On decomposable symmetric affine spaces.

By Atsuo Fujimoto

(Received Oct. 5, 1956)

§ 1. Decomposable spaces

Consider two affinely connected spaces without torsion A_p and A_{n-p} of the dimension p and n-p respectively. Denote by $\Gamma_{j^1k^1}^{i^1}(x^{n})$ and $\Gamma_{j^2k^2}^{i^2}(x^{l^2})$ the connections, (x^{i^1}) and (x^{i^2}) the coordinates on A_p and A_{n-p} respectively. As to the ranges of indices we shall adopt the following convention $i, j, k, l=1, \dots, n; i^1, j^1, k^1, l^1$ (indices of the first kind)=1,..., $p; i^2, j^2, k^2, l^2$ (indices of the second kind)= $p+1, \dots, n$.

The *n*-dimensional affinely connected space A_n with coordinates (x^{i1}, x^{i2}) and the connection $\tilde{\Gamma}^i_{jk}$ will be called the *product space* of A_p and A_{n-p} , if the components of the connection with the indices of different kind vanish and $\tilde{\Gamma}^{i1}_{j1k1} = \Gamma^{i1}_{j1k1}(x^{l1})$, $\tilde{\Gamma}^{i2}_{j2k2} = \Gamma^{i2}_{j2k2}(x^{l2})$. In this case A_n is said to be *decomposable*, and the coordinates (x^i, x^2) are called a code. When (y^{i1}) and (y^{i2}) are normal coordinates on A_p and A_{n-p} respectively, then (y^{i1}, y^{i2}) is a normal code on A_n ([1]).

An object defined on a decomposable A_n is said to be *breakable* if its components with the indices of different kind are all zero with respect to a code. If an object is breakable and its components with indices of the same kind depend, in any code, only on the variables of that kind, then the object is called a *product object*.

§ 2. Symmetric affine space

An *n*-dimensional affinely connected space A_n without torsion is said to be *symmetric* in Cartan's sense if the reflexion about any point in A_n is an affine collineation. An A_n with connexion Γ^i_{jk} is symmetric if and only if the first covariant derivative of the curvature tensor vanishes, i. e.

$$R^i_{jkl;\,m}=0$$
 ,

where

$$R^{i}_{jkl} = \Gamma^{i}_{jk,l} - \Gamma^{i}_{jl,k} + \Gamma^{h}_{jk}\Gamma^{i}_{hl} - \Gamma^{h}_{jl}\Gamma^{i}_{hk};$$

and we denote by a semi-colon the covariant differentiation, while by a comma the partial differentiation.

A symmetric A_n admits always a transitive group of affine collineations cosisting of transvections and of isotropic subgroup.

The generators ξ_a^i $(a=1,\dots,n)$ of the transvections along the geodesics given by

$$y^i = 0$$

 $y^a = s$ $(i \neq a)$

in the normal coordinates (y^i) at 0 are given as the solutions of the differential equations

$$\xi^i_{;i;k} + R^{\star i}_{iks} \xi^s = 0$$

satisfying the initial conditions

$$(\xi_a^i)_{\scriptscriptstyle 0} = \delta_a^i$$
, $\left(\frac{\partial \xi_a^i}{\partial y_i}\right)_{\scriptscriptstyle 0} = 0$,

where R_{jkl}^{*i} are the components of the curvature tensor for A_n with respect to the above normal coordinate system.

The generators η^i_{α} ($\alpha = n+1, \dots, n+r$) of the isotropic subgroup fixing the point 0 are given, in the normal coordinates (y^i) at 0, by

$$\eta^i_{lpha} = C^i_{jlpha} y^j$$
 ,

where $C_{j\alpha}^{i}$ are the complete solutions of the following equations with the unknowns a_{i}^{i}

$$a_{s}^{i}B_{jkl}^{s} - a_{j}^{s}B_{skl}^{i} - a_{k}^{s}B_{jsl}^{i} - a_{l}^{s}B_{jks}^{i} = 0$$

 B_{jkl}^{i} being the components of the curvature tensor evaluated at the point 0.

In this case, putting

$$X_{i}f = \xi_{i}^{j} \frac{\partial f}{\partial y^{j}}$$
$$Y_{\alpha}f = \eta_{\alpha}^{i} \frac{\partial f}{\partial y^{i}} \quad (i, j = 1, \dots, n; \alpha = n + 1, \dots, n + r)$$

we can write the structural equations for the complete group of affine collineations of symmetric A_n in the following form

$$[X_i,X_j]\!=\!C_{ij}^{\,lpha}Y_{lpha}$$

А. **F**ијімото

$$[X_i, Y_{\alpha}] = C^j_{i\alpha} X_j$$

[Y_{\alpha}, Y_{\beta}] = $C^r_{\alpha\beta} Y_{\gamma}$ (i, j=1,..., n; $\alpha, \beta, \gamma = n+1,..., n+r$).

Moreover, if the generators are taken as above, then we obtain

$$B^i_{jkl} = C^i_{\alpha j} C^{\alpha}_{kl}$$
 .

§ 3. The group G_{n+r}

We consider an (n+r)-parameter continuous transformation group G_{n+r} of which structural equations are given by

(3.1)

$$[X_{i}, X_{j}] = C_{ij}^{\alpha} Y_{\alpha}$$

$$[X_{i}, Y_{\alpha}] = C_{i\alpha}^{j} X_{j}$$

$$[Y_{\alpha}, Y_{\beta}] = C_{\alpha\beta}^{\gamma} Y_{\gamma} \quad (i, j = 1, \dots, n; \alpha, \beta, \gamma = n + 1, \dots, n + r)^{1}.$$

In this case we can define an involutive automorphism σ of G_{n+r} . We shall call the subgroup generated by Y_{α} which is invariant under σ an *isotropic subgroup* and denote it by H_r . We shall call X_i $(i=1, \dots, n)$ the generators of the *transvections* of G_{n+r} . In the following, we shall call the group having the above structure (3.1) merely group G_{n+r} for the sake of simplicity.

The group G_{n+r} is said to be effective if H_r does not contain any invariant subgroup of G_{n+r} .

As for the effectiveness of G_{n+r} we have the following

LEMMA 1. The group G_{n+r} is effective if and only if the matrix

$$C = ||C^j_{\alpha i}||$$

is of rank r, where α denotes the rows and i and j the colomns.

PROOF. Suppose that the rank of C is r-s (s>0), then the set of equations

(3.2)

$$e^{lpha}C^{j}_{lpha i}\!=\!0$$

has s independent solutions

$$e^{\alpha} = u_{\lambda}^{\alpha}$$
 $(\lambda = 1, \cdots, s)$.

If we define new generators Z_{λ} by

$$Z_{\lambda} = u^{\alpha}_{\lambda} Y_{\alpha} \qquad (\lambda = 1, \cdots, s),$$

¹⁾ We assume hereafter that the indices i, j, k, l run from 1 to n and α, β, γ run from n+1 to n+r unless otherwise stated.

we get

$$[Z_{\lambda}, X_i] = u^{\alpha}_{\lambda} C^j_{\alpha i} X_i = 0$$

because u_{λ}^{α} are solutions of (3.2).

Furthermore making use of the Jacobi relations

$$C^r_{lphaeta}C^j_{\gamma i}\!+\!C^k_{eta i}C^j_{\,klpha}\!+\!C^k_{ilpha}C^j_{\,keta}\!=\!0$$
 ,

we get

$$u_{\lambda}^{\alpha}C_{\alpha\beta}^{r}C_{\tau i}^{j} = u_{\lambda}^{\alpha}C_{\alpha k}^{j}C_{\beta i}^{k} + u_{\lambda}^{\alpha}C_{\alpha i}^{k}C_{k\beta}^{j} = 0.$$

that is, $u^{\alpha}_{\lambda}C^{\gamma}_{\alpha\beta}$ are again solutions of (3.2). Hence we can put

 $u^{\alpha}_{\lambda}C^{\gamma}_{\alpha\beta}=A^{\mu}_{\lambda\beta}u^{\gamma}_{\mu}$

with some constants A's and we obtain

$$[Z_{\lambda}, Y_{\beta}] = A^{\mu}_{\lambda\beta} u^{r}_{\mu} Y_{r} = A^{\mu}_{\lambda\beta} Z_{\mu}$$

Consequently Z_{λ} ($\lambda = 1, \dots, s$) generate an invariant subgroup of G_{n+r} .

Conversely, let us assume that H_r contains an invariant subgroup of G_{n+r} and $Z_{\lambda} = u_{\lambda}^{\alpha} Y_{\alpha}$ ($\lambda = 1, \dots, s$) are its symbols, then the matrix Cis of rank < r because we have

$$[Z_{\lambda}, X_i] = u^{\alpha}_{\lambda} C^j_{\alpha i} X_j = 0.$$

$$\S$$
 4. The symmetric $oldsymbol{A}_n$ determined by $oldsymbol{G}_{n+r}$

THEOREM 1. If an effective group G_{n+r} is given, then there always exists an n-dimensional symmetric affine space A_n whose complete group of affine collineations contains the subgroup isomorphic to G_{n+r} .

PROOF. First we shall define the symmetric A_n . Let L_{n+r} be the group space with (0)-connexion of the group G_{n+r} . The canonical parameters e^A $(A=1,\dots,n+r)$ give a normal coordinate system at the identity. Let L_n be the subspace of L_{n+r} which consists of the transvections. Then L_n is given by

$$e^{\alpha}=0$$
 ($\alpha=n+1,\dots,n+r$).

It is well known that L_n is totally geodesic, and is a symmetric affine space ([3]).

If we define A_n with normal coordinates (y^i) from L_n with normal coordinates (e^i) by the transformation

$$e^i = 2y^i$$

then A_n is a symmetric affine space and the components in (y^i) of the curvature tensor of A_n are given at the origin 0 by

$$(4.1) B^i_{jkl} = C^i_{\alpha j} C^a_{kl}.$$

Now we determine the structural equations for the complete group \mathfrak{G} of affine collineations of A_n .

From the Jacobi relations for G_{n+r}

$$C^{s}_{\alpha k}C^{r}_{sl} + C^{s}_{\alpha l}C^{r}_{ks} + C^{\beta}_{kl}C^{r}_{\beta \alpha} = 0$$
$$C^{s}_{\alpha i}C^{i}_{rs} + C^{s}_{ir}C^{i}_{\alpha s} + C^{\beta}_{r\alpha}C^{i}_{i\beta} = 0$$

and from (4.1) we see that $C_{i\sigma}^{i}$ are r solutions of the equations with the unknowns a_{i}^{i}

$$(4.2) a_{s}^{i}B_{jkl}^{s} - a_{j}^{s}B_{skl}^{i} - a_{k}^{s}B_{jsl}^{i} - a_{l}^{s}B_{jks}^{i} = 0$$

Moreover these $C_{i\alpha}^{j}$ are r independent solutions of (4.2) by the assumption of effectiveness.

Let $E_{i\lambda}^{j}$ ($\lambda = n+1, \dots, n+s$; $s \ge r$) be the complete solutions of (4.2). We can assume without loss of generality that

$$E^{j}_{i\alpha} = C^{j}_{i\alpha}$$

According to §2, the generators $\tilde{\eta}^{j}_{\lambda}$ of isotropic subgroup fixing the point 0 are

$$\widetilde{\eta}^{j}_{\lambda} = E^{j}_{i\lambda} y^{i} \quad (\lambda = n+1, \cdots, n+s).$$

Let $\tilde{\xi}^i_a$ be the generators of the transvections along the geodesics

$$y^i = 0$$

 $y^a = s$ $(i \neq a)$

in the normal coordinates (y^i) at 0.

We can write the structural equations for \mathfrak{G} in the following form (§ 2)

$$\begin{split} & [\tilde{X}_{i}, \tilde{Y}_{j}] = D_{ij}^{\alpha} \tilde{Y}_{\alpha} + D_{ij}^{\alpha'} \tilde{X}_{\alpha'} \\ & [\tilde{X}_{i}, \tilde{Y}_{\alpha}] = D_{i\alpha}^{j} \tilde{X}_{j} \\ & [\tilde{X}_{i}, \tilde{Y}_{\alpha'}] = D_{i\alpha'}^{j} \tilde{X}_{j} \\ & [\tilde{Y}_{\alpha}, \tilde{Y}_{\beta}] = D_{\alpha\beta}^{r} \tilde{Y}_{r} + D_{\alpha\beta'}^{r'} \tilde{Y}_{r'} \\ & [\tilde{Y}_{\alpha}, \tilde{Y}_{\beta'}] = D_{\alpha\beta'}^{r} \tilde{Y}_{r} + D_{\alpha\beta'}^{r'} \tilde{Y}_{r'} \\ & [\tilde{Y}_{\alpha'}, \tilde{Y}_{\beta'}] = D_{\alpha\beta'}^{r} \tilde{Y}_{r} + D_{\alpha\beta'}^{r'} \tilde{Y}_{r'} \\ & [\tilde{Y}_{\alpha'}, \tilde{Y}_{\beta'}] = D_{\alpha'\beta'}^{r} \tilde{Y}_{r} + D_{\alpha'\beta'}^{r'} \tilde{Y}_{r'} \end{split}$$

(4.3)

where we have put

$$\begin{split} \widetilde{X}_i f = \widetilde{\xi}_i^j \frac{\partial f}{\partial y^j} \ \widetilde{Y}_\lambda f = E_{i\lambda}^j y^i \frac{\partial f}{\partial y^j} \ (\lambda = n + 1, \cdots, n + s), \end{split}$$

and D's are structural constants for \mathfrak{G} . From the relations

$$\left(\widetilde{\xi}_{a}^{j}\frac{\partial\widetilde{\eta}_{\lambda}^{i}}{\partial y^{j}}-\widetilde{\eta}_{\lambda}^{j}\frac{\partial\widetilde{\xi}_{a}^{i}}{\partial y^{j}}\right)_{0}=D_{a\lambda}^{k}(\widetilde{\xi}_{k}^{i})_{0}$$

and from

$$(\widetilde{\xi}^i_a)_0 = \delta^i_a$$
, $(\widetilde{\eta}^i_{\lambda})_0 = 0$ $\left(rac{\partial \widetilde{\eta}^i_{\lambda}}{\partial oldsymbol{y}^j}
ight)_0 = E^i_{j\lambda}$

we get

$$(4.4) D^i_{a\alpha} = E^i_{a\alpha} = C^i_{a\alpha}, D^i_{a\alpha'} = E^i_{a\alpha'}.$$

Making use of the Jacobi relations for G_{n+r}

$$C^{j}_{\ llpha}C^{i}_{\ jeta}\!+\!C^{\gamma}_{\ lphaeta}C^{i}_{\ \gamma\,l}\!+\!C^{j}_{\ eta l}C^{i}_{\ jlpha}\!=\!0$$
 ,

we get

$$\tilde{\eta}^{j}_{a} \frac{\partial \tilde{\eta}^{i}_{\beta}}{\partial y^{j}} - \tilde{\eta}^{j}_{\beta} \frac{\partial \tilde{\eta}^{i}_{\alpha}}{\partial y^{j}} = C^{r}_{\alpha\beta} \tilde{\eta}^{i}_{r}.$$

Hence we have

$$(4.5) D^r_{\alpha\beta} = C^r_{\alpha\beta}, D^{r'}_{\alpha\beta} = 0.$$

From § 2, the components of the curvature tensor are given at 0 by

$$B^i_{jkl} = D^i_{\lambda j} D^\lambda_{kl} = C^i_{lpha j} D^{lpha}_{kl} + E^i_{lpha' j} D^{lpha'}_{kl}$$
 .

On the other hand, B^i_{jkl} are given by (4.1), therefore we must have

$$C^{i}_{lpha \, j} D^{lpha}_{\, {m k} \, l} \! + \! E^{i}_{lpha' \, j} D^{lpha'}_{\, k \, l} \! = \! C^{i}_{lpha \, j} C^{lpha}_{\, k \, l}$$
 .

Since matrix $||E_{\lambda_j}^i||$ where λ denotes rows and i and j colomns is of rank s, we obtain

$$(4.6) D_{kl}^{\alpha} = C_{kl}^{\alpha}, D_{kl}^{\alpha'} = 0$$

From (4.3), (4.4), (4.5) and (4.6) we see that \mathfrak{G} contains the subgroup generated by \widetilde{X}_i , \widetilde{Y}_{α} which is isomorphic to G_{n+r} .

REMARK. In the case where G_{n+r} is not effective, let g_{r-t} be the

А. Fujimoto

maximal invariant subgroup of G_{n+r} which is contained in H_r . We consider the factor group $G_{n+t} = G_{n+r}/g_{r-t}$. This group G_{n+t} has the structural equations similar to (3.1), and is effective. It is easily seen that the symmetric A_n which is defined from G_{n+r} in the same manner as in the proof of Theorem 1 is equivalent to the symmetric affine space which is defined from G_{n+t} in the same manner as in the proof of Theorem 1, the complete group of affine collineations of this space A_n contains the subgroup isomorphic to G_{n+t} and consequently homomorphic to G_{n+r} .

From Theorem 1 and the above Remark, if G_{n+r} is given, then we obtain a symmetric A_n whose complete group of affine collineations contains the subgroup isomorphic or homomorphic to G_{n+r} according as G_{n+r} is effective or not. We shall call this symmetric A_n symmetric A_n determined by G_{n+r} .

§ 5. Decomposable symmetric affine space

If an affinely connected space without torsion is decomposable, then the curvature tensor is product tensor in any code. Hence we have the following

THEOREM 2. A decomposable affinely connected space without torsion is symmetric if and only if each composition space is symmetric.

Let $J = \{1, \dots, n\}$ be the index set for the *n*-dimensional space A_n . We decompose J into two subsets $J^1 = \{1, \dots, p\}$ and $J^2 = \{p+1, \dots, n\}$, and we fix this decomposition. If the values of the components of a tensor with respect to a coordinate system vanish at one point when its indices are of different kind, then we shall say that they are *breakable* (with respect to the decomposition $J = J^1 + J^2$).

THEOREM 3. A symmetric affine space A_n is decomposable if and only if there exists a coordinate system such that the components of the curvature tensor evaluated at any point in this coordinate system are breakable.

PROOF. If a symmetric A_n is decomposable, then the curvature tensor is product tensor in a code. Therefore the components B_{jkl}^i of the curvature tensor evaluated at a point in this code are breakable.

Conversely, suppose that there exists a coordinate system (x^i) such that the components in this coordinate system of the curvature tensor are breakable at a point 0. We introduce in A_n the normal coordinate system (y^i) at 0 corresponding to the coordinate system (x^i) . Let

 $N^{i}_{jkl_{1}\cdots l_{u}}$ be the *u*-th normal tensor of A_{n} . Since our space is symmetric, we have [3]

$$N^{i}_{jkl_{1}\cdots l_{2s}} = 0$$
 (s=1, 2,...).

Next, we shall prove that $N_{jkl_1\cdots l_{2s+1}}^i(0)$ are breakable.

Given two tensors $S_{j_1\cdots j_a}^i$ and $T_{k_1\cdots k_b}^i$, we can define new tensors $S_{j_1\cdots j_a}^i T_{k_1\cdots k_{t-1}lk_{t+1}\cdots k_b}^i (T_{k_1\cdots k_b}^l S_{j_1\cdots j_{t-1}lj_{t+1}\cdots j_a}^i)$. We shall call this multiplication the $C_S(C_T)$ -process. If two tensors $S_{j_1\cdots j_a}^i$ and $T_{k_1\cdots k_b}^i$ are both breakable, then $C_S(T_{k_1\cdots k_b}^i)$ and $C_T(S_{j_1\cdots j_a}^i)$ are breakable.

Now, let \prod_{jk}^{i} be the components of the connection with respect to the normal coordinate system (y^{i}) , then we have

$$\begin{split} R_{jkl;\,l_{1};\,\cdots;\,l_{t}}^{*i} = & R_{jkl;\,l_{1};\,\cdots;\,l_{t-1},l_{t}}^{*i} + \prod_{l_{t}} (R_{jkl;\,l_{1};\,\cdots;\,l_{t-1}}^{*i}) \\ = & R_{jkl,\,l_{1},\,\cdots,\,l_{t}}^{*i} + \sum_{u=0}^{t-1} (\prod_{l_{u+1}} (R_{jkl;\,l_{1};\,\cdots;\,l_{u}}^{*i}), l_{u+2},\cdots,l_{t}), \end{split}$$

where

$$\prod_{h} (R_{bcd}^{*a}; d_{1}; \cdots; d_{u}) = \prod_{lh}^{a} R_{bcd}^{*l}; d_{1}; \cdots; d_{u} - \prod_{bh}^{l} R_{lcd}^{*a}; d_{1}; \cdots; d_{u}$$

$$- \prod_{ch}^{l} R_{bld}^{*a}; d_{1}; d_{2}; \cdots; d_{u} - \prod_{dh}^{l} R_{bcl}^{*a}; d_{1}; \cdots; d_{u} - \sum_{ch}^{l} \prod_{dh}^{l} R_{bcd}^{*a}; d_{1}; \cdots; d_{t-1}; l; d_{t+1}; \cdots; d_{u}$$

 $(R_{jkl}^{*i};$ the components of the curvature tensor with respect to (y^i)). On the other hand, we have

$$P(N_{jkl_1\cdots lu}^i)=0$$

where P denotes the sum of the (u+1)(u+2)/2 terms obtained by the permutations of the lower indices which do not yield equivalent terms. [cf. L. P. Eisenhart, Non-Riemannian Geometry]. Hence from the above relations and from the fact that our space is symmetric, we can derive, by a direct calculation, the following expression:

$$N^{i}_{jkl_{1}} - l_{2s+1} \!=\! arphi(N)$$
 ,

where $\varphi(N)$ is the polynomial of the normal tensors $N_{(2s-1)}$ of order $\leq 2s-1$ and its each term is obtained by effecting the C_N -processes on $N_{(2s-1)}$. From the relation

$$N^{i}_{jkl}(0) \!=\! \! - \! rac{1}{3} \left(B^{i}_{jkl} \!+\! B^{i}_{kjl}
ight)$$

and from the breakability of B_{jkl}^{i} , we can conclude that $N_{jkl_{1}}^{i} \cdots l_{2s+1}^{i}(0)$ are breakable.

Now, we have

(5.1)
$$\prod_{jk}^{i} = N_{jkl_{1}}^{i}(0) y^{l_{1}} + \frac{1}{3!} N_{jkl_{1}'_{2}'_{3}}^{i}(0) y^{l_{1}} y^{l_{2}} y^{l_{3}} + \cdots \\ \cdots + \frac{1}{(2s+1)!} N_{jkl_{1}\cdots l_{2s+1}}(0) y^{l_{1}} \cdots y^{l_{2s+1}} + \cdots$$

Since every $N_{jkl_1\cdots l_{2s+1}}^i(0)$ in (5.1) are breakable, we see that \prod_{jk}^{i} vanishes if its indices are of different kinds and $\prod_{jk}^{i^1}$ and $\prod_{j^2k^2}^{i^2}$ depend only on y^{i^1} and y^{i^2} respectively. Hence our symmetric A_n is decomposable.

THEOREM 4. The symmetric A_n determined by an effective group G_{n+r} is a product space of A_p and A_{n-p} of dimensions p and n-p respectively if and only if the n-dimensional vector space V spanned by the transvections of G_{n+r} is a direct sum of p-dimensional subspace V_1 and (n-p)-dimensional subspace V_2 satisfying the following conditions;

1° $[X_{i^1}, X_{i^2}] = 0$

2° [[$X_{i^{\lambda}}, X_{j^{\lambda}}$], $X_{k^{\lambda}}$] ($\lambda = 1, 2$) are linear combinations of $X_{i^{\lambda}}$ only, where $X_{i^{\lambda}}$ are the bases of V_{λ} ($\lambda = 1, 2$) and $i^{1}, j^{1}, k^{1}, l^{1} = 1, \dots, p$ and $i^{2}, j^{2}, k^{2}, l^{2} = p+1, \dots, n$.

PROOF. Suppose that the symmetric A_n determined by G_{n+r} is decomposable. We write the structural equations for G_{n+r} in the form

(5.2)
$$[X_i, X_j] = C^{\alpha}_{ij} Y_{\alpha}$$
$$[X_i, Y_{\alpha}] = C^j_{i\alpha} X_j$$
$$[Y_{\alpha}, Y_{\beta}] = C^{\gamma}_{\alpha\beta} Y_{\gamma}.$$

In the same manner as in §4, we obtain the symmetric A_n with normal coordinates (y^i) . In this normal coordinate system, the components of the curvature tensor evaluated at the origin 0 are given by

$$(5.3) B^i_{jkl} = C^i_{\alpha j} C^{\alpha}_{kl}.$$

In general, we can not state that B^i_{jkl} are breakable. But by the assumption of decomposability of our space, we can introduce in A_n the normal code (y'^{i^1}, y'^{i^2}) at the point 0 such that the curvature tensor R'_{ikl} in this code is a product tensor. Hence, if we evaluate

166

the transformation law for the curvature tensor at 0, we have

$$a_{a}^{i}(R_{bcd}^{\prime a})_{0} = a_{b}^{j}a_{c}^{k}a_{d}^{l}B_{jkl}^{i}$$

where a_i^i are constants and det $|a_i^i| \neq 0$.

Consequently, by effecting the change of base of the transvections

$$X_{m i}^{\prime}\!=\!a^{j}_{m i}X_{j}$$
 ,

we have

(a)
$$[[X'_{i^1}, X'_{j^1}], X'_{k^1}] = (R'^{l_1}_{k^{1_i}l^{j_1}})_0 X'_{l^1}$$

(b)
$$[[X'_{i^1}, X'_{j^1}], X'_{k^2}] = 0$$

(c) $[[X'_{i^1}, X'_{j^2}], X'_{k^1}] = 0$

(d)
$$[[X'_{i^1}, X'_{j^2}], X'_{k^2}] = 0$$

(e) $[[X'_{i^2}, X'_{j^2}], X'_{k^1}] = (R'^{l^2}_{k^{2}i^2j^2})_0 X'_{l^2}$

(f)
$$[[X'_{i^2}, X'_{i^1}], X'_{k^2}] = 0$$

because $(R'_{bcd})_0$ are breakable.

Let V_1 be the *p*-dimensional subspace spanned by X'_{i^1} and let V_2 be the (n-p)-dimensional subspace spanned by X'_{i^2} . Then we have

(5.5)
$$V = V_1 + V_2$$
.

From (5.4 c, d) we get

$$[[X_{i^1}',X_{j^2}'],X_k']\!=\!0$$
 .

Since G_{n+r} is effective, we get

$$[5.6] \qquad [X'_{i^1}, X'_{i^2}] = 0.$$

From (5.4 a, e), (5.5) and (5.6) we have proved the first part of Theorem 4.

Conversely, let us assume that G_{n+r} satisfies the conditions of Theorem 4. We consider the symmetric A_n determined by such G_{n+r} . The components of the curvature tensor at the origin are given by (5.3). From the condition 1°, we get

$$C_{k^1l^2}^{\omega} = 0$$
 .

Hence we get

$$(5.7) B^{i}_{jk^{1}l^{2}} = 0.$$

Furthermore in the relations

А. **F**UJIMOTO

$$B^i_{\, ik^1l^2}\!+\!B^i_{k^1l^2\, i}\!+\!B^i_{l^2\, ik^1}\!=\!0$$
 ,

by putting $j=j^1$ and $j=j^2$, we get

$$(5.8) B^i_{l^2\,i^1 b^1} = 0$$

and

$$(5.9) B^{i}_{k^{1}l^{2}j^{2}} = 0$$

Finally, by the condition 2°

$$[[X_{i^1}, X_{j^1}], X_{k^1}] = C_{i^1j^1}C_{\alpha k^1}X_l$$

are linear combinations of X_{μ} only. Hence we get

 $(5.10) B_{j^1k^1l^1}^{i^2} = 0.$

Similarly, we get

 $(5.11) B_{j^2k^2l^2}^{i_1} = 0.$

It follows from, (5.7), (5.8), (5.9), (5.10) and (5.11) that B_{jkl}^{i} are breakable. Thus our space is decomposable by Theorem 3.

It is easily seen that each composition space is equivalent to the space determined by the subgroup generated by $X_{i^{\lambda}}$, $[X_{i^{\lambda}}, X_{j^{\lambda}}]$ ($\lambda = 1, 2$) and consequently composition spaces are of p and n-p dimensional respectively.

THEOREM 5. If the symmetric A_n determined by G_{n+r} is decomposable where G_{n+r} is semi-simple and effective, then G_{n+r} is decomposed into a direct product of two groups by which composition spaces are determined.

PROOF. According to Theorem 4, the vector space V spanned by the transvections of G_{n+r} is direct sum of two subspaces V_1 and V_2 such that the conditions 1° and 2° of Theorem 4 are satisfied. Let X_{i^1} $(i^1=1,\dots,p)$ and X_{i^2} $(i^2=p+1,\dots,n)$ be the bases of V_1 and V_2 respectively.

Since G_{n+r} is semi-simple and effective, the subgroup of H_r generated by $[X_i, X_j]$ coincides with H_r ([2]). From this fact and from the condition 1° of Theorem 4 we can write each base Y_{α} of H_r in the form

$$Y_{\omega} = a_{\omega}^{i^{1}j^{1}} [X_{i^{1}}, X_{j^{1}}] + b_{\omega}^{i^{2}j^{2}} [X_{i^{2}}, X_{j^{2}}]$$

with constants a's and b's.

From this we can easily see that $X_{i^{\lambda}}$; $[X_{i^{\lambda}}, X_{j^{\lambda}}]$ ($\lambda = 1, 2$) generate the invariant subgroups g_{λ} ($\lambda = 1, 2$) of G_{n+r} .

On the other hand, if we denote by $h_{\lambda}(\lambda=1,2)$ the invariant subgroups of H_r generated by $[X_i^{\lambda}, X_j^{\lambda}]$ ($\lambda=1, 2$), then H_r is direct product of h_1 and h_2 because of effectiveness. Consequently G_{n+r} is the direct product of g_1 and g_2 . It is clear that composition spaces are determined by g_1 and g_2 .

COROLLARY 1. If G_{n+r} is simple (and semi-simple) and effective, then symmetric A_n determined by G_{n+r} is non decomposable.

PROOF. Suppose, on the contrary, that A_n is decomposable. Then the group G_{n+r} contains invariant subgroup by Theorem 5. This contradicts the hypothesis.

Let \hat{H}_r be the linear adjoint group corresponding to H_r and acting on the transvections of G_{n+r} . Then we have the following

COROLLARY 2. If G_{n+r} is effective and \tilde{H}_r is irreducible, then the symmetric A_n determined by G_{n+r} is either flat or non-decomposable.

PROOF. Since \tilde{H}_r is irreducible, either G_{n+r} is semi-simple or $[X_i, X_j] = 0$ ([2]). In the case $[X_i, X_j] = 0$, our space is flat.

Now we consider the case where G_{n+r} is semi-simple. Suppose that A_n is decomposable. According to Theorem 4, the vector space V spanned by the transvections is direct sum of two subspaces V_1 and V_2 . These two subspaces are invariant under \tilde{H}_r . In fact, let X_{λ} ($\lambda = 1, 2$) be any generator of V_{λ} and let Y be any generator of H_r . Since H_r is the direct product of h_1 and h_2 , we can write Y in the form

$$Y = Y_1 + Y_2$$
,

where Y_1 and Y_2 are generators of the invariant subgroups h_1 and h_2 of H_r respectively. Then we have

 $[Y, X_{\lambda}] = [Y_{1} + Y_{2}, X_{\lambda}] = [Y_{\lambda}, X_{\lambda}] \quad (\lambda = 1, 2).$

Therefore $[Y, X_{\lambda}]$ ($\lambda = 1, 2$) are generators of V_{λ} , that is, V_1 and V_2 are invariant under \tilde{H}_r . This contradicts the hypothesis that \tilde{H}_r is irreducible.

The author wishes to express his sincere gratitude to Prof. J. Kanitani for the kind guidance and encouragement during preparation of the paper.

Kyoto University.

А. Fujimoto

References

- [1] Ficken, F.A., The riemannian and affine differential geometry of product spaces. Ann. of Math., 40 (1939), pp. 892-913.
- [2] Nomizu, K., Invariant affine connections on homogeneous spaces. Amer. J. Math., 76 (1954), pp. 33-65.
- [3] Whitehead, J. H. C., Affine spaces of paths which are symmetric about each point. Math. Zeitschr., 35 (1932), pp. 644-659.