On decomposable symmetric affine spaces.

By Atsuo Fujimoto

(Received Oct. 5, 1956)

§ 1. Decomposable spaces

Consider two affinely connected spaces without torsion A_{p} and A_{n-p} of the dimension p and $n-p$ respectively. Denote by $\Gamma_{j^{1} k_{1}}^{i}\left(x^{l 1}\right)$ and $\Gamma_{j^{2} k^{2}}^{i 2}\left(x^{l^{2}}\right)$ the connections, $\left(x^{x^{i}}\right)$ and $\left(x^{i^{i}}\right)$ the coordinates on A_{p} and A_{n-p} respectively. As to the ranges of indices we shall adopt the following convention $i, j, k, l=1, \cdots, n ; i^{1}, j^{1}, k^{1}, l^{1}$ (indices of the first kind) $=1, \cdots, p ; i^{2}, j^{2}, k^{2}, l^{2}$ (indices of the second kind) $=p+1, \cdots, n$.

The n-dimensional affinely connected space A_{n} with coordinates ($x^{i 1}, x^{i 2}$) and the connection $\tilde{\Gamma}_{j k}^{i}$ will be called the product space of A_{p} and A_{n-p}, if the components of the connection with the indices of different kind vanish and $\widetilde{\Gamma}_{j^{1} k^{1}}^{i^{1}}=\Gamma_{j^{2} k^{1}}^{i 1}\left(x^{l 1}\right), \widetilde{\Gamma}_{j^{2} k^{2}}^{i^{2}}=\Gamma_{j^{2} k^{2}}^{i 2}\left(x^{l^{2}}\right)$. In this case A_{n} is said to be decomposable, and the coordinates (x^{1}, x^{2}) are called a code. When ($y^{i 1}$) and ($y^{i 2}$) are normal coordinates on A_{p} and A_{n-p} respectively, then ($y^{i^{1}}, y^{i^{2}}$) is a normal code on A_{n} ([1]).

An object defined on a decomposable A_{n} is said to be breakable if its components with the indices of different kind are all zero with respect to a code. If an object is breakable and its components with indices of the same kind depend, in any code, only on the variables of that kind, then the object is called a product object.

§ 2. Symmetric affine space

An n-dimensional affinely connected space A_{n} without torsion is said to be symmetric in Cartan's sense if the reflexion about any point in A_{n} is an affine collineation. An A_{n} with connexion $\Gamma_{j k}^{i}$ is symmetric if and only if the first covariant derivative of the curvature tensor vanishes, i.e.

$$
R_{j k l ; m}^{i}=0,
$$

where

$$
R_{j k l}^{i}=\Gamma_{j k, l}^{i}-\Gamma_{j l, k}^{i}+\Gamma_{j k}^{h} \Gamma_{h l}^{i}-\Gamma_{j l}^{h} \Gamma_{h k}^{i} ;
$$

and we denote by a semi-colon the covariant differentiation, while by a comma the partial differentiation.

A symmetric A_{n} admits always a transitive group of affine collineations cosisting of transvections and of isotropic subgroup.

The generators $\xi_{a}^{i}(a=1, \cdots, n)$ of the transvections along the geodesics given by

$$
\begin{aligned}
& y^{i}=0 \\
& y^{a}=s \quad(i \neq a)
\end{aligned}
$$

in the normal coordinates $\left(y^{i}\right)$ at 0 are given as the solutions of the differential equations

$$
\xi_{; j ; k}^{i}+R_{j k s}^{* i \xi^{s}}=0
$$

satisfying the initial conditions

$$
\left(\xi_{a}^{i}\right)_{0}=\delta_{a}^{i}, \quad\left(\frac{\partial \xi_{a}^{i}}{\partial y_{j}}\right)_{0}=0,
$$

where $R_{j k l}^{* i}$ are the components of the curvature tensor for A_{n} with respect to the above normal coordinate system.

The generators $\eta_{\alpha}^{i}(\alpha=n+1, \cdots, n+r)$ of the isotropic subgroup fixing the point 0 are given, in the normal coordinates (y^{i}) at 0 , by

$$
\eta_{\alpha}^{i}=C_{j a}^{i} y^{j},
$$

where $C_{j \alpha}^{i}$ are the complete solutions of the following equations with the unknowns a_{j}^{i}

$$
a_{s}^{i} B_{j k l}^{s}-a_{j}^{s} B_{s k l}^{i}-a_{k}^{s} B_{j s l}^{i}-a_{l}^{s} B_{j k s}^{i}=0
$$

$B_{j k l}^{i}$ being the components of the curvature tensor evaluated at the point 0 .

In this case, putting

$$
\begin{aligned}
& X_{i} f=\xi_{i}^{j} \frac{\partial f}{\partial y^{j}} \\
& Y_{\alpha} f=\eta_{\alpha}^{i} \frac{\partial f}{\partial y^{i}} \quad(i, j=1, \cdots, n ; \alpha=n+1, \cdots, n+r),
\end{aligned}
$$

we can write the structural equations for the complete group of affine collineations of symmetric A_{n} in the following form

$$
\left[X_{i}, X_{j}\right]=C_{i j}^{\alpha} Y_{\infty}
$$

$$
\begin{aligned}
& {\left[X_{i}, Y_{\alpha}\right]=C_{i \alpha}^{j} X_{j}} \\
& {\left[Y_{\alpha}, Y_{\beta}\right]=C_{\alpha \beta}^{r} Y_{r} \quad(i, j=1, \cdots, n ; \alpha, \beta, \gamma=n+1, \cdots, n+r) .}
\end{aligned}
$$

Moreover, if the generators are taken as above, then we obtain

$$
B_{j k l}^{i}=C_{\alpha j}^{i} C_{k l}^{a} .
$$

§3. The group \boldsymbol{G}_{n+r}

We consider an $(n+r)$-parameter continuous transformation group G_{n+r} of which structural equations are given by

$$
\begin{align*}
& {\left[X_{i}, X_{j}\right]=C_{i j}^{\alpha} Y_{\alpha}} \\
& {\left[X_{i}, Y_{\alpha}\right]=C_{i \alpha}^{j} X_{j}} \tag{3.1}\\
& {\left[Y_{\alpha}, Y_{\beta}\right]=C_{\alpha \beta}^{r} Y_{r} \quad(i, j=1, \cdots, n ; \alpha, \beta, \gamma=n+1, \cdots, n+r)^{1)} .}
\end{align*}
$$

In this case we can define an involutive automorphism σ of G_{n+r}. We shall call the subgroup generated by Y_{α} which is invariant under σ an isotropic subgroup and denote it by H_{r}. We shall call $X_{i}(i=1$, \cdots, n) the generators of the transvections of G_{n+r}. In the following, we shall call the group having the above structure (3.1) merely group G_{n+r} for the sake of simplicity.

The group G_{n+r} is said to be effective if H_{r} does not contain any invariant subgroup of G_{n+r}.

As for the effectiveness of G_{n+r} we have the following
Lemma 1. The group G_{n+r} is effective if and only if the matrix

$$
C=\left\|C_{\alpha i}^{j}\right\|
$$

is of rank r, where α denotes the rows and i and j the colomns.
Proof. Suppose that the rank of C is $r-s(s>0)$, then the set of equations

$$
\begin{equation*}
e^{\alpha} C_{\alpha i}^{j}=0 \tag{3.2}
\end{equation*}
$$

has s independent solutions

$$
e^{\alpha}=u_{\lambda}^{\alpha} \quad(\lambda=1, \cdots, s) .
$$

If we define new generators Z_{λ} by

$$
Z_{\lambda}=u_{\lambda}^{\alpha} Y_{\alpha} \quad(\lambda=1, \cdots, s),
$$

[^0]we get
$$
\left[Z_{\lambda}, X_{i}\right]=u_{\lambda}^{\alpha} C_{\alpha i}^{j} X_{j}=0
$$
because u_{λ}^{α} are solutions of (3.2),
Furthermore making use of the Jacobi relations
$$
C_{\alpha \beta}^{r} C_{\gamma i}^{j}+C_{\beta i}^{k} C_{k \alpha}^{j}+C_{i \alpha}^{k} C_{k \beta}^{j}=0,
$$
we get
$$
u_{\lambda}^{\alpha} C_{\alpha \beta}^{r} C_{\gamma i}^{j}=u_{\lambda}^{\alpha} C_{\alpha k}^{j} C_{\beta i}^{k}+u_{\lambda}^{\alpha} C_{\alpha i}^{k} C_{k \beta}^{j}=0 .
$$
that is, $u_{\lambda}^{\alpha} C_{\alpha \beta}^{r}$ are again solutions of (3.2), Hence we can put
$$
u_{\lambda}^{\alpha} C_{\alpha \beta}^{\gamma}=A_{\lambda \beta}^{\mu} u_{\mu}^{\tau}
$$
with some constants A 's and we obtain
$$
\left[Z_{\lambda}, Y_{\beta}\right]=A_{\lambda \beta}^{\mu} u_{\mu}^{r} Y_{\gamma}=A_{\lambda \beta}^{\mu} Z_{\mu} .
$$

Consequently $Z_{\lambda}(\lambda=1, \cdots, s)$ generate an invariant subgroup of G_{n+r}.
Conversely, let us assume that H_{r} contains an invariant subgroup of G_{n+r} and $Z_{\lambda}=u_{\lambda}^{\alpha} Y_{\alpha}(\lambda=1, \cdots, s)$ are its symbols, then the matrix C is of rank $<r$ because we have

$$
\left[Z_{\lambda}, X_{i}\right]=u_{\lambda}^{\alpha} C_{\alpha i}^{j} X_{j}=0 .
$$

§4. The symmetric \boldsymbol{A}_{n} determined by \boldsymbol{G}_{n+r}
THEOREM 1. If an effective group G_{n+r} is given, then there always exists an n-dimensional symmetric affine space A_{n} whose complete group of affine collineations contains the subgroup isomorphic to G_{n+r}.

Proof. First we shall define the symmetric A_{n}. Let L_{n+r} be the group space with (0)-connexion of the group G_{n+r}. The canonical parameters $e^{A}(A=1, \cdots, n+r)$ give a normal coordinate system at the identity. Let L_{n} be the subspace of L_{n+r} which consists of the transvections. Then L_{n} is given by

$$
e^{\alpha}=0 \quad(\alpha=n+1, \cdots, n+r) .
$$

It is well known that L_{n} is totally geodesic, and is a symmetric affine space ([3]).

If we define A_{n} with normal coordinates (y^{i}) from L_{n} with normal coordinates (e^{i}) by the transformation

$$
e^{i}=2 y^{i},
$$

then A_{n} is a symmetric affine space and the components in (y^{i}) of the curvature tensor of A_{n} are given at the origin 0 by

$$
\begin{equation*}
B_{j k l}^{i}=C_{\alpha j}^{i} C_{k l}^{\alpha} . \tag{4.1}
\end{equation*}
$$

Now we determine the structural equations for the complete group (5) of affine collineations of A_{n}.

From the Jacobi relations for G_{n+r}

$$
\begin{aligned}
& C_{\alpha k}^{s} C_{s l}^{r}+C_{\alpha l}^{s} C_{k s}^{r_{k s}}+C_{k l}^{\beta} C_{\beta \alpha}^{r}=0 \\
& C_{\alpha j}^{s} C_{r s}^{i}+C_{j r}^{s} C_{\alpha s}^{i}+C_{\gamma \alpha}^{\beta} C_{j \beta}^{i}=0
\end{aligned}
$$

and from (4.1) we see that $C_{i \alpha}^{j}$ are r solutions of the equations with the unknowns a_{j}^{i}

$$
\begin{equation*}
a_{s}^{i} B_{j k l}^{s}-a_{j}^{s} B_{s k l}^{i}-a_{k}^{s} B_{j s l}^{i}-a_{l}^{s} B_{j k s}^{i}=0 . \tag{4.2}
\end{equation*}
$$

Moreover these $C_{i \alpha}^{j}$ are r independent solutions of (4.2) by the assumption of effectiveness.

Let $E_{i \lambda}^{j}(\lambda=n+1, \cdots, n+s ; s \geqq r)$ be the complete solutions of (4.2), We can assume without loss of generality that

$$
E_{i \alpha}^{j}=C_{i \alpha}^{j} .
$$

According to §2, the generators $\widetilde{\eta}_{\lambda}^{j}$ of isotropic subgroup fixing the point 0 are

$$
\tilde{\eta}_{\lambda}^{j}=E_{i \lambda}^{j} y^{i} \quad(\lambda=n+1, \cdots, n+s) .
$$

Let $\tilde{\xi}_{a}^{i}$ be the generators of the transvections along the geodesics

$$
\begin{aligned}
& y^{i}=0 \\
& y^{a}=s \quad(i \neq a)
\end{aligned}
$$

in the normal coordinates $\left(y^{i}\right)$ at 0 .
We can write the structural equations for $\mathbb{E S}^{5}$ in the following form (§2)

$$
\left.\begin{array}{l}
{\left[\tilde{X}_{i}, \tilde{Y}_{j}\right]=D_{i j}^{\alpha} \tilde{Y}_{\alpha}+D_{i j}^{\alpha^{\prime}} \tilde{X}_{\alpha^{\prime}}} \\
{\left[\tilde{X}_{i}, \tilde{Y}_{\alpha}\right]=D^{j} \tilde{i}_{i \alpha} \tilde{X}_{j}} \\
{\left[\tilde{X}_{i}, \tilde{Y}_{\alpha^{\prime}}\right]=D_{i \alpha^{\prime}}^{j} \tilde{X}_{j}}
\end{array} \quad \begin{array}{l}
i, j=1, \cdots, n \tag{4.3}\\
{\left[\tilde{Y}_{\alpha}, \tilde{Y}_{\beta}\right]=D_{\alpha \beta}^{r} \tilde{Y}_{r}+D_{\alpha \beta}^{r^{\prime}} \tilde{Y}_{r^{\prime}}} \\
{\left[\tilde{Y}_{\alpha}, \tilde{Y}_{\beta^{\prime}}\right]=D_{\alpha \beta^{\prime}}^{r}, \tilde{Y}_{r}+D_{\alpha \beta^{\prime}}^{r^{\prime}} \tilde{Y}_{r^{\prime}}} \\
{\left[\tilde{Y}_{\alpha^{\prime}}, \tilde{Y}_{\beta^{\prime}}\right]=D_{\alpha^{\prime} \beta^{\prime}}^{r}, \tilde{Y}_{r}+\beta_{\alpha^{\prime}, \beta^{\prime}}^{r^{\prime}}, r_{r^{\prime}}=n+1, \cdots, n+r+1, \cdots, n+s}
\end{array}\right)
$$

where we have put

$$
\begin{aligned}
& \tilde{X}_{i} f=\tilde{\xi}_{i}^{j} \frac{\partial f}{\partial y^{j}} \\
& \widetilde{Y}_{\lambda} f=E_{i \lambda}^{j} y^{i} \frac{\partial f}{\partial y^{j}}(\lambda=n+1, \cdots, n+s),
\end{aligned}
$$

and D 's are structural constants for (\%.
From the relations

$$
\left.\left(\tilde{\xi}_{a}^{j} \frac{\partial \tilde{\eta}_{\lambda}^{i}}{\partial y^{j}}-\tilde{\eta}_{\lambda}^{j} \frac{\partial \tilde{\xi}_{a}^{i}}{\partial y^{j}}\right)_{0}=D_{a \lambda}^{k} \tilde{\xi}_{k}^{i}\right)_{0}
$$

and from

$$
\left(\tilde{\xi}_{a}^{i}\right)_{0}=\delta_{a}^{i}, \quad\left(\tilde{\eta}_{\lambda}^{i}\right)_{0}=0 \quad\left(\frac{\partial \widetilde{\eta}_{\lambda}^{i}}{\partial y^{j}}\right)_{0}=E_{j \lambda}^{i}
$$

we get

$$
\begin{equation*}
D_{a \alpha}^{i}=E_{a \alpha}^{i}=C_{a \alpha}^{i}, \quad D_{a \alpha^{\prime}}^{i}=E_{a \alpha^{\prime}}^{i} . \tag{4.4}
\end{equation*}
$$

Making use of the Jacobi relations for G_{n+r}

$$
C_{l \alpha}^{j} C_{j \beta}^{i}+C_{\alpha \beta}^{r} C_{r l}^{i}+C_{\beta l}^{j} C_{j \alpha}^{i}=0,
$$

we get

$$
\tilde{\eta}_{a}^{j} \frac{\partial \widetilde{\eta}_{\beta}^{i}}{\partial y^{j}}-\tilde{\eta}_{\beta}^{j} \frac{\partial \widetilde{\eta}_{\alpha}^{i}}{\partial y^{j}}=C_{\alpha \beta}^{r} \tilde{\eta}_{\gamma}^{i} .
$$

Hence we have

$$
\begin{equation*}
D_{\alpha \beta}^{r}=C_{\alpha \beta}^{r}, \quad D_{\alpha \beta}^{r^{\prime}}=0 . \tag{4.5}
\end{equation*}
$$

From §2, the components of the curvature tensor are given at 0 by

$$
B_{j k l}^{i}=D_{\lambda j}^{i} D_{k l}^{\lambda}=C_{\alpha j}^{i} D_{k l}^{\alpha}+E_{\alpha^{\prime} j}^{i} D_{k l}^{\alpha^{\prime}} .
$$

On the other hand, $B_{j k l}^{i}$ are given by (4.1), therefore we must have

$$
C_{\alpha j}^{i} D_{k l}^{\alpha}+E_{\alpha^{\prime} j}^{i} D_{k l}^{\alpha^{\prime}}=C_{\alpha j}^{i} C_{k l}^{\alpha} .
$$

Since matrix $\left\|E_{\lambda j}^{i}\right\|$ where λ denotes rows and i and j colomns is of rank s, we obtain

$$
\begin{equation*}
D_{k l}^{\alpha}=C_{k l}^{\alpha}, \quad D_{k l}^{\alpha^{\prime}}=0 . \tag{4.6}
\end{equation*}
$$

From (4.3), (4.4), (4.5) and (4.6) we see that (5) contains the subgroup generated by $\tilde{X}_{i}, \tilde{Y}_{\alpha}$ which is isomorphic to G_{n+r}.

REMARK. In the case where G_{n+r} is not effective, let g_{r-t} be the
maximal invariant subgroup of G_{n+r} which is contained in H_{r}. We consider the factor group $G_{n+t}=G_{n+r} / g_{r-t}$. This group G_{n+t} has the structural equations similar to (3.1), and is effective. It is easily seen that the symmetric A_{n} which is defined from G_{n+r} in the same manner as in the proof of Theorem 1 is equivalent to the symmetric affine space which is defined from G_{n+t} in the same manner as in the proof of Theorem 1. According to Theorem 1, the complete group of affine collineations of this space A_{n} contains the subgroup isomorphic to G_{n+t} and consequently homomorphic to G_{n+r}.

From Theorem 1 and the above Remark, if G_{n+r} is given, then we obtain a symmetric A_{n} whose complete group of affine collineations contains the subgroup isomorphic or homomorphic to G_{n+r} according as G_{n+r} is effective or not. We shall call this symmetric A_{n} symmetric A_{n} determined by G_{n+r}.

§ 5. Decomposable symmetric affine space

If an affinely connected space without torsion is decomposable, then the curvature tensor is product tensor in any code. Hence we have the following

Theorem 2. A decomposable affinely connected space without torsion is symmetric if and only if each composition space is symmetric.

Let $J=\{1, \cdots, n\}$ be the index set for the n-dimensional space A_{n}. We decompose J into two subsets $J^{1}=\{1, \cdots, p\}$ and $J^{2}=\{p+1, \cdots, n\}$, and we fix this decomposition. If the values of the components of a tensor with respect to a coordinate system vanish at one point when its indices are of different kind, then we shall say that they are breakable (with respect to the decomposition $J=J^{1}+J^{2}$).

Theorem 3. A symmetric affine space A_{n} is decomposable if and only if there exists a coordinate system such that the components of the curvature tensor evaluated at any point in this coordinate system are breakable.

Proof. If a symmetric A_{n} is decomposable, then the curvature tensor is product tensor in a code. Therefore the components $B_{j k l}^{i}$ of the curvature tensor evaluated at a point in this code are breakable.

Conversely, suppose that there exists a coordinate system (x^{i}) such that the components in this coordinate system of the curvature tensor are breakable at a point 0 . We introduce in A_{n} the normal coordinate system (y^{i}) at 0 corresponding to the coordinate system (x^{i}). Let
$N_{j k l_{1} \cdots l_{u}}^{i}$ be the u-th normal tensor of A_{n}. Since our space is symmetric, we have [3]

$$
N_{j k l_{1} \cdots l_{2 s}}^{i}=0 \quad(s=1,2, \cdots) .
$$

Next, we shall prove that $N_{j k l_{1} \cdots l_{2 s+1}}^{i}(0)$ are breakable.
Given two tensors $S_{j_{1} \cdots j_{a}}^{i}$ and $T_{k_{1} \cdots k_{b}}^{i}$, we can define new tensors $S_{j_{1} \cdots j_{a}}^{l} T_{k_{1} \cdots k_{t-1} l k_{t+1} \cdots k_{b}}^{i}\left(T_{k_{1} \cdots k_{b}}^{l} S_{j_{1} \cdots j_{t-1} l j_{t+1} \cdots j_{a}}^{i}\right)$. We shall call this multiplication the $C_{S}\left(C_{T}\right)$-process. If two tensors $S_{j_{1} \cdots j_{a}}^{i}$ and $T_{k_{1} \cdots k_{b}}^{i}$ are both breakable, then $C_{S}\left(T_{k_{1} \cdots k_{b}}^{i}\right)$ and $C_{T}\left(S_{j_{1} \ldots j_{a}}^{i}\right)$ are breakable.

Now, let $\prod_{j k}^{i}$ be the components of the connection with respect to the normal coordinate system (y^{i}), then we have

$$
\begin{aligned}
R_{j k l ; l_{1} ; \cdots ; l_{t}}^{* i} & =R_{j k l ; l_{1} ; \cdots ; l_{t-1}^{* i} l_{t}}^{* i} \prod_{l_{t}}\left(R_{j k l ; l_{1} ; \cdots ; l_{t-1}^{* i}}\right) \\
& =R_{j k l, l_{1}, \cdots, l_{t}}^{* i}+\sum_{u=0}^{t-1}\left(\prod_{l_{u+1}}\left(R_{j k l ; l_{1} ; \cdots ; l_{u}}^{*}\right), l_{u+2}, \cdots, l_{t}\right.
\end{aligned},
$$

where

$$
\begin{aligned}
& \prod_{h}\left(R_{b c d ; d_{1} ; \cdots ; d_{u}}^{* a}\right)=\prod_{l h}^{a} R_{b c d ; d_{1} ; \cdots ; d_{u}}^{* l}-\prod_{b h}^{l} R_{l c d ; d_{1} ; \cdots ; d_{u}}^{* a} \\
& -\prod_{c h}^{l} R_{b l d ; d_{1} ; d_{2} ; \cdots ; d_{u}}^{* a}-\prod_{d h}^{l} R_{b c l ; d_{1} ; \cdots ; d_{u}}^{* a}-\sum \prod_{d_{t} h}^{l} R_{b c d ; d_{1} ; \cdots ; d_{t-1} ; l ; d_{t+1} ; \cdots ; d_{u}}^{* a} .
\end{aligned}
$$

($R_{j k l}^{* i}$; the components of the curvature tensor with respect to $\left(y^{i}\right)$).
On the other hand, we have

$$
P\left(N_{j k l 1 \cdots l u}^{i}\right)=0
$$

where P denotes the sum of the $(u+1)(u+2) / 2$ terms obtained by the permutations of the lower indices which do not yield equivalent terms. [cf. L. P. Eisenhart, Non-Riemannian Geometry]. Hence from the above relations and from the fact that our space is symmetric, we can derive, by a direct calculation, the following expression:

$$
N_{j k l_{1} \cdots l_{2 s+1}}^{i}=\varphi(N),
$$

where $\varphi(N)$ is the polynomial of the normal tensors $N_{(2 s-1)}$ of order $\leqq 2 s-1$ and its each term is obtained by effecting the C_{N}-processes on $N_{(2 s-1)}$. From the relation

$$
N_{j k l}^{i}(0)=\frac{1}{3}\left(B_{j k l}^{i}+B_{k j l}^{i}\right)
$$

and from the breakability of $B_{j k l}^{i}$, we can conclude that $N_{j k l_{1} \cdots l_{2 s+1}}^{i}(0)$ are breakable.

Now, we have

$$
\begin{align*}
\prod_{j k}^{i}=N_{j k l 1}^{i}(0) y^{l_{1}} & +\frac{1}{3!} \dot{N}_{j k l_{1}^{\prime} 2_{3}^{\prime}}^{i}(0) y^{l_{1}} y^{l_{2}} y^{l_{3}}+\cdots \tag{5.1}\\
& \cdots+\frac{1}{(2 s+1)!} N_{j k l_{1} \cdots l_{2 s+1}}(0) y^{l_{1} \ldots y^{l_{s s+1}}+\cdots}
\end{align*}
$$

Since every $N_{j k l_{1} \ldots l_{2 s+1}}^{i}(0)$ in (5.1) are breakable, we see that $\prod_{j k}^{i}$ vanishes if its indices are of different kinds and $\prod_{j^{1} k^{1}}^{i^{1}}$ and $\prod_{j^{2} k^{2}}^{i 2}$ depend only on $y^{i 1}$ and $y^{i 2}$ respectively. Hence our symmetric A_{n} is decomposable.

Theorem 4. The symmetric A_{n} determined by an effective group G_{n+r} is a product space of A_{p} and A_{n-p} of dimensions p and $n-p$ respectively if and only if the n-dimensional vector space V spanned by the transvections of G_{n+r} is a direct sum of p-dimensional subspace V_{1} and $(n-p)$-dimensional subspace V_{2} satisfying the following conditions;
$1^{\circ}\left[X_{i 1}, X_{i^{2}}\right]=0$
$2^{\circ}\left[\left[X_{i^{\lambda}}, X_{j^{\lambda}}\right], X_{k^{\lambda}}\right](\lambda=1,2)$ are linear combinations of $X_{l^{\lambda}}$ only, where $X_{i^{\lambda}}$ are the bases of $V_{\lambda}(\lambda=1,2)$ and $i^{1}, j^{1}, k^{1}, l^{1}=1, \cdots, p$ and $i^{2}, j^{2}, k^{2}, l^{2}=p+1, \cdots, n$.

Proof. Suppose that the symmetric A_{n} determined by G_{n+r} is decomposable. We write the structural equations for G_{n+r} in the form

$$
\begin{align*}
& {\left[X_{i}, X_{j}\right]=C_{i j}^{\alpha} Y_{\alpha}} \\
& {\left[X_{i}, Y_{\alpha}\right]=C_{i \alpha}^{j} X_{j}} \tag{5.2}\\
& {\left[Y_{\alpha}, Y_{\beta}\right]=C_{\alpha \beta}^{r} Y_{r} .}
\end{align*}
$$

In the same manner as in $\S 4$, we obtain the symmetric A_{n} with normal coordinates $\left(y^{i}\right)$. In this normal coordinate system, the components of the curvature tensor evaluated at the origin 0 are given by

$$
\begin{equation*}
B_{j k l}^{i}=C_{\alpha j}^{i} C_{k l}^{\alpha} . \tag{5.3}
\end{equation*}
$$

In general, we can not state that $B_{j k l}^{i}$ are breakable. But by the assumption of decomposability of our space, we can introduce in A_{n} the normal code ($y^{\prime i^{1}}, y^{\prime i^{2}}$) at the point 0 such that the curvature tensor $R_{j k l}^{\prime i}$ in this code is a product tensor. Hence, if we evaluate
the transformation law for the curvature tensor at 0 , we have

$$
a_{a}^{i}\left(R_{b c d}^{\prime a}\right)_{0}=a_{b}^{j} a_{c}^{k} a_{d}^{l} B_{j k l}^{i},
$$

where a_{j}^{i} are constants and $\operatorname{det}\left|a_{j}^{i}\right| \neq 0$.
Consequently, by effecting the change of base of the transvections

$$
X_{i}^{\prime}=a_{i}^{j} X_{j}
$$

we have

$$
\begin{align*}
& \text { (a) }\left[\left[X_{i^{1}}^{\prime}, X_{j^{\prime}}^{\prime}\right], X_{k^{\prime}}^{\prime}\right]=\left(R_{k^{1} i^{1} 1}^{\prime \prime}\right)_{0} X_{l^{1}}^{\prime} \\
& \text { (b) }\left[\left[X_{i^{\prime}}^{\prime}, X_{j^{1}}^{\prime}\right], X_{k^{2}}^{\prime}\right]=0 \\
& \text { (c) }\left[\left[X_{i^{1}}^{\prime}, X_{j^{2}}^{\prime}\right], X_{k^{2}}^{\prime}\right]=0 \\
& \text { (d) }\left[\left[X_{i^{\prime}}^{\prime}, X_{j^{2}}^{\prime}\right], X_{k^{2}}^{\prime}\right]=0 \tag{5.4}\\
& \text { (e) }\left[\left[X_{i^{2}}^{\prime}, X_{j^{\prime}}^{\prime}\right], X_{k^{1}}^{\prime}\right]=\left(R_{k^{2} i^{2} j^{2}}^{\prime 2}\right)_{0}^{\prime} X_{l^{2}} \\
& \text { (f) }\left[\left[X_{i^{2}}^{\prime}, X_{j 1}^{\prime}\right], X_{k^{2}}^{\prime}\right]=0
\end{align*}
$$

because $\left(R_{b c d}^{\prime a}\right)_{0}$ are breakable.
Let V_{1} be the p-dimensional subspace spanned by $X_{i 1}^{\prime}$ and let V_{2} be the ($n-p$)-dimensional subspace spanned by $X_{i 2}^{\prime}$. Then we have

$$
\begin{equation*}
V=V_{1}+V_{2} . \tag{5.5}
\end{equation*}
$$

From (5.4 c, d) we get

$$
\left[\left[X_{i 1}^{\prime}, X_{j 2}^{\prime}\right], X_{k}^{\prime}\right]=0
$$

Since G_{n+r} is effective, we get

$$
\begin{equation*}
\left[X_{i 1}^{\prime}, X_{j^{2}}^{\prime}\right]=0 . \tag{5.6}
\end{equation*}
$$

From (5.4 a, e), (5.5) and (5.6) we have proved the first part of Theorem 4.

Conversely, let us assume that G_{n+r} satisfies the conditions of Theorem 4. We consider the symmetric A_{n} determined by such G_{n+r}. The components of the curvature tensor at the origin are given by (5.3). From the condition 1°, we get

$$
C_{k^{1} l^{2}}^{a}=0
$$

Hence we get

$$
\begin{equation*}
B_{j k l^{2}}^{i}=0 . \tag{5.7}
\end{equation*}
$$

Furthermore in the relations

$$
B_{j k^{1 / 2}}^{i}+B_{k_{12} j_{j}}^{i}+B_{l^{2} ; k^{2}}^{i}=0,
$$

by putting $\boldsymbol{j}=\boldsymbol{j}^{1}$ and $\boldsymbol{j}=\boldsymbol{j}^{2}$, we get

$$
\begin{equation*}
B_{l: i^{i} k^{l}}^{i}=0 \tag{5.8}
\end{equation*}
$$

and

$$
\begin{equation*}
B_{k l^{\prime 2} j_{j}}^{i}=0 \tag{5.9}
\end{equation*}
$$

Finally, by the condition 2°

$$
\left[\left[X_{i}, X_{j 1}\right], X_{k^{1}}\right]=C_{i^{i} j_{j}{ }^{\mu}} C_{a k k}^{l} X_{l}
$$

are linear combinations of X_{l} only. Hence we get

$$
\begin{equation*}
B_{j^{2} k l_{1}^{2}}^{i p}=0 . \tag{5.1}
\end{equation*}
$$

Similarly, we get

$$
\begin{equation*}
B_{j k k_{2}=}^{i d}=0 . \tag{5.1}
\end{equation*}
$$

It follows from, [(5.7), (5.8), [(5.9), (5.10) and (5.11) that $B_{j k l}^{j}$ are breakable. Thus our space is decomposable by Theorem 3.

It is easily seen that each composition space is equivalent to the space determined by the subgroup generated by $X_{i^{\lambda}},\left[X_{i^{\lambda}}, X_{j^{\lambda}}\right](\lambda=1,2)$ and consequently composition spaces are of p and $n-p$ dimensional respectively.

Theorem 5. If the symmetric A_{n} determined by G_{n+r} is decomposable where G_{n+r} is semi-simple and effective, then G_{n+r} is decomposed into a direct product of two groups by which composition spaces are determined.

Proof. According to Theorem 4, the vector space V spanned by the transvections of G_{n+r} is direct sum of two subspaces V_{1} and V_{2} such that the conditions 1° and 2° of Theorem 4 are satisfied. Let $X_{i^{1}}\left(i^{1}=1, \cdots, p\right)$ and $X_{i^{2}}\left(i^{2}=p+1, \cdots, n\right)$ be the bases of V_{1} and V_{2} respectively.

Since G_{n+r} is semi-simple and effective, the subgroup of H_{r} generated by $\left[X_{i}, X_{j}\right]$ coincides with $H_{r}([2])$. From this fact and from the condition 1° of Theorem 4 we can write each base Y_{∞} of H_{r} in the form

$$
Y_{a}=a_{a}^{i j^{i} j^{2}}\left[X_{i 1}, X_{j^{1}}\right]+b_{a}^{i, j 2}\left[X_{i^{2}}, X_{j^{2}}\right]
$$

with constants a 's and b 's.
From this we can easily see that $X_{i^{\lambda}} ;\left[X_{i^{\lambda}}, X_{j^{\lambda}}\right](\lambda=1,2)$ generate the invariant subgroups $g_{\lambda}(\lambda=1,2)$ of G_{n+r}.

On the other hand, if we denote by $h_{\lambda}(\lambda=1,2)$ the invariant subgroups of H_{r} generated by $\left[X_{i^{\lambda}}, X_{j^{\lambda}}\right](\lambda=1,2)$, then H_{r} is direct product of h_{1} and h_{2} because of effectiveness. Consequently G_{n+r} is the direct product of g_{1} and g_{2}. It is clear that composition spaces are determined by g_{1} and g_{2}.

Corollary 1. If G_{n+r} is simple (and semi-simple) and effective, then symmetric A_{n} determined by G_{n+r} is non decomposable.

Proof. Suppose, on the contrary, that A_{n} is decomposable. Then the group G_{n+r} contains invariant subgroup by Theorem 5. This contradicts the hypothesis.

Let \tilde{H}_{r} be the linear adjoint group corresponding to H_{r} and acting on the transvections of G_{n+r}. Then we have the following

Corollary 2. If G_{n+r} is effective and \tilde{H}_{r} is irreducible, then the symmetric A_{n} determined by G_{n+r} is either flat or non-decomposable.

Proof. Since \tilde{H}_{r} is irreducible, either G_{n+r} is semi-simple or $\left[X_{i}, X_{j}\right]=0$ ([2]). In the case $\left[X_{i}, X_{j}\right]=0$, our space is flat.

Now we consider the case where G_{n+r} is semi-simple. Suppose that A_{n} is decomposable. According to Theorem 4, the vector space V spanned by the transvections is direct sum of two subspaces V_{1} and V_{2}. These two subspaces are invariant under \tilde{H}_{r}. In fact, let $X_{\lambda}(\lambda=1,2)$ be any generator of V_{λ} and let Y be any generator of H_{r}. Since H_{r} is the direct product of h_{1} and h_{2}, we can write Y in the form

$$
Y=Y_{1}+Y_{2},
$$

where Y_{1} and Y_{2} are generators of the invariant subgroups h_{1} and h_{2} of H_{r} respectively. Then we have

$$
\left[Y, X_{\lambda}\right]=\left[Y_{1}+Y_{2}, X_{\lambda}\right]=\left[Y_{\lambda}, X_{\lambda}\right] \quad(\lambda=1,2) .
$$

Therefore $\left[Y, X_{\lambda}\right](\lambda=1,2)$ are generators of V_{λ}, that is, V_{1} and V_{2} are invariant under \tilde{H}_{r}. This contradicts the hypothesis that \tilde{H}_{r} is irreducible.

The author wishes to express his sincere gratitude to Prof. J. Kanitani for the kind guidance and encouragement during preparation of the paper.

Kyoto University.

References

[1] Ficken, F.A., The riemannian and affine differential geometry of product spaces. Ann. of Math., 40 (1939), pp. 892-913.
[2] Nomizu, K., Invariant affine connections on homogeneous spaces. Amer. J. Math., 76 (1954), pp. 33-65.
[3] Whitehead, J. H. C., Affine spaces of paths which are symmetric about each point. Math. Zeitschr., 35 (1932), pp. 644-659.

[^0]: 1) We assume hereafter that the indices i, j, k, l run from 1 to n and α, β, γ run from $n+1$ to $n+r$ unless otherwise stated.
