of the curvature tensor for $A_{n}$ with
respect to the above normal coordinate system.

The generators $\eta_{\alpha}^{i}(\alpha=n+1,\cdots, n+r)$ of the isotropic subgroup
fixing the point $0$ are given, in the normal coordinates $(y^{i})$ at $0$ , by

$\eta_{\alpha}^{i}=C_{j\alpha}^{i}y^{j}$ ,

where $C_{j\alpha}^{i}$ are the complete solutions of the following equations with
the unknowns $a_{j}^{i}$

$a_{s}^{i}B_{jkl}^{s}-a_{j}^{s}B_{skl}^{i}-a_{k}^{s}B_{jsl}^{i}-a_{l}^{s}B_{jhs}^{i}=0$

$B_{jhl}^{i}$ being the components of the curvature tensor evaluated at the
point $0$ .

In this case, putting

$X_{i}f=\xi_{i}^{j}\frac{\partial f}{\partial y^{j}}$

$Y_{a}f=\eta_{\alpha}^{i}\frac{\partial f}{\partial y^{i}}$ $(i,j=1,\cdots, n;\alpha=n+1,\ldots, n+r)$ ,

we can write the structural equations for the complete group of
affine collineations of symmetric $A_{n}$ in the following form

$[X_{i}, X_{j}]=C_{ij}^{a}Y_{\alpha}$
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$[X_{i}, Y_{\alpha}]=C^{j_{ia}}X_{j}$

$[Y_{\alpha}, Y_{\beta}]=C_{\alpha\beta}^{\gamma}Y_{\gamma}$ $(i,j=1,\cdots, n ; \alpha, \beta, \gamma=n+1,\cdots, n+r)$ .
Moreover, if the generators are taken as above, then we obtain

$B_{jkl}^{i}=C_{\alpha j}^{i}C_{hl}^{\alpha}$ .

\S 3. The group $G_{n+r}$

We consider an $(n+r)$-parameter continuous transformation group
$G_{n+r}$ of which structural equations are given by

$[X_{i}, X_{j}]=C_{ij}^{\alpha}Y_{\alpha}$

(3.1) $[X_{i}, Y_{\alpha}]=C^{j_{i\alpha}}X_{j}$

$[Y_{\alpha}, Y_{\beta}]=C_{\alpha\beta}^{r}Y_{r}$ $(i,j=1,\cdots, n;\alpha, \beta, \gamma=n+1,\cdots, n+r)^{1)}$ .
In this case we can define an involutive automorphism $\sigma$ of $G_{n+},$ .

We shall call the subgroup generated by $Y_{\alpha}$ which is invariant under
$\sigma$ an isotropic subgroup and denote it by $H_{r}$ . We shall call $X_{i}(i=1$ ,
..., n) the generators of the transvections of $G_{n+r}$ . In the following,
we shall call the group having the above structure (3.1) merely group
$G_{n+r}$ for the sake of simplicity.

The group $G_{n+r}$ is said to be effective if $H_{r}$ does not contain any
invariant subgroup of $G_{n+r}$ .

As for the effectiveness of $G_{n+r}$ we have the following
LEMMA 1. The group $G_{n+r}$ is effective if and only if the matrix

$C=||C_{ai}^{j}$ II
is of rank $r$ , where $\alpha$ denotes the rows and $i$ and $j$ the colomns.

PROOF. Suppose that the rank of $C$ is $r-s(s>0)$ , then the set
of equations
(3.2) $e^{\alpha}C_{\alpha j}^{j}=0$

has $s$ independent solutions
$e^{a}=u_{\lambda}^{\alpha}$ $(\lambda=1,\cdots, s)$ .

If we define new generators $Z_{\lambda}$ by

$Z_{\lambda}=u_{\lambda}^{a}Y_{\alpha}$ $(\lambda=1,\cdots, s)$ ,

1) We assume hereafter that the indices $i,j,$ $k,$ $I$ run from 1 to $n$ and $\alpha,$ $\beta,$
$\gamma$ run

from $n+1$ to $n+r$ unless otherwise stated.
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we get
$[Z_{\lambda}, X_{i}]=u^{a}{}_{\lambda}C_{\alpha i}^{j}X_{j}=0$

because $u_{\lambda}^{\alpha}$ are solutions of (3.2).
Furthermore making use of the Jacobi relations

$C_{\alpha\beta}^{r}C_{\gamma i}^{j}+C_{\beta i}^{k}C_{h\alpha}^{j}+C_{i\alpha}^{h}C^{j_{h\beta}}=0$ ,
we get

$u_{\lambda}^{a}C_{\alpha\beta}^{\gamma}C_{\gamma i}^{j}=u^{a}{}_{\lambda}C_{\alpha k}^{j}C_{\beta i}^{k}+u^{\alpha}{}_{\lambda}C_{\alpha i}^{k}C^{j_{k\beta}}=0$ .
that is, $u^{\alpha}{}_{\lambda}C_{\alpha\beta}^{r}$ are again solutions of (3.2). Hence we can put

$u_{\lambda}^{\alpha}C_{\alpha\beta}^{\gamma}=A^{\mu_{\lambda\beta}}u_{\mu}^{\gamma}$

with some constants $A’ s$ and we obtain

$[Z_{\lambda}, Y_{\beta}]=A^{\mu_{\lambda\beta}}u_{\mu}^{\gamma}Y_{\gamma}=A^{\mu_{\lambda\beta}}Z_{\mu}$ .
Consequently $Z_{\lambda}(\lambda=1,\cdots, s)$ generate an invariant subgroup of $G_{n+r}$ .

Conversely, let us assume that $H_{r}$ contains an invariant subgroup
of $G_{n+r}$ and $Z_{\lambda}=u_{\lambda}^{a}Y_{\alpha}(\lambda=1,\cdots, s)$ are its symbols, then the matrix $C$

is of rank $<\gamma$ because we have

$[Z_{\lambda}, X_{i}]=u_{\lambda}^{a}C_{\alpha i}^{j}X_{j}=0$ .

\S 4. The symmetric $A_{n}$ determined by $G_{n+r}$

THEOREM 1. If an effective group $G_{n+r}$ is given, then there $alwa\gamma s$

exists an n-dimensional symmetric affine space $A_{n}$ whose complete group
of affine collineations contains the subgrOup isomorphic to $G_{n+r}$ .

PROOF. First we shall define the symmetric $A_{n}$ . Let $L_{n+r}$ be
the group space with (O)-connexion of the group $G_{n+r}$ . The canonical
parameters $e^{A}(A=1,\cdots, n+r)$ give a normal coordinate system at the
identity. Let $L_{n}$ be the subspace of $L_{n+r}$ which consists of the trans-
vections. Then $L_{n}$ is given by

$e^{t}=0$ $(\alpha=n+1,\cdots, n+r)$ .
It is well known that $L_{n}$ Is totally geodesic, and is a symmetric
affine space ([3]).

If we define $A_{n}$ with normal coordinates $(y^{j})$ from $L_{n}$ with
normal coordinates $(e^{j})$ by the transformation

$e^{i}=2y^{j}$ ,
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then $A_{n}$ is a symmetric affine space and the components in $(y^{j})$ of the
curvature tensor of $A_{n}$ are given at the origin $0$ by

(4.1) $B_{jkl}^{i}=C_{\alpha j}^{i}C_{k^{t}l}$ .
Now we determine the structural equations for the complete

group $\mathfrak{G}$ of affine collineations of $A_{n}$ .
From the Jacobi relations for $G_{n+r}$

$C_{ak}^{s}C_{sl}^{\gamma}+C_{\alpha l}^{s}C^{r_{ks}}+C^{\beta_{k}}{}_{l}C^{r_{\beta\alpha}}=0$

$C_{\alpha j}^{s}C_{rs}^{i}+C_{jr}^{s}C_{\alpha s}^{i}+C_{\gamma\alpha}^{\beta}C_{j\beta}^{i}=0$

and from (4.1) we see that $C^{j_{i\alpha}}$ are $\gamma$ solutions of the equations with
the unknowns $a_{j}^{i}$

(4.2) $a_{s}^{i}B_{jkl}^{s}-a_{j}^{s}B_{skl}^{i}-a_{k}^{s}B_{jsl}^{i}-a_{l}^{s}B_{jks}^{i}=0$ .
Moreover these $C^{j_{i\alpha}}$ are $r$ independent solutions of (4.2) by the as-
sumption of effectiveness.

Let $E^{j_{i\lambda}}(\lambda=n+1,\cdots, n+s;s\geqq r)$ be the complete solutions of (4.2).
We can assume without loss of generality that

$E^{j_{i\alpha}}=C^{j_{i\alpha}}$ .
According to \S 2, the generators $\sim\eta^{j_{\lambda}}$ of isotropic subgroup fixing the
point $0$ are

$\sim\eta^{j_{\lambda}}=E^{j_{i\lambda}}y^{i}$ $(\lambda=n+1,\ldots, n+s)$ .
Let $\xi_{a}^{i}\sim$ be the generators of the transvections along the geodesics

$y^{j}=0$

$y^{a}=s$ $(i\neq a)$

in the normal coordinates $(y^{j})$ at $0$ .
We can write the structural equations for $\mathfrak{G}$ in the following

form (\S 2)

$[\tilde{X}_{i},\tilde{Y}_{j}]=D_{ij}^{a}\tilde{Y}_{\alpha}+D_{ij^{\prime}}^{\alpha}\tilde{X}_{\alpha^{\prime}}$

$[\tilde{X}_{i},\tilde{Y}_{\alpha}]=D^{j_{ia}}\tilde{X}_{j}$

(4.3)
$[\tilde{X}_{i},\tilde{Y}_{\alpha},]=D^{j_{ia^{\prime}}}\tilde{X}_{j}$

$\left(\begin{array}{llllllll} & i,j=1, & \cdots & ’ & n & & & \\\alpha,\beta, & \gamma=n+1, & \cdots & \cdots & \cdots & \cdots & n+r & \\\alpha^{\prime},\beta^{\prime},\gamma^{\prime}=n+r+1, & \ldots, & & & & ’ & & n+s\end{array}\right)$

$[\tilde{Y}_{\alpha},\tilde{Y}_{\beta}]=D_{\alpha\beta}^{\gamma}\tilde{Y}_{\tau}+D_{\alpha^{\prime}\beta}^{\gamma}\tilde{Y}_{\gamma^{\prime}}$

$[\tilde{Y}_{\alpha},\tilde{Y}_{\beta},]=D_{\alpha\beta^{\prime}}^{\gamma}\tilde{Y}_{\gamma}+D_{a^{\prime}\beta^{\prime}}^{\gamma}\tilde{Y}_{\gamma}$,

$[\tilde{Y}_{\alpha},,\tilde{Y}_{\beta},]=D_{\alpha\beta}^{\gamma},\tilde{Y}_{\gamma}+D_{\alpha^{\prime}\beta^{\prime}}^{\gamma,}\tilde{Y}_{\gamma}$ ,
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where we have put

$\tilde{X}_{i}f=\xi\frac{\partial f}{\partial y^{j}}\sim_{j_{i}}$

$\tilde{Y}_{\lambda}f=E^{j_{i\lambda}}y^{i}\frac{\partial f}{\partial y^{j}}(\lambda=n+1,\cdots, n+s)$ ,

and $D’ s$ are structural constants for G.
From the relations

$(\xi_{a}\sim_{j}\frac{\partial\eta^{j}\sim_{\lambda}}{\partial y^{j}}-\eta^{i_{\lambda}}\sim\frac{\partial\xi_{a}\sim_{i}}{\partial y^{j}})_{0}=D_{a\lambda}^{k}(\xi_{h})_{0}\sim_{i}$

and from

$(\xi_{a})_{0}=\delta_{a}^{i}\sim_{i}$ , $(\sim_{\lambda}\eta^{i})_{0}=0$
$(\frac{\partial\eta^{i}\sim_{\lambda}}{\partial y^{j}})_{0}=E_{j\lambda}^{i}$

we get
(4.4) $D_{a\alpha}^{i}=E_{a\alpha}^{i}=C_{a\alpha}^{i}$ , $D_{a\alpha^{\prime}}^{i}=E_{a\alpha^{\prime}}^{i}$ .
Making use of the Jacobi relations for $G_{n+r}$

$C_{l\alpha}^{j}C_{j\beta}^{i}+C_{\alpha\beta}^{r}C_{\gamma l}^{i}+C_{\beta}^{j}{}_{l}C_{j\alpha}^{i}=0$ ,
we get

$\sim_{\alpha}\eta^{j}\frac{\partial\eta^{i}\sim_{\beta}}{\partial y^{j}}-\sim\eta^{j_{\beta}}\frac{\partial\eta^{i}\sim_{a}}{\partial y^{j}}=C_{\alpha\beta^{\sim}}^{\gamma}\eta_{\gamma}^{i}$ .
Hence we have
(4.5) $D_{\alpha\beta}^{\gamma}=C_{\alpha\beta}^{\gamma}$ , $D_{\alpha^{\prime}\beta}^{\gamma}=0$ .
From \S 2, the components of the curvature tensor are given at $0$ by

$B_{jhl}^{i}=D_{\lambda j}^{i}D_{hl}^{\lambda}=C_{\alpha j}^{i}D_{kl}^{\alpha}+E_{\alpha j}^{i}D_{k^{\prime}l}^{\alpha}$ .
On the other hand, $B_{jkl}^{i}$ are given by (4.1), therefore we must have

$C_{\alpha j}^{i}D_{hl}^{\alpha}+E_{\alpha j}^{i}D_{hl}^{\alpha^{\prime}}=C_{aj}^{i}C_{kl}^{\alpha}$ .
Since matrix $||E_{\lambda^{i}j}||$ where $\lambda$ denotes rows and $i$ and $j$ colomns is of
rank $s$ , we obtain

(4.6) $D_{hl}^{a}=C_{kl}^{\alpha}$ , $D_{kl}^{\alpha^{\prime}}=0$ .
From (4.3), (4.4), (4.5) and (4.6) we see that $\mathfrak{G}$ contains the subgroup
generated by $\tilde{X}_{j},$

$Y_{\alpha}$ which is isomorphic to $G_{n+r}$ .
REMARK. In the case where $G_{n+r}$ is not effective, let $g_{r-t}$ be the
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maximal invariant subgroup of $G_{n+r}$ which is contained in $H,$. We
consider the factor group $G_{n+t}=G_{n+r}/g_{r-t}$ . This group $G_{n+t}$ has the
structural equations similar to (3.1), and is effective. It is easily seen
that the symmetric $A_{n}$ which is defined from $G_{n+r}$ in the same manner
as in the proof of Theorem 1 is equivalent to the symmetric affine
space which is defined from $G_{\iota+t}$ in the same manner as in the proof
of Theorem 1. According to Theorem 1, the complete group of affine
collineations of this space $A_{n}$ contains the subgroup isomorphic to
$G_{n+t}$ and consequently homomorphic to $G_{n+r}$ .

From Theorem 1 and the above Remark, if $G_{n+r}$ is given, then
we obtain a symmetric $A_{n}$ whose complete group of affine collineations
contains the subgroup isomorphic or homomorphic to $G_{n+r}$ according
as $G_{n+r}$ is effective or not. We shall call this symmetric $A_{n}$ symmetric
$A_{n}$ determined by $G_{n+r}$ .

\S 5. Decomposable symmetric affine space

If an affinely connected space without torsion is decomposable,
then the curvature tensor is product tensor in any code. Hence we
have the following

THEOREM 2. A decomposable affinely connected space without tor-
sion is symmetric if and only if each composition space is symmetric.

Let $J=\{1,\cdots, n\}$ be the index set for the n-dimensional space $A_{n}$ .
We decompose $J$ into two subsets $J^{1}=\{1,\cdots,p\}$ and $J^{2}=\{p+1,\cdots, n\}$ , and
we fix this decomposition. If the values of the components of a
tensor with respect to a coordinate system vanish at one point when
its indices are of different kind, then we shall say that they are
breakable (with respect to the decomposition $J=J^{1}+J^{2}$ ).

THEOREM 3. A symmetric affine space $A_{n}$ is decomposable if and
only if there exists a coordinate system such that the components of the
curvature tensor evaluated at any point in this coordinate system are
breakable.

PROOF. If a symmetric $A_{n}$ is decomposable, then the curvature
tensor is product tensor in a code. Therefore the components $B_{jhl}^{i}$ of
the curvature tensor evaluated at a point in this code are breakable.

Conversely, suppose that there exists a coordinate system $(x^{i})$ such
that the components in this coordinate system of the curvature tensor
are breakable at a point $0$ . We introduce in $A_{n}$ the normal coordinate
system $(y^{i})$ at $0$ corresponding to the coordinate system $(x^{j})$ . Let
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$N_{jkl_{1}\cdots l_{u}}^{i}$ be the u-th normal tensor of $A_{n}$ . Since our space is sym-
metric, we have [3]

$N_{jhl_{1}\cdots l_{2S}}^{i}=0$ $(s=1,2,\cdots)$ .
Next, we shall prove that $N_{j}^{i}kl_{1}\cdots l_{2S+1}(0)$ are breakable.
Given two tensors $S_{j_{1}^{i}\cdots j_{a}}$ and $T_{k_{1}\cdots k_{b}}^{i}$ , we can define new tensors

$S_{j_{1}\cdots j_{a}}^{l}T_{k_{1}\cdots k_{t-1}lh_{t+1}\cdots\hslash_{b}}^{i}(T_{k_{1}^{l}\cdots k_{b}}S_{j_{1}^{i}\cdots j_{t-1}lj_{l+1}\cdots j_{a}})$ . We shall call this multipli-

cation the $C_{s}(C_{T})$-process. If two tensors $S_{j_{1}\cdots j_{a}}^{i}$ and $T_{h_{1}^{i}\cdots k_{b}}$ are both
breakable, then $C_{s}(T_{k_{1}^{i}\cdots h_{b}})$ and $C_{T}(S_{j_{1}^{i}\cdots j_{a}})$ are breakable.

Now, let $\prod_{jk}^{i}$ be the components of the connection with respect
to the normal coordinate system $(y^{j})$ , then we have

$R_{jhl;l_{1};\cdots;t_{t}}^{*i}=R_{jkl_{i}l_{1};\sim:l_{i-1}l_{i}}^{i}+\prod_{l_{t}}(R_{jk^{i}l;l_{1},\cdots,l_{i-1}}^{\star})$

$=R_{jk^{i}l.l_{1}\ldots.l_{t}}^{\star}+\sum_{u=0}^{f-1}(\prod_{l_{u+1}}(R_{j;it_{u}}^{\star}k^{i}l;l_{1}\sim),$

$l_{u+2},\cdots.l_{t}$
,

where
$\prod_{h}(R_{bct;d_{1};\cdots;d_{u}}^{\star a})=\prod_{lh}^{a}R_{bcdid_{1};\cdots;d_{u}}^{\star l}-\prod_{bh}^{l}R_{lcd;d_{1};\cdot\leftrightarrow:d_{u}}^{*a}$

$-\prod_{ch}^{l}R_{bld;d_{1}}^{\star a}$ ; $ d_{2};\cdots$ ; $d_{u}^{-\prod_{dh}^{l}R_{bcl;d_{1};\cdots;d_{u}}^{\epsilon_{a}}-\sum\prod_{d_{t}h}^{\iota}R_{bcd;d_{1}}^{\star a}}$ ;... ; $d_{t-1}$ ; $ l;d_{t+1};\cdots$ ; $d_{u}$

( $R_{j}^{\epsilon_{h^{i}l}}$ ; the components of the curvature tensor with respect to $(y^{j})$ ).

On the other hand, we have
$P(N_{j1}^{i_{hllu}}\ldots)=0$

where $P$ denotes the sum of the $(u+1)(u+2)/2$ terms obtained by
the permutations of the lower indices which do not yield equivalent
terms. [cf. L. P. Eisenhart, Non-Riemannian Geometry]. Hence from
the above relations and from the fact that our spa.ce is symmetric,
we can derive, by a direct calculation, the following expression:

$N_{j^{i}kl_{1}-l_{2S+1}}=\varphi(N)$ ,

where $\varphi(N)$ is the polynomial of the normal tensors $N_{(2_{S}-1)}$ of order
$\leqq 2s-1$ and its each term is obtained by effecting the $C_{N}$-processes
on $N_{(2_{S}-1)}$ . From the relation

$N_{j^{i}kl}(0)=\frac{1}{3}(B_{j^{i}kl}+B_{h^{i}jl})$
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and from the breakability of $B_{j^{i}kl}$ , we can conclude that $N_{hl_{1}\cdots l_{2S+1}}^{i}(0)$

are breakable.
Now, we have

(5.1) $\prod_{jk}^{i}=N_{j^{i}kl1}(0)y^{l1}+\frac{1}{3!}\dot{N}_{J^{kl_{I}I_{23}^{\prime}}}^{i}(0)y^{l1}y^{l_{2}}y^{l_{3}}+\cdots$

$...+\frac{1}{(2s+1)!}N_{jkl_{1}\cdots l_{2S+1}}(0)y^{l_{1}}\cdots y^{l_{2S+1+}}\cdots$ .

Since every $N_{jhl_{1}\cdots l_{\underline{\circ}s+1}}^{i}(0)$ in (5.1) are breakable, we see that $\prod_{jh}^{i}$

vanishes if its indices are of different kinds and $\prod_{j^{1_{1}}h^{1}}^{i}$ and $\prod_{j^{2_{2}}h^{2}}^{i}$

depend only on $y^{;1}$ and $y^{i^{2}}$ respectively. Hence our symmetric $A_{n}$ is
decomposable.

THEOREM 4. The symmetric $A_{n}$ determined by an effective group
$G_{n+r}$ is a product space of $A_{p}$ and $A_{n-p}$ of dimensions $p$ and $n-p$

respectively if and only if the n-dimensional vector space $V$ spanned by
the transvections of $G_{n+r}$ is a direct sum of p-dimensional subspace $V_{1}$

and $(n-p)$ -dimensional subspace $V_{2}$ satisfying the following conditions;
$1^{o}[X_{i^{1}}, X_{i^{2}}]=0$

2’ $[[X_{i^{\lambda}}, X_{j^{\lambda}}],$ $X_{k^{\lambda}}$ ] $(\lambda=1,2)$ are linear combinations of $X_{l^{\lambda}}$ only,
where $X_{i^{\lambda}}$ are the bases of $V_{\lambda}(\lambda=1,2)$ and $i^{1},j^{1},$ $k^{1},$ $l^{1}=1,$ $\cdot\cdot,p$ and
$i^{2},j^{2},$ $k^{2},$ $l^{2}=p+1,\cdots,$ $n$ .

PROOF. Suppose that the symmetric $A_{n}$ determined by $G_{n+r}$ is
decomposable. We write the structural equations for $G_{n+r}$ in the
form

$[X_{i}, X_{j}]=C_{ij}^{\alpha}Y_{\alpha}$

(5.2) $[X_{i}, Y_{\alpha}]=C^{j_{i\alpha}}X_{j}$

$[Y_{\alpha}, Y_{\beta}]=C_{\alpha\beta}^{\gamma}Y_{\gamma}$ .
In the same manner as in \S 4, we obtain the symmetric $A_{n}$ with
normal coordinates $(y^{;})$ . In this normal coordinate system, the com-
ponents of the curvature tensor evaluated at the origin $0$ are given
by

(5.3) $B_{jhl}^{i}=C_{\alpha^{i}j}C_{kl}^{\alpha}$ .
In general, we can not state that $B_{jkl}^{i}$ are breakable. But by the
assumption of decomposability of our space, we can introduce in $A_{n}$

the normal code $(y^{\prime}’’, y^{\prime j2})$ at the point $0$ such that the curvature
tensor $R_{j^{i}kl}^{\prime}$ in this code is a product tensor. Hence, if we evaluate



On decomposable symmetric affine spaces. 167

the transformation law for the curvature tensor at $0$ , we have

$a_{a}^{i}(R_{b_{C}^{a}d}^{\prime})_{0}=a^{j_{b}}a_{c}^{k}a_{d}^{l}B_{j^{i}kl}$ ,

where $a_{j}^{:}$ are constants and $\det|a_{j}^{i}|\neq 0$ .
Consequently, by effecting the change of base of the transvections

$X_{i}^{\prime}=a_{i}^{\dot{f}}X_{j}$ ,
we have

$(a)$ $[[X_{i^{1}}^{\prime}, X_{j^{1}}^{\prime}],$ $X_{h^{1}}^{\prime}$ ] $=(R_{k^{l_{1}^{1}}i^{1}j^{1}}^{\prime})_{0}X_{l^{1}}^{\prime}$

$(b)$ $[[X_{i^{1}}^{f}, X_{j^{1}}^{\prime}],$ $X_{h^{2}}^{\prime}$] $=0$

$(c)$ $[[X_{i^{1}}^{\prime}, X_{j^{2}}^{\prime}],$ $X_{h^{1}}^{\prime}$] $=0$

(5.4)
$(d)$ $[[X_{i^{1}}^{\prime}, X_{j^{2}}^{\prime}],$ $X_{h^{2}}^{\prime}$] $=0$

$(e)$ $[[X_{i^{2}}^{\prime}, X_{j^{2}}^{\prime}],$ $X_{h^{1}}^{\prime}$ ] $=(R_{k^{l}i^{2}j^{2}}^{\prime}2^{2})_{0}X_{l^{2}}^{f}$

$(f)$ $[[X_{i^{2}}^{\prime}, X_{j^{1}}^{\prime}],$ $X_{k^{2}}^{\prime}$] $=0$

because $(R_{b_{C}^{a}d}^{\prime})_{0}$ are breakable.
Let $V_{1}$ be the $p$-dimensional subspace spanned by $X_{i^{1}}^{\prime}$ and let $V_{2}$

be the $(n-p)$-dimensional subspace spanned by $X_{i^{2}}^{\prime}$ . Then we have

(5.5) $V=V_{1}+V_{2}$ .
From $(5.4 c, d)$ we get

$[[X_{i^{1}}^{\prime}, X_{j^{2}}^{\prime}],$ $X_{k^{\prime}}$] $=0$ .
Since $G_{n+r}$ is effective, we get

(5.6) $[X_{i^{1}}^{\prime}, X_{j^{2}}^{\prime}]=0$ .
From $(5.4 $a $, e)$ , (5.5) and (5.6) we have proved the first part of
Theorem 4.

Conversely, let us assume that $G_{n+r}$ satisfies the conditions of
Theorem 4. We consider the symmetric $A_{n}$ determined by such $G_{n+r}$.
The components of the curvature tensor at the origin are given by
(5.3). From the condition $1^{o}$ , we get

$C_{kl^{2}}^{\alpha_{1}}=0$ .
Hence we get

(5.7) $B_{jk^{1}l^{2}}^{i}=0$ .
Furthermore in the relations
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$B_{jk^{1}l^{2}}^{i}+B_{k^{1}l^{2}j}^{i}+B_{l^{2}jk^{1}}^{i}=0$ ,
by putting $j=j^{1}$ and $j=j^{2}$ , we get

(5.8) $B_{l^{2_{\dot{7}}1}k^{1}}^{i}=0$

and
(5.9) $B_{h^{1}t^{2}j^{2}}^{i}=0$

Finally, by the condition $2^{o}$

$[[X_{i^{1}}, X_{j^{1}}],$ $X_{h^{1}}$] $=C_{i^{1}j^{1}}^{\alpha}C_{\alpha k^{1}}^{l}X_{l}$

are linear combinations of $X_{l^{1}}$ only. Hence we get

(5.10) $B_{j^{i_{1}^{2}}k^{1}l^{1^{-}}}--0$ .
Similarly, we get
(5.11) $B_{j^{i_{2}^{1}}k^{2}l^{2}}=0$ .
It follows from, (5.7), (5.8), (5.9), (5.10) and (5.11) that $B_{j^{i}kl}$ are
breakable. Thus our space is decomposable by Theorem 3.

It is easily seen that each composition space is equivalent to the
space determined by the s.ubgroup generated by $X_{i^{\lambda}}$ , $[X_{i^{\lambda}}, X_{j^{\lambda}}](\lambda=1,2)$

and consequently composition spaces are of $p$ and $n-p$ dimensional
respectively.

THEOREM 5. If the symmetric $A_{n}$ determined by $G_{n+r}$ is decom-
posable where $G_{n+\gamma}$ is semi-simple and effective, then $G_{n+r}$ is decomposed
into a direct product of two groups by which composition spaces are
determined.

PROOF. According to Theorem 4, the vector space $V$ spanned by
the transvections of $G_{n+r}$ is direct sum of two subspaces $V_{1}$ and $V_{2}$

such that the conditions 1o and $2^{o}$ of Theorem 4 are satisfied. Let
$X_{i^{1}}(i^{1}=1,\cdots,p)$ and $X_{i^{2}}(i^{2}=p+1,\cdots, n)$ be the bases of $V_{1}$ and $ V_{2}re\rightarrow$

spectively.
Since $G_{n+r}$ is semi-simple and effective, the subgroup of $H_{r}$ gener-

ated by $[X_{i}, X_{j}]$ coincides with $H_{r}$ ([2]). From this fact and from
the condition $1^{o}$ of Theorem 4 we can write each base $Y_{\alpha}$ of $H_{r}$ in
the form

$Y_{\alpha}=a_{\alpha}^{i^{1}j^{1}}[X_{i^{1}}, X_{j^{1}}]+b_{\alpha^{2}}^{ij^{2}}[X_{i^{2}}, X_{j^{2}}]$

with constants $a’ s$ and $b’ s$ .
From this we can easily see that $X_{i^{\lambda;}}[X_{i}r , X_{j^{\lambda}}](\lambda=1,2)$ generate

the invariant subgroups $g_{\lambda}(\lambda=1,2)$ of $G_{n+r}$ .



On decomposable symmetric affine spaces. 169

On the other hand, if we denote by $h_{\lambda}(\lambda=1,2)$ the invariant
subgroups of $H_{r}$ generated by $[X_{i^{\lambda}}, X_{j^{\lambda}} ]$ $(\lambda=1,2)$ , then $H_{r}$ is direct
product of $h_{1}$ and $h_{2}$ because of effectiveness. Consequently $G_{n+r}$ is
the direct product of $g_{1}$ and $g_{2}$ . It is clear that composition spaces
are determined by $g_{1}$ and $g_{2}$ .

COROLLARY 1. If $G_{n+r}$ is simple (and semi-simple) and effective,
then symmetric $A_{n}$ determined by $G_{n+r}$ is non decomposable.

PROOF. Suppose, on the contrary, that $A_{n}$ is decomposable. Then
the group $G_{n+r}$ contains invariant subgroup by Theorem 5. This
contradicts the hypothesis.

Let $\tilde{H}_{r}$ be the linear adjoint group corresponding to $H_{r}$ and
acting on the transvections of $G_{n+r}$ . Then we have the following

COROLLARY 2. If $G_{n+r}$ is effective and $H_{r}$ is irreducible, then the
symmetric $A_{n}$ determined by $G_{n+r}$ is either flat or non-decomposable.

PROOF. Since $H_{\gamma}$ is irreducible, either $G_{n+r}$ is semi-simple or
$[X_{i}, X_{j}]=0$ ([2]). In the case $[X_{i}, X_{j}]=0$ , our space is flat.

Now we consider the case where $G_{n+r}$ is semi-simple. Suppose
that $A_{n}$ is decomposable. According to Theorem 4, the vector space
$V$ spanned by the transvections is direct sum of two subspaces $V_{1}$

and $V_{2}$ . These two subspaces are invariant under $\tilde{H}_{r}$ . In fact, let
$X_{\lambda}(\lambda=1,2)$ be any generator of $V_{\lambda}$ and let $Y$ be any generator of
$H_{r}$ . Since $H_{r}$ is the direct product of $h_{1}$ and $h_{2}$ , we can write $Y$ in
the form

$Y=Y_{1}+Y_{2}$ ,

where $Y_{1}$ and $Y_{2}$ are generators of the invariant subgroups $h_{1}$ and
$h_{2}$ of $H_{r}$ respectively. Then we have

$[Y, X_{\lambda}]=[Y_{1}+Y_{2}, X_{\lambda}]=[Y_{\lambda}, X_{\lambda}]$ $(\lambda=1,2)$ .
Therefore $[Y, X_{\lambda}](\lambda=1,2)$ are generators of $V_{\lambda}$ , that is, $V_{1}$ and $V_{2}$

are invariant under $\tilde{H}_{r}$ . This contradicts the hypothesis that $H_{r}$ is
irreducible.

The author wishes to express his sincere gratitude to Prof. J.
Kanitani for the kind guidance and encouragement during preparation
of the paper.
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