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In an almost complex manifold there exists an affine connection
in which the almost complex structure is covariant constant $[2]^{1)}$ . In
this paper such an affine connection, not necessarily symmetric, is said
to be natural. When we speak of an almost complex manifold, we
shall always bear a fixed natural affine connection in mind. An affine
transformation in an affinely connected manifold is, roughly speaking,
a differentiable transformation leaving the affine connection invariant
$[6, 12]$ .

It might be of interest to ask whether an affine transformation
preserves the almost complex structure or not, and if not, then what
the structure of the manifold is. In this respect, A. Lichnerowicz [5]
has recently proved that in an irreducible K\"ahlerian manifold of
dimension $2n$ the largest connected group of isometries preserves the
almost complex structure2) if $n$ is odd or if $n$ is even and the Ricci
curvature tensor does not vanish. J. A. Schouten and K. Yano [10]
have also proved the same result for the pseudo-K\"ahlerian manifold.

We shall prove that in an irreducible almost complex manifold
if the largest connected group of affine transformations does not
preserve the almost complex structure, then $n$ is even and the homo-
geneous holonomy group is contained in the real representation of the
quaternionian linear group. Furthermore in this case a homomorphism
of the group of all affine transformations into the special orthogonal
group of three dimensions will be obtained. Our result generalizes
the results of A. Lichnerowicz and J. A. Schouten and K. Yano.

In a complex manifold there exists, as is well-known, a symmetric

1) See the Bibliography at the end of the paper.
2) If the manifold is compact the theorem holds true without any other restriction [5].
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natural affine connection [2] and an infinitesimal transformation pre-
serves the complex structure if and only if it is complex analytic
$[9, 13]$ . It therefore turns out that an infinitesimal affine trans-
formation is always complex analytic in a complex manifold with
symmetric natural affine connection whose homogeneous holonomy
group is irreducible and is not contained in the real representation
of the quaternionian linear group.

In \S 1 we shall make a brief sketch of the real representation of
the complex matric group and then give a condition for a complex
matric group to be a subgroup of the quaternionian linear group.
In \S 2 we shall obtain the explicit form of the real matrix commuting
with all elements of an irreducible real matric group, which is
fundamental for our main theorem. \S 3 is concerned with the ap-
plication of the preceding results to an almost complex manifold and
the main theorem will be proved. In Appendix3) we shall give an
outline of the complex representation of the real matric group which
is irreducible in the real number field but reducible in the complex
number field.

1. The quaternionian linear group

Let $R$ be the field of real numbers and $C$ be that of complex
numbers. We denote by $L(n, R)$ and by $L(n, C)$ the group of all
regular matrices of degree $n$ with coefficients in $R$ and $C$ respectively.

Any element $A$ of $L(m, C)$ may be expressed in the form $A=A_{1}$

$+iA_{2}$ with real matrices $A_{1},$ $A_{2}$ of degree $m$. The correspondence

$A\rightarrow A^{\prime}=\left(\begin{array}{ll}A_{1} & -A_{2}\\A_{2} & A_{l}\end{array}\right)$

gives an isomorphism of $L(m, C)$ with a subgroup $CL(m, R)$ of $L(2m$,
$R)$ . If $A$ is unitary, $A^{\prime}$ is orthogonal and vioe versa. $CL(m, R)$ will
be called the real representation of $L(m, C)$ . It is easy to see that a
matrix $A^{\prime}\in L(2m, R)$ belongs to $CL(m, R)$ if and only if it commutes
with $J_{m},$ $A^{\prime}J_{m}=J_{m}A^{\prime}$ , where

3) This was added on a suggestion of the referee. The author wishes to express his
gratitude to the referee whose suggestions and criticisms gave much improvement to the
paper.
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$J_{m}=$

$E_{m}$ being the unit matrix of degree $m$ . On putting

$P=\frac{1}{\sqrt 2}$ ,

we have

(1.1) $P^{-1}A^{\prime}P==(_{0}^{A}$ $\frac{0}{A})$

and

$P1J_{m}P=(^{iE_{m}}0$ $-iE0$).
Thus $A^{\prime}\in L(2m, R)$ belongs to $CL(m, R)$ if and only if $P^{-1}A^{\prime}P$ is of
the form (1.1).

Next we denote by $Q$ the algebra of quaternions and by $L(l, Q)$

the group of all regular matrices of degree $l$ with quaternion coeffi-
cients. Any element $A$ of $L(l, Q)$ may be written in the form $A=$

$A_{1}+jA_{2}$ with complex matrices $A_{1},$ $A_{2}$ of degree 1, where $j$ is an
element of the usual base $\{1, i,j, k\}$ of $Q$. We assign to $A$ the matrix
$A^{\prime}\in L(2l, C)$ defined by

(1.2) $A^{\prime}=(_{\overline{A}_{2}^{1}}^{A}$ $-A\overline{A_{1}^{2}})$ .

The correspondence $A\rightarrow A^{\prime}$ gives an isomorphism of $L(l, Q)$ with a
subgroup $QL(l, C)$ of $L(2l, C)$ . $QL(l, C)$ is called the quaternionian
linear group. An easy computation shows

(1.3) $A^{\prime}J_{l}=J_{l}\overline{A}$ .
Conversely a matrix $A^{\prime}$ of $L(2l, C)$ satisfying (1.3) is written in the
form (1.2) and therefore belongs to $QL(l, C)$ . Thus $QL(l, C)$ is the
subgroup of $L(2l, C)$ composed of all the matrices $A^{\prime}$ satisfying (1.3).
Since $QL(l, C)\subset L(2l, C)$ , the real representation $QL(l, R)$ of $QL(l, C)$

has the meaning by itself as a subgroup of $CL(21, R)$ .
Now, let $\mathfrak{G}$ be any subgroup of $QL(l, C)$ , then $\mathfrak{G}$ is equivalent to
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its complex conjugate $\overline{\mathfrak{G}}$, because (1.3) implies $J_{l}^{-1}A^{\prime}J_{l}=\overline{A^{\prime}}$ for all $A^{\prime}$

in $\mathfrak{G}$. Conversely we have the following
PROPOSITION 1 Let $\mathfrak{G}$ be a subgroup of $L(m, C)$ and (‘ its com-

plex conjugate. We assume that $\mathfrak{G}$ is irreducible and is equivalent $lo$

$\overline{\mathfrak{G}}$ but is not equivalent $lo$ a subgroup of $L(m, R)$ . Then we have:
1) There exists a malrix $S_{0}\in L(m, C)$ such that

(1.4) $S_{0}^{-1}AS_{0}=\overline{A}$ for all $A$ in $\mathfrak{G}$ .
(1.5) $\overline{S}_{0}S_{0}=\overline{S_{0}}S_{0}=-E_{m}$

and $S\in L(m, C)$ satisfies (1.4) if and only if $S$ is written in the from
$S=\alpha S_{0},$ $\alpha$ being a non zero complex number.

2) $m$ is even, $m=2l$, and there exists a matrix $\lambda\in L(m, C)$ such
that

$\lambda^{-1}S_{0}\overline{\lambda}=J_{l}$

3) $\mathfrak{G}$ is equivalent to a subgroup of $QL(l, C)$ .
To prove this we need the following lemmas.
LEMMA 1. If $S$ is a complex matrix satisfying $S\overline{S}=-E$, then there

exists a regular matrix $\mu$ such that $S_{0}=\mu^{-1}S\overline{\mu}$ is unitary. Moreover if
$S\overline{S}=E,$ $S_{0}$ is symmetric, and if $S\overline{S}=-E,$ $S_{0}$ is skew symmetric.

PROOF. If we put $H={}^{t}\overline{S}S+E$, then $H$ is Hermitian positive

definite. The condition $S\overline{S}=\pm E$ gives ${}^{t}SH\overline{S}=\overline{H}$. Then there exists a
unitary matrix $\mu_{1}$ such that ${}^{t}\mu_{1}H_{\overline{\mu}_{1}}$ is a diagonal matrix $H_{1}$ . Since
the coefficients of the diagonal of $H_{1}$ are real positive numbers, there
exists a real diagonal matrix $\mu_{2}$ such that ${}^{t}\mu_{2}H_{1}\mu_{2}=E$. On putting
$\mu=\mu_{1}\mu_{2}$ we have ${}^{t}\mu H\overline{\mu}={}^{t}\overline{\mu}\overline{H}\mu=E$. It follows

${}^{t}\overline{S}_{0}S_{0}={}^{t}(\overline{\mu}^{-1}\overline{S}\mu)({}^{t}\overline{\mu}\overline{H}\mu)(\mu^{- 1}S\overline{\mu})={}^{t}\mu H\overline{\mu}=E$ , and ${}^{t}S_{0}\overline{S}_{0}=E$

which shows that $S$ is unitary. We have also

$S_{0}\overline{S_{0}}=(\mu^{-1}S\overline{\mu})(\overline{\mu}^{-1}\overline{S}\mu)=\mu^{-1}S\overline{S}\mu=\pm E$ .
The conditions ${}^{t}S_{0}\overline{S}_{0}=E$ and $S_{0}\overline{S_{0}}=\pm E$ imply $S_{0}=\pm {}^{t}S_{0}$ , which completes
the proof of Lemma 1.

4) This has been proved by M. Abe [1] in a more generalized form using the theory
of matric algebras. We shall give an elementary proof.
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The followings have been known [8].
LEMMA 2. If $S_{0}$ is a symmetric matrix of degree $m$ with complex

coefficients satisfying $S_{0}\overline{S_{0}}=E_{m}$ , then there exists a unitary matrix $\nu$

such that $\nu^{-1}S_{0}\overline{\nu}=E_{m}$ .
LEMMA $2^{\prime}$ . If $S_{0}$ is a skew symmetric matrix of degree $m$ with

complex coefficients satisfying $S_{0}\overline{S}_{0}=-E_{m}$ , then $m$ is even, $m=2l$, and
there exists a unitary matrix $\nu$ such that $\nu 1S_{0}\overline{\nu}=J_{l}$.

These allow us to prove Proposition 1.
PROOF OF PROPOSITION 1. By the assumed equivalence of $\mathfrak{G}$ and

$\overline{\mathfrak{G}}$ there exists a regular matrix $S_{1}$ such that

(1.6) $S_{1}^{-1}AS_{1}=\overline{A}$ or $\overline{S}_{1^{-1}}\overline{A}\overline{S}_{1}=A$

for all $A$ in $\mathfrak{G}$ , which implies $A(S_{1}\overline{S_{1}})=(S_{1}\overline{S}_{1})A$ . Since $\mathfrak{G}$ is irreducible
(in $C$), by Schur’s lemma, $S_{1}\overline{S_{1}}$ is a numerical multiple of the unit
matrix:

(1.7) $S_{1}\overline{S}_{1}=\beta E_{m}$ ,

$\beta$ being a non-zero complex number. (1.7) gives $\overline{S_{1}}S_{1}=\overline{\beta}E_{m}$ , which

$togetherwith(1.7_{0})imp1ies\beta=_{0^{\overline{\frac{\beta}{\beta}}}0},i.e.\beta complexnumber\beta suchthat\beta=|\beta|.onputting\beta^{-1}S=S_{0}wehaveisrea1.Thent_{1}hereexistsa$

$S_{0^{-1}}AS_{0}=\overline{A}$ for all $A$ in $\mathfrak{G}$ and $S_{0}\overline{S_{0}}=\overline{S}_{0}S_{0}=\pm E_{m}$. In case $S_{0}\overline{S}_{0}=E_{m}$ ,
by Lemma 1 and 2 there exists a regular matrix $\lambda_{0}$ such that $\lambda_{0^{-1}}S\overline{\lambda}_{0}$

$=E_{m}$. It follows that for any $A\in \mathfrak{G}$ we have

$\lambda_{0^{-1}}A\lambda_{0}=(\lambda_{0^{-1}}S_{0}\overline{\lambda}_{0})^{-1}(\lambda_{0}^{-1}A\lambda_{0})(\lambda_{0}^{-1}S_{0}\overline{\lambda}_{0})=\overline{\lambda}_{0}^{-1}()\overline{\lambda}_{0}^{-}$ .
This means that $\lambda_{0^{- 1}}A\lambda_{0}\in L(m, R)$ for any $A\in \mathfrak{G}$ , so that $\mathfrak{G}$ is equiva-
lent to a subgroup of $L(m, R)$ , contrary to the assumption.

Thus we have $S_{0}\overline{S}_{0}=-E_{m}$ and then by Lemma 1 and $2^{\prime},$ $m$ is
even, $m=2l$, and there exists a regular matrix $\lambda$ such that $\lambda^{-1}S_{0}\overline{\lambda}=J_{l}$.
We have then for any $A\in \mathfrak{G}$

$(\lambda^{-1}A\lambda)J_{l}=(\lambda^{-1}A\lambda)(\lambda^{-1}S_{0}\overline{\lambda})=\lambda^{-1}AS_{0}\overline{\lambda}=\lambda^{-1}S_{0}\overline{A}\overline{\lambda}$

$=(\lambda^{-l}S_{0}\overline{\lambda})(\overline{\lambda}^{-1}\overline{A\lambda})=J_{l}(\lambda^{-1}\overline{A\lambda})-$

This means that $\lambda^{-1}A\lambda\in QL(l, C)$ , so that $\mathfrak{G}$ is equivalent to a sub-
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group of $QL(l, C)$ .
Next let $S$ be any matrix satisfying (1.3). Then we have $S^{-1}AS$

$=S_{()}^{-1}AS_{0}$ for all $A\in \mathfrak{G}$ , from which we have $A(SS_{0^{-}}^{1})=(SS_{0}^{-1})A$ . $\mathfrak{G}$

being irreducible, $SS_{0^{-1}}=\alpha E_{n\uparrow}$ , where $\alpha$ is a complex number. Thus
we have $S=\alpha S_{0}$ . Conversely if $S$ is written in the form $S=\alpha S_{0}$ , then
$S^{-1}AS=\overline{A}$ for all $A\in \mathfrak{G}$ . Proposition 1 is thereby proved.

2. The commutator algebra of the real irreducible
matric group5)

Let $\mathfrak{G}$ be a subgroup of $L(n, R)$ acting on an n-dimensional real
vector space $V$. A real matrix $K$ commuting with each element $A$

of $\mathfrak{G},$ $KA=AK$, is called a commulalor of $\mathfrak{G}$. The commutators of
$\mathfrak{G}$ form an algebra $\mathfrak{K}$ of matrices, $lhe$ commutator algebra. If $\mathfrak{G}$ is
irreducible (in $R$), then by Schur’s lemma, any commutator $K$ of $\mathfrak{G}$

is either zero or non-singular; in other words, the commutator algebra
$\mathfrak{K}$ of $\mathfrak{G}$ is a division algebra [11].

We assume that $\mathfrak{G}$ is irreducible in $R$ but reducible in $C$. Then
$n$ is even, $n=2m$ , and we can find a base $\{u_{1},\cdots, u_{m},\overline{u}_{1},\cdots,\overline{u}_{m}\}$ in $V^{c}$

relative to which every element $A$ of $\mathfrak{G}$ has the form

(2.1) $A=(_{0}^{A_{1}}$ $\overline{A^{0_{1}}})$ with $A_{1}\in L(m, C)$ ,

where $V^{c}$ denotes the complexification of $V$. Therefore $\mathfrak{G}$ is a sub-
group of $CL(m, R)$ . We denote by $\mathfrak{G}_{1}$ the set of $A_{1}$ thus obtained,
whose real representation is $\mathfrak{G}$. Then $\mathfrak{G}_{1}$ is irreducible in $C$, because
$\mathfrak{G}$ is irreducible in $R$. If $K\in \mathfrak{K}$, then $K$ has the form

$K=(_{\overline{K}_{2}^{1}}^{K}$ $K_{1}\overline{K}^{2})$

where $K_{1}$ and $K_{2}$ are complex matrices of degree $m$ , and we have

( $\overline{A^{0_{1}}}$) $\left(\begin{array}{ll}K_{1} & K_{2}\\\overline{K}_{2} & \overline{K}_{1}\end{array}\right)=(\overline{K}_{2}K_{1}$ $K_{1}\overline{K}^{2})(0A_{1}$ $\overline{A^{0_{1}}})$

5) Concerning this section see Appendix, [ $ 1\neg$ and [11], Chap. III.
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If written down fully, this gives

$A_{1}K_{1}=K_{1}A_{1}$ , $A_{1}K_{2}=K_{2}\overline{A_{1}}$ .
$\mathfrak{G}_{1}$ being irreducible, by Schur’s lemma the first equality implies

$K_{1}=\alpha E_{m}$ ,

$\alpha$ being a complex number. The second gives, again by Schur’s lemma,

$K_{2}=0$ or $\det K_{2}\neq 0$ .
If $\det K_{2}\neq 0$ , we have $K_{2}^{-1}A_{1}K_{2}=\overline{A}_{1}$ for all $A_{1}\in \mathfrak{G}_{1}$ . Since $\mathfrak{G}_{1}$ can
not be equivalent to a subgroup of $L(m, R)$ , by Proposition 1, $m$ is
even, $m=21$, and there exists a regular matrix $\lambda_{0}$ such that $\lambda_{0}^{-1}K_{2}\overline{\lambda}_{0}=$

$\beta J_{l},$ $\beta$ being a complex number. It should be noted that such $\lambda_{0}$ can
be chosen independently of the special choice of $K$ in $\mathfrak{K}$. On putting
$v_{\alpha}=\lambda_{0}\cdot u_{\alpha},$ $(1\leqq\alpha\leqq m),$ $\{v_{1},\cdots, v_{m}, \overline{v}_{1},\cdots, \overline{v}_{m}\}$ is a base in $V^{c}$ and relative
to this base $K$ has the form

(2.2) $K=\left(\begin{array}{ll}\alpha E_{m} & \beta.\Gamma_{l}\\\overline{\beta}J_{l} & \overline{\alpha}E_{m}\end{array}\right)$ .

If there exists $K$ such that $\det K_{2}\neq 0,$ $\mathfrak{G}_{1}$ is a subgroup of $QL(l, C)$ ,
$m=2l$, and therefore $\mathfrak{G}$ is a subgroup of $QL(l, R)$ . Conversely if $\mathfrak{G}$

is a subgroup of $QL(l, R)$ , then matrices of the form (2.2) are com-
mutators of $\mathfrak{G}$ .

Now we take the real base $\{f_{1},\cdots, f_{m}, f_{\overline{1}},\cdots, f_{\overline{m}}\}$ in $V^{c}$, therefore in
$V$, which is related to $\{v_{1},\cdots, v_{m}, \overline{v}_{1},\cdots,\overline{v}_{m}\}$ by

$f_{\alpha}=\frac{1}{\sqrt{2}i}(v_{\alpha}-\overline{v}_{\alpha})$ , $f_{\overline{\alpha}}=\frac{1}{\sqrt 2^{-}}(v_{\alpha}+\overline{v}_{\alpha})$ ,

where $\alpha=1,\cdots,$ $m$ and $\overline{\alpha}=\alpha+m$ . Relative to this base every $A$ in $\mathfrak{G}$

is written in the form

$A=\left(\begin{array}{ll}B_{1} & -B_{2}\\B_{2} & B_{1}\end{array}\right)$ ,

where $B_{1}$ and $B_{2}$ are real matrices of degree $m$ and are related to
$A_{1}$ in (2.1) by $A_{1}=B_{1}+iB_{2}$ . The matrices
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$E_{n},$
$,$ $,$

relative to $\{v_{\alpha},\overline{v}_{\alpha}\}$ are represented respectively by the real matrices

$E_{n},$ $=J_{m},$
$,$

relative to the base $\{f_{\alpha}, f_{\overline{\alpha}}\}$ . They are clearly linearly independent in
$R$. On putting $\alpha=a+ib,$ $\beta=c+id,$ $a,$ $b,$ $c,$ $d\in R$, we have

$K=aE_{n}+bJ_{m}$ or $K=aE_{n}+bJ_{m}+c+d$

It follows that in case $\mathfrak{G}$ is a subgroup of $QL(l, R)$ with $m=2l,$ $E_{n},$ $J_{m}$ ,

and form a base of $\mathfrak{K}$ and in case $m$ is odd

or $m=2l$ and $\mathfrak{G}$ is not a subgroup of $QL(l, R),$ $E_{n}$ and $J_{m}$ form a base
of $\mathfrak{K}$.

PROPOSITION 2. Let $\mathfrak{G}$ bea subgroup of $L(n, R)$ acting on an n-
dimensional real veclor space $V$ and $\mathfrak{K}$ the (real) commutator algebra
of $\mathfrak{G}$ . We assume that $\mathfrak{G}$ is irreducible in $R$ but reducible in C. Then
$n$ is even, $n=2m$ , and $\mathfrak{G}$ is a subgroup of $CL(m, R)$ . If $m$ is even,

$m=2l$, and $\mathfrak{G}$ is a subgroup of $QL(l, R)$ , then $E_{n},$ $J_{m},$ and

form a base of $\mathfrak{K}$ relalive to a suitable base in V. If $m$ is

odd or if $m=2l$ and $\mathfrak{G}$ is not a subgroup of $QL(l, R)$ , then $E_{n}$ and $J_{m}$

form a base of $\mathfrak{K}$ relative to a suitable base in $V$.
Next we denote by $\hslash$ the set consisting of all elements $K$ of $\mathfrak{K}$

such that $K^{2}=-E_{n}$ . If $K=aE_{n}+bJ_{m}\in\tilde{\mathfrak{K}}$, we have $a^{2}-b^{2}=-1$ , $ab=0$ .
If $a\neq 0,$ $b$ must be $0$ and then $a=\pm i$ contrary to the assumption that
$a$ is real. Thus we have $a=0$ and $b=\pm 1$ . Conversely $\pm J_{m}$ obviously

belongs to $\tilde{\mathfrak{K}}$. Thus in case $m$ is odd or $m$ is even, $m=2l$, and $\mathfrak{G}$ is
not a subgroup of $QL(l, R),\tilde{\mathfrak{K}}$ consists of $J_{m}$ and $-J_{m}$.
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If

$K=aE_{n}+bJ_{m}+c+d\in\tilde{\mathfrak{K}}$ ,

we have $a^{2}-(b^{2}+c^{2}\dashv- d^{2})=-1$ and $ab=ac=ad=0$ . If $a\neq 0$ , we would
have $b=c=d=0$ hence $a^{2}=-1$ and whcih is impossible because $a$

must be real. Thus we have $a=0$ and $b^{2}+c^{2}+d^{2}=1$ . Conversely

$bJ_{m}+c(\backslash ^{\prime}J_{l}0$ $-J_{l}^{0})+d$ with $b^{2}+c^{2}-\vdash d^{2}=1$ belongs to $\tilde{\mathfrak{K}}$. Thus

in case $\mathfrak{G}$ is a subgroup of $QL(l, R)$ with $m=2l,\tilde{\mathfrak{K}}$ consists of the

elements of the form $bJ_{m}+c+d$ with $b^{2}+c^{2}+d^{2}=1$ .

PROPOSITION 3. Notations and assumplions being as in proposition
2, let $\hat{\mathfrak{K}}$ be the set consisting of all the elements $K$ of $\mathfrak{K}$ such that
$K^{2}=-E_{n}$ . Then if $\mathfrak{G}$ is a subgroup of $QL(l, R)$ with $m=2l,$ $\tilde{\mathfrak{K}}$ consists

of the $elemen_{J}tsK=bJ_{m}+c+d$ with $b^{2}+c^{2}+d^{2}=1$

relalive to a suitable base in V. If $m$ is odd or if $m=2l$ and $\mathfrak{G}$ is not
a subgroup of $QL(l, R),\tilde{\mathfrak{K}}$ consists of $J_{m}$ and $-J_{m}$ relative to a suitable
base in $V$.

3. Affine transformations in an almost
complex manifold

Let $M$ be an n-dimensional affinely connected manifold of class
$C^{\infty}$ and $\mathfrak{H}_{p}$ the homogeneous holonomy group of $M$ at a point $p$ of $M$.
$\mathfrak{H}_{p}$ is a subgroup of $L(n, R)$ in the tangent space $T_{p}$ at $p$. $M$ is called
irreducible if $\mathfrak{H}_{p}$ is irreducible in $R,$ $i$ . $e$ . if $\mathfrak{H}_{p}$ does not have any non-
trivial invariant subspace of $T_{p}$. 0therwise, it is called reducible.
This notion is independent of the choice of $p$ , because a curve joining
two points $p$ and $q$ determines, by parallel displacement, an isomor-
phism of $T_{p}$ onto $T_{q}$ . Each parallel tensor field on $M,$ $i$ . $e$ . a tensor
field with null covariant derivative, induces on $T_{p}$ a tensor invariant
under $\mathfrak{H}_{p}$. Conversely each tensor on $T_{p}$ invariant under $\mathfrak{H}_{p}$ deduces
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by parallel displacement a parallel tensor field.
We denote by $P(r, s)$ the set of all parallel tensor fields of type

$(r, s)$ on $M$. If $\xi,$ $\eta\in P(r, s)$ and $a,$ $b\in R$, we have obviously $ a\xi+b\eta$

$\in P(r, s)$ . Hence $P(r, s)$ is a vector space over $R$. Since any element
of $P(r, s)$ is uniquely determined by its value at a point $p,$ $P(r, s)$ is
isomorphic with the subspace of the tensor space of type $(r, s)$ over
$T_{p}$ consisting of all tensors invariant under $\mathfrak{H}_{p}$. It follows that $P(r, s)$

is finite dimensional.
Now let $\varphi$ be a differentiable transformation of $M$ onto itself.

We denote by the same letter $\varphi$ the differential mapping of $\varphi$ , its
extension to the tensor spaces and also that to the algebra of tensor
fields. Denoting by $\nabla x$ the covariant differentiation in the direction of
a tangent vector $X,$

$\varphi$ is called an affine transformation $[6, 12]$ if $\varphi$

commutes with $\nabla x$ for any $X$, i. e. $\varphi\nabla x^{=}\nabla_{\varphi\cdot X}\varphi$ . In case $\varphi$ is affine, if
$F$ is a parallel tensor field, then so is $\varphi F$.

We denote by $A(M)$ the group of all affine transformations of $M$

onto itself, which is a Lie group with respect to the natural topology
$[3, 6]$ . $A_{0}(M)$ denotes the connected component of the identity in
$A(M)$ . If $\varphi\in A(M),$ $\xi,$ $\eta\in P(r, s)$ and $a,$ $b\in R$, we have $\varphi(a\xi+b\eta)=$

$a(\varphi\cdot\xi)+b(\varphi\cdot\eta)\in P(r, s)$ . Since there exists $\varphi^{-1}\in A(M),$ $A(M)$ acts on
$P(r, s)$ as a group of automorphisms. Thus we obtain a homomorphism
$\rho$ of $A(M)$ into $L(h, R)$ defined by $\rho(\varphi)\cdot\xi=\varphi\cdot\xi$ for any $\xi\in P(r, s)$ ,
where $h=\dim P(r, s)$ . $\rho$ is continuons.

An almost complex manifold is a manifold of class $C^{\infty}$ and of
dimension even $2m$ which has an almost complex structure $F,$ $i$ . $e$ .
which contains a tensor field $F=(F_{j}^{i})$ of class $C^{\infty}$ satisfying

(3.1) $F^{2}=-E$ or $F_{j^{i}}F_{k}^{j}=-\delta_{k}^{i}$ ,

where $i,j,$ $k=1,\cdots,$ $m,$ $m+1,\cdots,$ $2m$. It is always possible to define an
affine connection, not necessarily symmetric, in which the almost com-
plex structure $F$ is parallel [2]. Such an affine connection is called
natural. When we speak of an almost complex manifold, we shall
always keep a fixed nalural affine connection in mind. We can find a
base in $T_{p},$ $p\in M$ such that relative to this base the tensor $F_{p}$ at $p$

has the form

(3.2) $F_{p}=J_{m}$ .



$Aff_{l}ne$ transformations in an almost complex manifold. 355

Since $F_{p}$ is invariant under $\mathfrak{H}_{p}$ , the matrix $F_{p}$ commutes with any
element of $\mathfrak{H}_{p}$ , so that any element $A$ of $\mathfrak{H}_{p}$ has the form

(3.3) $A=$

relative to the above base. This means that $\mathfrak{H}_{p}$ is a subgroup of
$CL(m, R)$ and is reducible in $C$ . A differentiable transformation of $M$

onto itself is said to preserve the almost complex structure $F$, if

(3.4) $\varphi\cdot F=F$ or $\varphi(F_{p})=F_{\varphi}.p$

for every point $p$ of $M$.
We assume in the sequel that the almost complex manifold $M$ is

irreducible as an affinely connected manifold. Let $P(1,1)$ be the vector
space spanned by all parallel tensor fields of type $(1,1)$ on $M$ and
$\tilde{P}(1,1)$ the subset of all the element $K$ of $P(1,1)$ such that $K^{2}=-E$

$i$ . $e$ . $K$ is an almost complex structure of $M$ Then any element $\varphi$ of
$A(M)$ transforms linearly $\tilde{P}(1,1)$ onto itself and further $\tilde{P}(1,1)$ onto
itself. Indeed, since the tensor field $E=(\delta_{J}^{i})$ is invariant under all the
transformations we have $(\rho(\varphi)\cdot K)^{2}=-\rho(\varphi)\cdot E=-E$ for every $ K\in$

$\overline{P}(1,1)$ . Assigning $K\in P(1,1)$ to the value $K_{p}$ of $K$ at $p,$ $P(1,1)$ is
isomorphic with the subspace of the tensor space of type $(1,1)$ over
$T_{p}$ consisting of all tensors invariant under $\mathfrak{H}_{p},$

$i$ . $e$ . $P(1,1)$ is isomor-
phic with the commutator algebra $\mathfrak{K}$ of $\mathfrak{H}_{p}$ . It is obvious that $\tilde{P}(1,1)$

is isomorphic with the subset $\hat{\mathfrak{K}}$ of $\mathfrak{K}$ consisting of the commutators
$K$ such that $K^{2}=-E_{2m}$.

Case I. $m$ is odd or $m$ is even, $m=2l$, and $\mathfrak{H}_{p}$ is not a subgroup
of $QL(l, R)$ . There exists, by Proposition 2, a base in $T_{p}$ such that
relative to this base the tensor (3.2) has the same form and $\mathfrak{K}$ is
spanned by $E_{2m}$ and $J_{m}$. $E_{2m}$ and $J_{m}$ deduce the parallel tensor field
$E=(\delta_{j}^{i})$ and the almost complex structure $F$. Thus $P(1,1)$ is spanned
by $E$ and $F$. Since by Proposition 3 $\hat{\mathfrak{K}}$ consists of $\pm J_{m},\hat{P}(1,1)$ consists
of $\pm F$. Since $\rho(\varphi)\cdot\tilde{P}(1,1)\subset\tilde{P}(1,1)$ for every $\varphi\in A(M)$ , we have
$\rho(\varphi)\cdot F=\pm F$. $\rho$ being continuous, we have $\rho(\varphi)\cdot F=F$ for every $\varphi\in$

$A_{0}(M),$ $i$ . $e$ . $A_{0}(M)$ preserves the almost complex structure $F$.
Case II. $m$ is even, $m=2l$, and $\mathfrak{H}_{p}$ is a subgroup of $QL(l, R)$ .
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There exists, by Proposition 2, a base in $T_{p}$ such that relative to this
base the tensor (3.2) has the same form and $\mathfrak{K}$ is spanned by $E_{2m},$ $J_{m}$ ,

$\left(\begin{array}{lllll} & & & J_{l} & 0\\ & & & 0 & -J_{l}\end{array}\right)$ and $\left(\begin{array}{lllll} & & & 0 & J_{l}\\ & & & J_{l} & 0\end{array}\right)$ . We denote by $G$ and $H$ the parallel tensor

fields deduced from $\left(\begin{array}{lllll} & & & J_{l} & 0\\ & & & 0 & -J_{l}\end{array}\right)$ and ( $J_{0^{l^{\backslash }}}$) respectively. Then we

have $G^{2}=-E,$ $H^{2}=-Ei$ . $e$ . $F,$ $G$ and $H$ are almost complex structures.
Furthermore we have $FG=-GF=H,$ $GH=-HG=F,$ $HF=-FH=G$.
Thus $P(1,1)$ has the structure of algebra, which is isomorphic to the
algebra of quaternions. $A(M)$ acts on $P(1,1)$ not only as a group of
automorphisms of the vector space but also as a group of automor-
phisms of the algebra. $\tilde{P(}1,1$ ) consists of the tensor field $K=aF+bG$
$+cH$ such that $a^{2}+b^{2}+c^{2}=1$ . Since $\rho(\varphi)\cdot\tilde{P}(1,1)\subset\tilde{P}(1,1)$ for every
$\varphi\in A(M)$ , we have

$\rho(\varphi)\cdot F=a_{11}F-\vdash a_{21}G+a_{31}H\in\tilde{P(}1,1)$

$\rho(\varphi)\cdot G=a_{12}F+a_{22}G+a_{32}H\in\tilde{P}(1,1)$

$\rho(\varphi)\cdot H=a_{13}F+a_{23}G+a_{33}H\in\tilde{P}(1,1)$

where $a_{11},\cdots,$ $a_{33}$ are real numbers and $\sum_{i^{\}}=1}a_{ij}^{2}=1,$ $j=1,2,3$ . We identify

$\rho(\varphi)=\left(\begin{array}{llllll} & & & a_{11} & a_{12} & a_{13}\\ & & & a_{21} & a_{22} & a_{23}\\ & & & a_{31} & a_{32} & a_{33}\end{array}\right)$ .

Now, we denote by $P^{\star}(1,1)$ the vector subspace of $P(1,1)$ spanned by
$F,$ $G$ and $H$ Then $\rho(\varphi)$ , for every $\varphi\in A(M)$ , is an automorphism of
$P^{\star}(1,1)$ . If $\xi=\xi_{1}F+\xi_{2}G+\xi_{3}H$ and $\eta=\eta_{1}F+\eta_{2}G+\eta_{3}H$, where $\xi_{1},\cdots,$ $\eta_{3}\in R$,
then we have

$\xi\cdot\eta=-(\xi_{1}\eta_{1}+\xi_{2}\eta_{2}+\xi_{3}\eta_{3})E+(\xi_{2}\eta_{3}-\xi_{3}\eta_{2})F+(\xi_{3}\eta_{1}-\xi_{1}\eta_{3})G+(\xi_{1}\eta_{2}-\xi_{2}\eta_{1})H$ ,

where $\xi_{1}\eta_{1}+\xi_{2}\eta$
)

$+\xi_{3}\eta_{3}$ is the scalar product of $\xi$ and $\eta$ and is denoted
by $(\xi, \eta)$ . $(\xi_{2}\eta_{3}-\xi_{3}\eta_{2})F+(\xi_{3}\eta_{1}-\xi_{1}\eta_{3})G+(\xi_{1}\eta_{2}-\xi_{2}\eta_{1})H$ is called the veclor
product of $\xi$ and $\eta$ and is denoted by $\xi\times\eta$ . Then we have

$\xi\cdot\eta=-(\xi, \eta)E+\xi\times\eta$
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Since $\rho(\varphi)\cdot(\xi\cdot\eta)=(\rho(\varphi)\cdot\xi)(\rho(\varphi)\cdot\eta)$ for every $\varphi\in A(M)$ , we have

$(\rho(\varphi)\cdot\xi, \rho(\varphi)\cdot\eta)=(\xi, \eta)$ and $(\rho(\varphi)\cdot\xi)\times(\rho(\varphi)\cdot\eta)=\rho(\varphi)(\xi\times\eta)$ .
Thus the linear transformation $\rho(\varphi)$ leaves invariant the inner and
vector products in $P^{k}(1,1)$ , so that $\rho(\varphi)$ is orthogonal and

$\det\rho(\varphi)=((\rho(\varphi)\cdot F)\times(\rho(\varphi)\cdot G), \rho(\varphi)\cdot H)$

$=(\rho(\varphi)\cdot(F\times G), \rho(\varphi)\cdot H)=(F\times G, H)=1$ .
Therefore $\rho(\varphi)$ is contained in the special orthognal group $SO(3)$ in
$P^{\star}(1,1)$ .

Our study thus culminates in the following theorem
THEOREM 1. Let $M$ be an almost complex manifold of dimension

$2m$ with $lhe$ almost complex structure F. We denote by $\mathfrak{H}_{p}p\in M$, the
homogeneous holonomy group of $M$ with respect to a natural affine
connection. $A(M)$ denoles the group of all affine transformations of
$M$ onto itself and $A_{0}(M)$ denoles the connected component of the identity

of $A(M)$ . We assume that $\mathfrak{H}_{p}$ is irreducible (in $R$). Then, $\mathfrak{H}_{p}$ is a
subgroup of $CL(m, R)$ . Further, (I) in case $m$ is odd or $m$ is even,
$m=2l$, and $\mathfrak{H}_{p}$ is not a subgroup of $QL(l, R)$ , we have $\varphi\cdot F=\pm F$ for
every $\varphi\in A(M)$ . Especially we have $\varphi\cdot F=F$ for every $\varphi\in A_{0}(M),$ $i.e$.
$A_{0}(M)$ preserves the almost complex structure. (II) In case $m$ is even,
$m=2l$ and $\mathfrak{H}_{p}$ is a subgroup of $QL(l, R),$ $M$ has three independent
almost complex structure $F,$ $G$ and $H$ such that $FG=-GF=H,$ $GH=$

$-HG=F,$ $HF=-FH=G$ and lhey are all parallel. $A(M)$ acts on the
veclor space spanned by $F,$ $G$ and $H$ as a group of orlhogonal trans-
formations. Furthermore these orthogonal lransformations belong to
$SO(3)$ in the veclor space.

COROLLARY 1. Nolations and assumptions being as in Theorem 1,

if $m$ is odd.or if $m=2l$ and $\mathfrak{H}_{p}$ is not a subgroup of $QL(l, R)$ , then
$A_{0}(M)$ preserves the almost complex structure.

COROLLARY 2. Notations and assumptions being as in Theorem 1,

if $A_{0}(M)$ does not preserve the almost complex slructure $F$, then $m=2l$

and $\mathfrak{H}_{p}$ is a subgroup of $QL(l, R)$ and there exists a homomorphism of
$A(M)$ into $SO(3)$ .

We denote by $C(M)$ the group of all affine transformations pre-
serving the almost complex structure $F$. Then $C(M)$ is a closed
subgroup of $A(M)$ . If $m$ is odd or if $m=2l$ and $\mathfrak{H}_{p}$ is not a subgroup
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of $QL(l, R)$ , by Corollary 1 we have $A_{0}(M)\subset C(M)\subset A(M)$ , so that
we have $\dim C(M)=\dim A(M)$ . In case $m=2l$ and $\mathfrak{H}_{p}$ is a subgroup
of $QL(l, R),$ $C^{\star}(M)$ denotes the kernel of $\rho;A(M)\rightarrow SO(3),$ $i$ . $e$ . the
group of all affine transformations preserving the almost complex
structures $F,$ $G$ and $H$ Then $C^{\star}(M)$ is a closed normal subgroup of
$A(M)$ and $C(M)$ . By Theorem 1 $A\langle M$) $/C^{\star}(M)$ is isomorphic with a
subgroup of $SO(3)$ . Therefore we have

$\dim A(M)-\dim SO(3)\leqq\dim C^{\star}(M)\leqq\dim C(M)$

so that we have $\dim A(M)-3\leqq\dim C(M)\leqq\dim A(M)$ . We have
proved

COROLLARY 3. Nolations and assumplions being as in Theorem 1,
and above, we have

$\dim A(M)-3\leqq\dim C(M)\leqq\dim A(M)$ .
A pseudo-Kahlerian manifold $M$ of dimension $2m$ is a Riemannian

manifold which has an almost complex structure $F$ with null covariant
derivative with respect to the Riemannian connection. If $M$ is pseudo-
K\"ahlerian, the homogeneous holonomy group is a subgroup of the real
representation of the unitary group $U(m)$ . In case $m=2l,$ $ U(m)\cap$

$QL(l, C)$ is nothing but the unitary symplectic group $S_{p}(l)$ . As an
immediate consequence of Theorem 1 we have

THEOREM 2. $1n$ an irreducible pseudo-Kahlerian manifold $M$ of
dimension $2m$ , if $m$ is odd or if $m=2l$ and $\mathfrak{H}_{p}$ is not a subgroup of
the real representation of $S_{p}(l)$ , then $A_{0}(M)$ preserves the almost complex
slructure.

In a pseudo-K\"ahlerian manifold, as is well-known [4], the Ricci
curvature tensor vanishes if and only if $\mathfrak{H}_{p}$ is a subgroup of the real
representation of the special orthogonal group $SU(m)$ . Since $S_{p}(l)$ is
a subgroup of $SU(2l)$ , if the Ricci curvature tensor does not vanish,
then $\mathfrak{H}_{p}$ cannot be a $subgro\iota lp$ of the real representation of $S_{p}(l)$ .
Thus we have

COROLLARY 4. In an irreducible pseudo-Kahlerian manifold of
dimension $2m$ , if $m$ is odd or if $m=2l$ and the Ricci curvalure tensor
does not vanish, $A_{0}(M)$ preserves the almost complex slruclure; espe-
cially $lhe$ largest connected group of isometries preserves $lhe$ almost
complex struclure.
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Now, in a complex manifold there exists a symmetric natural
affine connection [2], so that when we speak of a complex manifold
we shall always bear a fixed symmetric natural affine connection in
mind. By a contravariant analytic vector field $[9, 13]$ in a complex
manifold, we shall mean a self-adjoint contravariant vector field $(\xi^{\alpha}, \overline{\xi^{\alpha}})$

whose components are analytic functions of the complex coordinates.
This condition is expressed by

$\xi^{\alpha_{;\overline{\beta}}}=0$ and $\xi^{\overline{\alpha_{;\beta}}}=0$ ,

where the semi-colon denotes the covariant derivative with respect to
the symmetric natural affine connection. This is also expressed by

$\xi^{i_{;k}}F_{j}^{k}-\xi^{k_{;j}}F_{k}^{i}=0$

in its real representation, or equivalently by the fact that the infini-
tesimal transformation $\xi^{i}$ preserves the almost complex structure $F$.
Thus we have

THEOREM 3. In an irreducible complex manifold of dimension $2m$ ,

if $m$ is odd or if $m=2l$ and the homogeneous holonomy group is not a
subgroup of $QL(l, R)$ , an infinitesimal affine transformation is always
complex analytic.

COROLLARY 5. In an irreducible Kahlerian mamfold of dimension
$2m$, if $m$ is odd or if $m$ is even and the Ricci curvature tensor does
not vanish, an infinitesimal affine transformation is always complex
analytic.

Appendix

Let $V$ be an n-dimensional real vector space and $V^{c}$ its complexi-
fication, $i$ . $e$ . the complex vector space deduced from $V$ by extension
of the basic field. We can identify $V$ with a subset of $V^{c}$. Every
base of $V$ is then a base of $V^{c}$. Let $P$ be a subspace of $V^{c}$ and $Q$

a subspace of $V$. If $P\supset Q$, then $P\supset Q^{c}$.
Now let $a$ be an endomorphism of $V$. We denote by the same

letter $a$ the endomorphism of $V^{c}$ extending $a$ . If we select a base
$\{e_{1},\cdots, e_{n}\}$ in $V$, we may represent $a$ by a matrix $A=(a_{j}^{i})$ of degree $n$

whose coefficients are given by $a\cdot e_{j}=\sum_{i=1}^{n}a_{j^{i}}e_{i},$ $a_{j}^{i}\in R$. We shall adopt
the convention that corresponding types like $a$ and $A$ are used to
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$ma\dot{r}k$ the transition from the endomorphism to the matrix. A vector
$x=\sum_{t}^{n_{=1}}x^{i}e_{i}$ is in $V$ if and only if $x^{i}\in R,$ $1\leqq i\leqq n$. If $ x=\sum_{i=1}^{n}x^{i}e_{i}\in$

$V^{c},\overline{x}$ denotes the complex conjugate of $x,$
$i$ . $e.\overline{x}=\sum_{i=1}^{n}\overline{x}^{i}e_{i}$ . It is then

easy to see $\overline{a}\cdot x=a\cdot\overline{x}$ for any endomorphism $a$ of $V$.
Let $\mathfrak{G}$ be a group of automorphisms of $V$. We assume $\mathfrak{G}$ is

irreducible in $V$ (in $R$) but reducible in $V^{c}$ (in $C$). Then there exists
an invariant subspace $P$ of $V^{c}$ such that $P\neq V^{c},$ $P\neq\{0\}$ .

If we put $P^{\prime}=P\cap V$, then $P^{\prime}$ is a (real) subspace of $V$. Since $P$

and $V$ are both invariant under $\mathfrak{G}$ , so also is $P^{\prime}$ . $\mathfrak{G}$ being irreducible
in $V,$ $P^{\prime}=\{0\}$ or $P‘=V$. If $P‘=V$, we would have $P\supset P^{\prime c}=V^{c}$ contrary
to the assumption $P\neq V^{c}$. Thus we have

(A.1) $P\cap V=\{0\}i$. $e$. $P$ does not contain real vectors other than $0$ .
We denote by $\overline{P}$ the subspace of $P$ consisting of the complex con-

jugate of the vectors of $P$. Then $\overline{P}$ is clearly invariant under $\mathfrak{G}$.
On putting $Q=P\cap\overline{P}$ we have $Q=\overline{Q}$ . Consequently, $\xi\in Q$ implies
$\overline{\xi}\in Q$. Therefore we have $\xi+\overline{\xi}\in Q\cap V,$ $i(\xi-\overline{\xi})\in Q\cap V$. Since $Q\cap V$

$\subset P\cap V$, by (A.1) $Q\cap V=\{0\}$ and therefore $\xi+\overline{\xi}=\xi-\overline{\xi}=0$ . The last
relation implies $\xi=0$ . Thus we have

(A.2) $P\cap P^{-}=\{0\}$ .
Next, if we put $P+\overline{P}=S$. Since $P\neq\{0$ ), there exists a non zero

$\xi$ in $P$. Then we have $\xi+\overline{\xi}\in S\cap V$. If $\xi+\xi=0-$ , we would have $-\xi\in P$

and then by (A.2) we would have $\xi=0$ , contrary to the fact $\xi\neq 0$ .
Thus we have $\xi+\overline{\xi}\neq 0$ , which shows $S\cap V\neq\{0\}$ . $S\cap V$ being an in-
variant subspace of $V$, by the irreducibility of $\mathfrak{G}$ we have $S\cap V=V$,
which gives $S\supset V$. It follows $S\supset V^{c}$ and then $S=V^{c}$. Thus together
with (A.2) we have

(A.3) $P+\overline{P}=V^{c}$ (direct sum).

Now, let $U$ be a subspace of $P$ invariant under $\mathfrak{G}$ . Then $(U+\overline{U})\cap V$

is a (real) subspace of $V$ invariant under $\mathfrak{G}$ . By irreducibility

of $\mathfrak{G},$ $(U+\overline{U})\cap V=\{0\}$ or $(U+\overline{U})\cap V=V$. If $(U+\overline{U})\cap V=\{0\}$ for any
$\xi\in U$ we have $\xi+\xi=i(\xi-\overline{\xi})-=0$ and therefore $\xi=0$ . This means $U=$

$\{0\}$ . If $(U\}\overline{U})\cap V=V$, we have $U+\overline{U}\supset V^{c}$, which implies $U=P$.
Thus we have

(A.4) $\mathfrak{G}$ acts on $P$ irreducibly, $i$. $e$. $P$ does not contain an invariant
subspace olher than $P$ itself and $\{0\}$ .
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Let us denote by $m$ the complex dimension of $P$. Then we have
$n=2m$ by (A.3). We select a base $\{v_{1},\cdots, v_{m}\}$ in $P$, then { $\overline{v}_{1},\cdots,$ $\overline{v}_{m}$ ) is a
base of $\overline{P}$ and $\{v_{1},\cdots, v_{m},\overline{v}_{1},\cdots, \overline{v}_{m}\}$ is a base of $V^{c}$. An easy computa-
tion shows

(A.5) $\xi\in V^{c}$ is in $V$ if and only $lf$ it is written in the form

$\xi=\sum_{\alpha-1}^{m}\overline{\xi}^{\alpha}v_{\alpha}+\sum_{\alpha=1}^{m}\xi^{\alpha}\overline{v}_{\alpha}$ , $\xi^{\alpha}\in C$ .

Let $k$ be an endomorphism of $V$. Then we have

$k\cdot v_{\beta}=\sum_{\alpha=1}^{m}k_{\beta}^{\alpha}v_{\alpha}+\sum_{\alpha=1}^{m}k_{\beta}^{\overline{\alpha}}\overline{v}_{\alpha}$

$k\cdot\overline{v}_{\beta}=\sum_{\alpha=1}^{m}k_{\beta}^{\alpha}v_{\alpha}+\sum_{\alpha=1}^{m}k_{\overline{\beta}}^{\alpha}\overline{v}_{\alpha}$ $(\beta=1,\cdots, m)$

where $k_{\beta}^{\alpha},$ $k_{\beta}^{\overline{\alpha}},$ $k^{\alpha_{\dot{\beta}}},$ $k^{\overline{\alpha}_{\dot{\beta}}}$ are complex numbers. Since $k\cdot v_{\beta}=k\cdot\overline{v}_{\beta}$ we have
$k^{\overline{\alpha}_{\beta}}=\overline{k_{\beta}^{\alpha}}$ and $k_{\beta}^{\overline{\alpha}}=\overline{k^{\alpha}}_{\dot{\beta}}$ . Thus $k$ is represented by the matrix

$K=$ ( $K_{1}\overline{K}^{2}$) where $K_{1}=(k_{\beta}^{\alpha}),$ $K_{2}=(k_{\dot{\beta}}^{a})$ .

Conversely an endomorphism $k$ of $V^{c}$ represented by a matrix of this
form is an endomorphism of $V$. Especially every element $a$ of $\mathfrak{G}$ is
represented by a matrix of the form

$A=(_{0}^{A_{1}}$ $\overline{A^{0_{1}}}$) . $A_{1}\in L(m, C)$

because $a$ leaves $P$ and $\overline{P}$ invariant.
We summarize:
PROPOSITION. Let $V$ be an n-dimensional real vector space and $V^{c}$

its complexification. Let $\mathfrak{G}$ be a group of automorphisms of V. $We$

assume that $\mathfrak{G}$ is irreducible in $R$ but reducible in C. Then $n$ is even,
$n=2m$, and we can find a base $\{v_{1},\cdots, v_{m}, \overline{v}_{1},\cdots, \overline{v}_{m}\}$ in $V^{c}$ with the fol-
lowing properties:

1) An endomorphism of $V^{c}$ is that of $V$ if and only if it is rep-
resented by a matrix of the form
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$K=\left(\begin{array}{lllllll} & & & & & \prime K_{1} & K_{2}\\ & & & & & \overline{K}_{2} & \overline{K}_{1}\end{array}\right)$

relative to this base.
2) Every $a\in \mathfrak{G}$ is represented by a matrix of the form

$A=(0A_{1}$ $\frac{0}{A_{1}}$) with $A_{1}\in L(m, C)$

relalive to this base.
3) The set $\mathfrak{G}_{1}$ of $A_{1}$ thus obtained is the subgroup of $L(m, C)$

whose real representalion is $\mathfrak{G}$ and which is irreducible in $C$.

Tokyo Metropolitan University

Bibliography

[1] M. Abe, Irreduzibilit\"at und absolute Irreduzibilita\"at des Malrizensystemes, Proc. Phys.
Math. Soc. Japan, 24 (1942), 769-789.

[2] A. Fr\"olicher, Zur Differentialgeometrie der komplexen Strukturen, Math. Ann., 129
(1955), 50-95.

[3] J. Hano and A. Morimoto, Note on the group of affine transformations of an affinely
connected manifold, Nagoya Math. J., 8 (1955), 85-95

[4] A. Lichnerowicz, Espaces homog\‘enes k\"ahl\’eriennes, Coll. Int. de G\’eom. Diff. Stras-
bourg, (1953), 171-184.

[5] A. Lichnerowicz, Sur les groupes d’automorphismes de certaines vari\’et\’es k\"ahleriennes,
C. R. Acad. Sci. Paris, 259 (1954) 1344-1346.

[6] K. Nomizu, On the group of apfne transformations of an affinely connected manifold,
Proc. Amer. Math. Soc., 4 (1953), 816-823.

[7] K. Nomizu, Invariant affine conneciions on homogeneous spaces, Amer. J. Math., 76
(1954), 33-65.

[8] M. Obata, On subgroups of the orthogonal group, to appear.
[9] S. Sasaki and K. Yano, Pseudo-analytic vectors on pseudo-K\"ahlerian manifolds, Pacific.

J. Math., 5 (1955), 987-993.
[10] J. A. Schouten and K. Yano, On pseudo-K\"ahlerian spaces admitting a continuous

group of motions, Proc. Kon. Ned. Acad. Amst., 58 (Ind. Math, 17) (1955), 565-570.
[11] H. Weyl, The classical groups, Princeton, (1946).
[12] K. Yano, Groups of transformations in generalized spaces, Tokyo (1949).
[13] K. Yano and I. Mogi, On real representations of Kaehlerian manifolds, Ann. of

Math., 61 (1955), 170-189.


	Affine transformations ...
	1. The quaternionian linear ...
	2. The commutator algebra ...
	3. Affine transformations ...
	THEOREM 1. ...
	THEOREM 2. ...
	THEOREM 3. ...

	Bibliography


