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By Tsuneyo YAMANOSHITA

(Received June 12, 1956)

Introduction

Let A, B be given abelian groups and m,»n fixed non-negative
integers. Then Serre has defined as follows the cohomology oper-
ation relative to (A4,B,m,n). It is a mapping C defined for each
CW-complex K of the m-th cohomology group H”(K, A) into H*(K, B),
such that the following diagram is commutative

f*
H~(K, A)—>H"(K', A)
C lc

Hn(K7 B) _‘>Hn(K” B) ’
where K’ is another CW-complex, f* the homomorphism of the coho-
mology group of K into that of K’ induced by a simplicial mapping
f: K’—>K. In generalizing this notion, we shall now consider oper-
ations of the following kind. Our mapping C has as its domain of
definition a subgroup S of H”(K, A) and as its range a factor group
H~(K, B)/M of H"(K,B). Once C is given, an subgroup S=S(K) of
H7(K, A) and the subgroup M=M(K) of H*(K, B) are thus defined by
K; we postulate now

S(K") Cf*(S(K)),
M(K")C f*(M(K))
for every simplicial mapping f: K'—-K. C will be then called coho-
mological operation if the following diagram is commutative
*
HK, A)oS —> S cH"K,A)
C 4 lc
H~K, B))M—->H"(K', B)|M" ,
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whence S'=S(K'), M’ =M(K’). For example, the Adem operation @
introduced in [1] is a cohomological operation in our sense.

More generally, X being any topological space, and the cohomology
group H*(X, G) of X with an abelian group G as coefficient being the
singular one, we can correspondingly define the cohomological operation
in an obvious manner.

Z means as usual the additive group of integers; Z, the group Z
mod »; p a prime number. The meanings of F,, G, f,, 2. 7, &, will
be clear from the following exact sequences

F, G,
(I, 0—Z-—>Z—>Zr—>0,
Iu 8
1) ) 0 > Zyh > Zpri —> L, —> 0,
| b &
(I11,) 0—>Z,—> Zp+1—> Zp—>0.

The coboundary operators associated with (I,), (I1I1,), (I11,) (cf. §1)
are denoted by 1/,.9,9,, d, respectively.

§ 1 contains algebraic preliminaries and topological meanings of
Bockstein operators (cf. § 1 Theorem 2.1.) and in particular of 1/,9,
0y 070

In §2, we define the operations 4i, i=1,..- and give their
fundamental properties. 4, is nothing other than §,=0;; 4, maps
Ker 4,NH"(X, Z,) into H**'(X, Z,)/Im 5; homomorphically; in general,
4i,i=1, maps Ker 45'NHX,Z,) into H**'(X,Z,)/Im?d),_, homomor-
phically. The knowledge of the effect of 4i,7=1,2,... will suffice to
determine the p-primary component of H*(X, Z). (Theorem 1.1 in §2).

Furthermore, if EDF, the knowledge on the effects of 4} on
H*(E,F;Z,) and on H*(E,Z,) will give us some information on the
effect of 4i on H*(F,Z,. These circumstances, useful in the compu-
tation of homotopy groups of spheres and CW-complexes, are ex-
pounded in § 8. Professor H. Toda has kindly communicated to me,
that Professor H. Cartan and himself have also obtained the same
results as our Theorems B.2, 8.5, 8.7 and utilized them to compute the
stable homotopy groups of spheres.

In §4, we define the operations P} 1/,P; and allied operations.
P; is nothing but the Pontrjagin square [11, 15]. 1/,P; is useful in



302 T. YamaNOSHITA

giving the generators of H*(2(S"), Z,), where 2(S*) is the loop space
of the n-sphere S~.

The author intends to publish in a forthcoming paper the ap- .
plications of the results of this paper to the homotopy theory. He
wishes to express his hearty thanks to his friends N. Yoneda, Y.
Saito, T. Nakamura, A. Hattori, who have given him valuable sug-
gestions through kind criticisms and discussions and also to Professor
S. Iyanaga for his constant encouragement during the preparation of
this paper.

§ 1. Algebraic preliminaries

1. Torsion products and extension groups [14]. Let A,B be
(abelian) groups. If we represent A as a factor group of a free
(abelian) group F, then the kernel R of the epimorphism F—A is also
free. Let T be the kernel of the homomorphism RRQB-FXB and
H the cokernel of the homomorphism Hom (F, B)—-Hom (R, B). These
are invariants of the pair (A, B), and are denoted respectively by
AxB (torsion product of A and B) and Ext (A, B) (extension group
of B by A). AxB is a covariant functor in A and in B. Ext (A, B)
is a contravariant functor in A and a covariant functor in B. We
list here some properties of torsion products and extension groups.

1.1. AxBx~ B*A.

1.2. Let

S) 0—>A—>B—>C—0
be an exact sequence and G a group. Then we have an exact sequence
0—>A*G—> B G—>CxG—>ARG—>BRG—>CRG—>0.

1.3. The functor AxB commutes with the formation of direct
sum. "
1.4. We have

ZxA=0 and ZxA=,A,

where ,A is the subgroup of A consisting of a with na=0.
1.5. Under the same hypothesis as in 1.2, we have the following
exact sequences: '
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0«—Ext (4, G)«—Ext (B, G)«—Ext (C, G)«—Hom (4, G)«—
Hom (B, G)«—Hom (C, G)<—0,

0——>Hom (G, A)—>Hom (G, B)—>Hom (G, C)-—>Ext (G, A)—>
Ext (G, B)—>Ext (G, C)——0.

1.6. The functor Ext (A, B) commutes with the formation of direct

sum (finite).
1.7. We have

Ext (Z, A)=0 and Ext(Z, A)~A/nA,

where #A is the subgroup of A consisting of the elements na,a< A.
2. Coboundary operators associated with exact sequences of co-
efficients. When we have an exact sequence (S), we have clearly the
following exact sequence of singular cohomology groups of a space X:
0
- HYX, A)— H*(X, B—> H"(X, C)—>H"*'(X, A)—>--,

whence 6 is the coboundary operator associated with (S). & is defined
in the following way. We have the following commutative diagram
for cochain groups:

O— 42 (X, A) =L Cr+2(X, B) e C7#2 (X, ) et ()

d d
0 —-—$C"+1 \(X, A)--'-{-DC"“(X B)——-.?'%-'C”‘H (X, C)———)'O
/ A

d d

0 — c (X 4)—LocC- (X, B) =i C (X, C) ——3()
N AL

d d

) —>C1(X A) Lo cr1(x, B)—Z5m Cn-1 (X, C)—> 0

Diagram 1.

Let ¢ ‘be a representative cocycle of class {¢}< H"(X,C). From
the above diagram, it is easily seen {f~!'-do.g~!(c)} is uniquely deter-
mined for the class {¢} as an element of H»*(X, A). We denote this
by &{c}. Obviously ¢: H*(X, C)—H"+'(X, A) is a homomorphism.
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We shall determine the kernel and the image of 4. Denote by
L, the n-th homology group H,(X,Z). Then, as is well-known, we
have

H"X,G)~Ext(L,_,, G)YPpHom (L,, G)

and with regards to the sequence (S), we obtain a commutative dia-
gram

a. B,
() ———> Ext(Ln-1, By=———t H" (X, B) = Hom L ,,, B) == ()

© ¢ X
. a, N By
() ——— Ext(L._1, C)—>H" (X, yHom (L n, C) =)
| : 0
0_ - P

A 4
() ———Ext (L, A) = H™ (X, A) =3 Hom (L, 1.1, A) ———3=()

Diagram 2.

In this diagram (2), the & kernel is the y image by the exactness
of the sequence

Y 0
H"(X, B—H"X, C)—>H"+*(X, A).
Since ¢ is epimorphic by 1.5, the ¢ image of H#(X, B) contains
the «, image of Ext(L, ,,C). Also, since B, is epimorphic, the g,
image of v H"(X,B) coincides with the y image of Hom (L,, B).
Noting that g, kernel is the «a, image of Ext(L,_,, C), we obtain

(H"(X, C)D)57'(0)~ Ext (L,_,, C)PxHom (L,, B).

Next, since the g, image of v H*(X, B) coincides with the y-g,
image of H”(X, B) and is contained in the y image of Hom (L,, B), 4,
induces the homomorphism

gr: HYX, C)/yH"X, By—Hom (L,, C)/xHom (L,, B).

B5 is epimorphic, for A, is epimorphic. We shall show that g¥ is
a monomorphism. Let & and ¢ be respectively elements of Hom (L, B)
and H"(X, C) such that B,(c)=x(b). As p, is epimorphic, there exists
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an element &’ of H*(X, B) with 5,(b')=5b. So we have £,oy(d')=x5,(b")
=pB,(c). Therefore there is an element ¢’ = Ext(L,_, C) with «,(c’)
=y (b’)=c. Furthermore ¢ is epimorphic, and so we have an element
b" in Ext (L,_,, B) such that ¢(b"")=c’. Then it follows from o,-¢(d")
=@, (b")=¢(b")—c that c=¢(b' —a,b')). This shows that pg¥* is
monomorphic. Hence we obtain:

THEOREM 2.1. Let

g
S 0—A—B—C—0

be an exact sequence, and & be the coboundary operator associated with
this sequence. Then we have

(H"(X, C)>)-'(0) ~ Ext (L,_,, C)Pg Hom (L,, B)
dH"(X, C)~Hom (L,, C)/gHom (L,, B), (L;=H(X,Z)).

REMARK 2.2. In the diagram (1) 6H*(X,C) is the 2 image of
Hom (L, C).

REMARK 2.3. As to the boundary operator ¢, in homology groups
associated with the above sequence (S), we have

(H,(X, C)D)3%'(0) =~ g(L,QB)DL,_xC,
0.H, (X, C)~ L,QC/g(L,B) .
ExXxAMPLE 2.4. Let (S) be the exact sequence

fa 8,
0—>Z,—>Z p+1—>Zp—>0.

Then we have
o,H X, Z,) ~Hom (L,, Z,»)/g, Hom (L,, Z,n+1) .

Suppose that H, (X, Z) is of finite type in all degrees, then L,
admits a direct sum decomposition into cyclic groups. If the number
of summands in this decomposition whose orders are powers of p with
exponents <7 is exactly »/, then our §, image is a vector space with
dimension #' over Z,.

In the same way, we have

(H (X, th) D)o, ' (0)y=Ext (L,_,, th)@gi,z Hom (L, th"‘l) .

In particular 6;~'(0) (c H(X, Z,)) is a vector space with the same
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dimension as (Tor L,_,RZ,)P((the free part of L,)RZ,)P((>] the cyclic
direct summands of order p’(v=2) of L,)®Z,) over Z,, Namely o'

(0) is the so-called %6 mod p| kernel.

ExaMPLE 2.5. Let (S) be the exact sequence

0—>Zp—">Z pr—>Z—>0 .
Then we have
(H"X, Z,)2)0;'(0)~Ext (L,-,, Z,)Pg, Hom (L, Z,+1).

Hence follows that §;'(0) has the same dimension as (2] the p-primary
direct summands of L, ,)®Z,)PD((the free part of L,)RZ,)P((>] the
cyclic direct summands of order p'(v=h+1))RZ,).

Of course 67'(0) is equal to 0;7(0). ¢,H*(X, Z,) is of dimension n’
(see Example 2.4).

ExaMPLE 2.6. Consider the coboundary operator ~-;%6 associated
with the exact sequence

0—>Z—Z—Z,—>0.

1

Then "p" 5 kernel has the same dimension as ((3] the p-primary direct

summands of L,_)®RZ,)P((the free part of L, )RZ).

The -;_6 image has the same dimension as (3] the p-primary

direct summands of L,)RZ,.
PROPOSITION 2.7. The coboundary operator & associated with the
exacl sequence

g
S) 0—>A—>B—>C—>0

commutes with the coboundary homomorphism 4 of the cohomology
sequence up to sign:
0d= —45.

Proor. For an exact sequence of chain complexes consisting of
free groups,
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A JZ
0¢—R—F«—Q«—0,

we have for any group G
% u*
0—>Ci(R, G)—>Ci{(F, G)—>C{(Q, G)—0,
“where C/(R, G), Ci(F, G), Ci(Q, G) denote the i-th cochain groups with

the coefficient G. Furthermore commutativity holds in the following
diagram:

0 \ 0 \ ; 0
0 —>C(R 4) e scCnEa - »orQA—>0
4 N
\]r A \
0-C*(R.B) - Ci (F, B) QB —0
h » 4
0-+C+ (R, C)— = Ci+: (F,C) - CERO—0
AN\ AN 1‘
0 0\ 0\ 0
0~ ci+1(R A) »Citl (F, A) >Ci+T (Q, A)—=1()
> \ 1 \ 4 \
(Q=+c+! (R B) »Ci+1 (F, B) ' C+(Q, B—=+()
AN 4 1‘ :
0-c+ (& C) CH (F, €)= —C+1(@Q, C)—>=()
00 1 f
0 0\ | 0 0
0-=C' (R 4) >Ci F’K = @A=10
0—=C R B - > Ci (F, B) —> Ci (Q B)==3()
0 =»Ci(R C) > Ci (F,C) > c @ 00

Diagram 3.

We shall denote by d any of the coboundary operators in any of
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the above cochain groups unless no confusion is likely to occur. Take
a cocycle g of Ci(Q,C). Then as p* is epimorphic, there exists an
element fi< Ci{(F,C) such that the x* image of fi is g. Take fi*'=
d(f}). This is annuled by x*. Therefore there exists an element »i*!
of Ci+(R,C) whose i* image is f:*!. Further g is epimorphic, and so
we have g(7i*')=ri! with some r{*'< C*'(R, B). On the other hand,
we have

godri*)y=d-g(ri*)=0.
This implies the existence of 7i'?< C:+*(R, A) such that

f*(r;t‘l—m) :d(r;’)+1) .
Now g and g* being epimorphic, there exists an element fj &
Ci(F, B) whose g image is f.. Since

gdfi— 27y =deg(fj) — A% gri)=fi'—fi'=0,

there is an element fi*' of C/*!(F, A) whose f* image is d(f})—A*(7i*").
Then we have

Fou*(fir')y=u*o(d(f}) —2*(ri") =u* d(fi) =d-n*(f}) .
Moreover we have

FA(firty+ i) =dof(Fir) + 2% of(rir?)
= —do2* (i) -+ 2 d (7)) =0

and f* is monomorphic. Therefore we have d(fi*!)= —2*(ri*'), also we
have u*od(fi*')=0. Therefore there exists »**=C‘**R, A) with the"
property A*(7i*)=d(fi"') (=2*(—7i*?)). That is 7*?*= —»i*? as 1* is
epimorphic. This implies that the cohomology class {r/*?} of 7»*? re-
presenting 4.6{g!} is the same as the cohomology class —{ri*?} of ri+?
representing —d-4{g’}. Q. E. D.

PROPOSITION 2.9. In the exact sequence of groups

) k
0—>A—>B—>B[iA—>0,

we assume that a commutalive ring siructure is given in each of A, B,
BJiA in such a way that

(i) k is a ring homomorphism and

(ii) for the ideal iA in B, we have (1A)*=0.
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Then we can define a bilinear multiplication of A and BJ[iA into
A induced by the natural multiplication of iA and B, whence a bilinear
pairving of H*(X, A) and H*(X, B/iA) can be defined in an obvious way.
Let 6 be the coboundary operator associated with ihe above exact
sequence. For a < H/(X, B[iA), $ < H"(X, BJiA), we have then the fol-
lowing equality
_ d(af)y=0(a)B+ (—1)/ad(B) .
Proof is left to the reader.
PROPOSITION 2.10. The coboundary operator o, is oblained in com-
posing the coboundary operator associated with the exact sequence
F, G,
0—>Z—Z—>Zp—>0
with the homomorphism H*(X, Z)—-H*(X, Z,) induced by the nalural
homomorphism Z—Z,(—0), and the coboundary operalor 3, is oblained
in composing the coboundary operator associated with the exact sequence
F, G
, 0——-?Z——-—>Z——>Zt,-——>0 :
with the homomorphism H*(X, Z)—H*(X, Zyn) mduced by the natural
homomorphism Z—Zu(—0).

PrOOF. It follows from the following commutative diagram:

Fr _,J"O
0=Cc+u(x 2 > Cit1 (X, )= / cf+1 X, Zy) = ()
A
\G1 Vil p Ci+1 (X, Zpr+1)
Ci-H(X, Z.o) O
0—>c (A z) 4 » Ci(X, Z) ! Ci ()ﬁzph) —()
\ I /’/A:r'\c?.(}(' Zi’h'H)
0—4—01(( T OO
Ci-1(X, Z) - Ci-1(X, Z) =1 (X, Zph) ==
O" (4 | c}()'(‘zph_*_r;"‘ X
ci (13(, Z) T | . 0
0->ci—2( > Ci-2(X, Z) <% ci-2 (X, ) ==()
I Cf‘S(X, Zph+1) /

Ct 5 (X Zﬁ) /
0—

Diagram 4.
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0 —=C+1(X, 2) il & —
-t (7 f — 41 ——r
3 < Ci+1 (X, 2) 7> CX, 2) 0
f;, Ci+1 (X, th+l)
i (.2
—0
O—>cx2 > Ci (X, Z) /Ci(X,Zp)_'P'O
A \ I A——__—"\Al ‘T
Ci (X, Zp%) — C' (X, Zyr+y) '
0——P ’ 2 .
O-’Ci_l()(‘ Z) —>Ci-! X’ Z) /Ci‘l (X» Zﬁs.—OFO
4 4:——>l 4
: Ci=1 (X, Zph+1
O Ci—l(X, th) / 24 )

0=ci—(x. 2) TeTR =T _—* zp)’—"fﬂro
\ l "Xz
_ Xz

Diagram 5.

§ 2. Definition of 4, and its properties

" 1. Definition of 4i. The cohomological operations 4 (:=1, 2,---)
is inductively defined as follows.
Operation 4 is defined as the coboundary operator associated with
the exact sequence

Thus 4}, is nothing else than o, of Example §1, 2. 5.

Assume the operation 4i are defined i=1,---,s—1, (h>1) and the
437" kernel coincides with the §,_, kernel. Then we shall define as
follows

4%: 451 kernel (c H*'(X, Z,))—->H"(X, Z,) mod 9;,_, image.

Obviously we have the following commutative diagram:
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_~0
Cr+1(X, Zp)

/g;’r
S

0 — ¢t (X, Z) — —-C 1 (X, Zpit1) & ~Crt1 (X Z)=()
3 , A 0 0 4\
\ fh C\L(X 7 ) O
4 ” y i — 1
c/"+_;(X, Z) //" S é,,& . ,;,0 :
y (X, Zph
0 —> C"(X. Z) / > C (X Z»’+‘) —> C(X, Z)=>0)

“% / I | 4\\0
Cn= I(X Zph—1)
SR — o zmﬂ

0——>C"—1(X th)/ C x(X Z,,h+1) —‘Cu—l(X' Z;:)""O
Cnr-2 (X Zpn- 1) O
Cr (X, zp) / ~ Lr
—7 4 \0 =2 (X, Zph)
0,_->Cn 2(X, ZP’) —3p C" -2 (X, Zph+1) - — -2 (X, Z,>)‘f'>0
\ / : \0
Cn-. Z(XZ ) ’
—7 ‘{
0
Diagram 6.

Let ¢ be an element of H* (X, Z,) whose 4%~' image is zero.
Then by the exactness of the following sequence

St 8n-1 Oppm1
——H" (X, Zp-1)—>H* (X, Zp)—>H" (X, Z,)—>
H(X, th’l) >ty

¢ is contained in the g,_, image of H*-'(X, Z,n). That is, take a re-
presentative cocycle ¢ of class ¢, then there exists a cocycle ¢, &
C" (X, Z,») such that g, .(c,)=c. g, is epimorphic, and so we have
g,(c,)=c, for some cochain ¢, of C*"(X, Z+). Then g;-d(c,) =b-g5(c,)
=0d(c,)=0. Since f, is monomorphic, there exists a unique element ¢,
of CMX,Z,) such that f,;(c,)=0d(c,). Clearly ¢, is a cocycle. Then
4%(c) is defined as the cohomology class of mod. §,_, image. The class
{c,} does not depend on the choice of ¢, out of C»'(X, Z,»+), and, of
course on the choice of ¢, but depends on the class ¢,. ¢ beeing given,
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we can replace {c,} by {c,t+c}, where c;=f,_,(c)), c; being a cocycle
in C*'(X, Z,n-1). Since g, , is epimorphic, there exists a cochain
¢y =C* (X, Z,;) whose g,_, image coincides with ¢{. Since g,_,-d(c;)
=0, there is an element ¢’ <= C"(X, Z,) whose f,_, image is d(c)). Thus
the o;,_, image of the class {c;} is the class {c;’}. This completes the
definition of the operation 4%

Furthermore we prove now that the 4% kernel is the J, kernel.
First, let us show the 5, kernel is contained in the 4% kernel. Let ¢
be a cocycle of C*~'(X,Z,) such that ¢,({c})=0, then there exists a
cocycle ¢’ Cr (X, Z-1) with g,(c')=c by the exactness of the fol-
lowing sequence

f g
oS HP X, Z ) Hr (X, Zyper)—s H (X, Z,)—>
H"(X, Zn)—>--- .

As d(c')=0, we have 4%({c})=0.

Second, we prove that the 4% kernel is contained in the 4, kernel.
In using the above notations, we may write ¢,=c; + (), b = c*~'(X, Z,).

Then we have

Fu(€;) =0(c,) =fi(cy) + f120(b) =d-f,(c})) +0£,(D) ,
hence

3¢y —filey) —fr(0))=0.
Clearly ‘
gi(c,— f(c) —f1(D))
=Zp-1°84(Cs) — &rofi(CY) ~&nofnofni(b)=c.

This implies §,{c} =0.

Thus the cohomological operations 4 are now defined for all =
1,2, 8,-.-.

From the definition of 4% and §1 Example 2.4, we have

THEOREM 1.1. Lel H (X, Z) be of finite type in all degrees, and
n' be the number of cyclic direct summands of H,_ (X, Z) with ovder
p. Then the 4 image in H"(X,Z,) mod?d;_, image has the dimension
n' over Z,. The 4. kernel is equal to the o; kernel.

REMARK 1.2. The operations 4; can be defined in relative cohomo-
logy groups in the same manner.
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REMARK 1.8. Similarly we can define corresponding operations in
homology groups.

REMARK 1.4. We can define 4}: as the coboundary operator as-
sociated with the exact sequence

0—>Z) —>Zp—>Zy —>0,

and define inductively 4ix (=2, 8,...) similarly as above.
2. The fundamental properties of the operations 4/
From the definition of 4 follows immediately
2.1. The operations 4{ commute with the homomorphism of coho-
mology groups induced by mapping of spaces:
Ai
5,-, kernel (¢ H'(X, Z,))—H""(X, Z,)/5;_, image
1 5 7]
d;-y kernel (c HY(Y, Z,))—>H"*(Y, Z,)/0;_, image.

From Proposition 2.7 in §1 follows further
2.2. The operations 4 commutes with the coboundary homomor-
phism 4 of cohomology sequence up to sign:

diod= —Ao4i.
2.1 and 2.2 imply
2.8. The operations 4, commute with the transgression - up to
sign:
A;of = - TOA; .

Now we have
2.4. 4%,-4% has the natural meaning and is

47,045 =0

Especially diodi=0.

Since 4i image=0; image/d;_, image, this follows from the fol-
lowing Lemma.

LEMMA 2.5. 8;00;=0.

PrOOF. The o; image of H"!(X, Z, ) is contained in the G, image
of HY(X,Z) by §1, Prop. 2.10 and the G, image of H*(X,Z) is con-
tained in the g; image of H*(X, Z,j+)) by G,=g;°G;.;. Then §;06;=0
follows immediately from the exactness of the following sequence.
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‘ 5.
H"(X, ij—x)ﬁj—)H"(X, Zp)—J—>H"+’(X, Z,i).
We have furthermore
2.6. Let a and B be respectively elements of H%(X,Z,) and
H«(X, Z,) satisfying ¢, ,(a)=0,_,(8)=0, then 4i(ap) is definable, as
0;-1(af) =0 follows from the assumption 9, ;(a) =4;_,(8) =0. That Li(a)p
and adi(B) have the natural meanings follows from

(9;_; kernel) (8;_, image)d;_, image.
Finally the equality
di(ap) =)+ (—1)"adi(B),
follows from § 1 [Proposition 2.9,
Let us put 8, kernel =], 8, image=7J, (h=1,2,---) L;!J];',:];, Q]h:]"“

Then we have
PROPOSITION 2.7.

Jiclic--clc---cJ.cJ.c--cl,c---J,C],.

Proor. [J,=9o, kernel D4,,, kernel =], is clear from the definition
of the operations 4i.

Now let # be a cocycle of C»'(X, Z,»), then the §, image of the
class {u#} is equal to the ¢,,, image of the class {f,(#)}. (See diagram
(5)). Hence follows J,,,=0,,, imageDd, image=],.

PROPOSITION 2.8. We have

1) if h<k T T T,

2) I J. T, for arbitrary h,k,

) if h<k JwoJeTTh»

(4) if h<k /LN [l /5

Proor. (1) follows from 2.6 and Theorem 1.1, and (2) from (1)
and Proposition 2.7.

As for (3), let a”, a’, @ and g be respectively a cocycle of C(X, Z,),
a cochain of C’(X,Z,+1), a cochain of C7(X,Z,) and a cocycle of
Cs(X, Z,x) such that g,(a’)=a", f(«)=0(a') and 6,({8})=0. Then 2 is
the g, image of 21 which is a cocycle, by the exactness of the sequence

fi g 8
> H(X, Z,,k)—k>Hs(X, Z,,k+1)—k>lﬁ(X, Z,,)—k—>Hs+l(X, Zp)—>--
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and by the commutativity of the following diagram

7 &
O > 7, > Zpht1 o= Zph - >O
&1

&, \ 4
Zpksl > Zp >"O
V \O

0

Diagram 7.

Take a cocycle «'’g;(2) of C*(X, Z,»), then we have
'8y (2) =g g(A) =g’ 2) ,
and
S(a'2) =o(a’)A+ (— 1) a’d(2) =f () A
=filagy () =f(ap) . |
This completes the proof of (3), (4) follows immediately from (3),
and Prop. 2.7 Q. E. D.

REMARK 2.9. The relations (1), (2), (8), (4) are also induced by a
certain filtration of C(X, Z).

From Proposition 2.8 follows

ProproSITION 2.10. [J,/], is an algebra over Z, with a differential
operator 144+ for each h. Here 4:*' is the operator induced by A4+
and has a property A4+1.4i+ =0.

The structure of these algebras for Eilenberg-MacLane complex
K(11,n) has been determined by T. Nakamura.

PROPOSITION 2.11. Let v be an element of the H'(X,Z) with
6,..(v)=0 (8, may be defined as the zero operator), then we have

Sq7” - 41(v) +-v4i(v) if v is even and h=1
A+ (vt = ¢ vdlv) if v is even and h>1.
0 if v is odd.

PrROOF. If 7 is odd, then v*=Sgv=S¢'Sq"~'v=4(Sq”'v), and so the
above result is clear by 2.4. ‘
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If » is even, we have 4%(v*)=0 by 2.6. So we can compute 4%+!(v?)
as follows. Take a representative cocycle v/ of v, then ¢’ is the g,_,
image of a cocycle v/ = C’(X, Z,») by the exactness of the sequence

.. --—)H’(X, Z2h~1)—>H’(X, Zzh)—:»H’(X, Z2)_)Hr+l(X, Zzhhl)—"" S

We consider a cochain #—u-t+u— 0(#), where —; is Steenrod’s
i-product, and # is an integral cochain whose G, image is v" (see §1

[Proposition 2.10). Then Steenrod’s coboundary formula shows that

O(u— o+ u— ,0(u)) =2u—,5(u) + ou— 0(u) .
Therefore we have
Fo (e~ F;'o0(u)+ 28 'F; oo(u)— F5' -0(n))

=2u— ,0(%) + 0(2¢)— ,0(u) ,
and ,
G (u— F; o0(u) + 2/ F, - 0(u)— F';' -0(24))
V'— G, F;'c0(u) + G, F;' - 0()— G, - F;'-6(n) for h=1

V'— G, Fj;'-0(n) for h>1.

This proves our Proposition.

REMARK 2.12. The above proof shows that §,.Pi(v) mod é; image
coincides with 4%(v?), where Pv) means the Pontryagin square of .
(See [11]).

PROPOSITION 2.13. Let v be an element of H (X, Z,) with 5,_,(v)=0,
and p be an odd prime, then we have

A% (vP) =P~ 44(v) .

ProOOF. Let D; be the Steenrod’s D; operator. Then we have
1) D;.d(u) + (—1)*6-Dj(w) = —D;,_, () + D, , - T () if ¢ is odd,
(2) D;o(u) +(—1)*0-D(6)=D;_, (L +T +--- +T+7") (u) if ¢ is even,
D »’3 Da;)
where T'(u) (0, X -+ X0,_,X0,)=(—1) i=1
D(s;) denotes the degree of o,.

We have only to consider the case, where » is even. Then we

have 4%4v?)=0 by 2.6. Let v’ be a cochain such that {G,(v')}=v and
o(v'y=pm"”. Then by (2) we have

(o, X0, X+ Xa,,), and
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0DV R--RQu)=D, -0V Qv)
2 . () ,
=2 DR QD -3V,
J1=

where (7,) on 0(¢’) indicates that 6(¢’) is at the j,-th place in the pro-
duct v&R---RQéW)R---Rv'. The same notation will be used in the
following.
Also by (1) we have
() G

D, (' Q- Q3R+ Q') + 0D, (V' Q- Qo) - - Q')

Gy (71 +1
= =DV R Q)+ V') + D, (' & - (V) - - Q)
for j1 gﬁ——l

= —D,(V'®---R3(1")) + D (30" )Qv"--- ') for j,=p.
Furthermore the following equality holds

Gy Gy
D, 0(v' -+ RV )R- Q') + 6D, (V' Q- KDV K- - X))

(ja) G

;D(lg] ]v’® - RV)R: - RV )R-+ - RV
(7y) (i2) Gy
]—<]§]Z)’® ®5(v’)® -RW)R:--Rv')) + 8D, (VR RIV)R+ - RV') .

Therefore we have
(ja) (k)

5D,V Q- Rv') = — 2kD(2v’® RV R RV D

(%) (ja)
——;‘:,- VR QIR ROW)R+ - RV) + 8D, R+
®6((7f’))®®1)')) 1+ pD,(3(") RV R+ R')
(m) (n)
= _D1 E (W—M)v’®---®6(v’)®...®5(v/)®_._®v/__k-él kﬁoDl

l=mln=p
VDR R QV') + pD (W) RV R+ R .

Thus we have

(k)
@ ADW R @)+ D, R RIW)D )]
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=pD,(0(v")RV'RQ---Qv)—D, > (n—mv'Q-- ®6(v)®--~

1<m<n<
(n)
RO(V')E)- - X' .
By (2) we have

D, 00/ R+ Q00D R3) R - Q) — 8Dyt Q- -
ROBNR- - RO R Q0)

(m+3) (n+j)

=D (zv’® - RBVN R - ROV R RV — 3 V- -

T N T B P S P T T N T Y 1 T

(D-n+m+j)

. ..®6(y’)®...®y/) .

Therefore we have

> [Dyod(v' - @5(0’)® ®5(v’)® Q) — 8- D'

1I=Em<ns=p
RN RN R Q)]
=3 D(Z VR RAND- - RO Qv — :g'"v'@@

1=Em<n=p j=1
(P-n+m+j)

®6(v’)® -R60R- - Q')
=D, >} [p——2(n—m)]v'®...®5((gf))®...®5(({}/))®__,®v/

l=m<n=p
=pD 1<§<n<v'® ®6(1)’)® ®5(vl)® Qv — 1<§<n§.ﬁ

(n—m)' - °®5(0’)®- : -®6(v’)®- Q'

Finally we have

@) DR ®Rv)+ 33 hD,0 D RUP)D-- @]
=pDO)RVD @)+ 12 3 D00’ R-+@3)®

I=m<ln=
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Q)R RV) 3 8D BRI RN D)

1=m<n=

D, 3 vR- RS @R R |-

1=m<n=p :
Obviously the G,,, image of the left' side of (4) is zero, and the
G, image of ' o
, 2, } (R
(5) D, ®°-'®Uf) +kZ:lle(v'@)‘--®5(v’)®'"®v')
coincides with (G,(v'))®. (4) shows that |

(G1/p"10[D,(0' @--- Q) +k>i‘ ED, ('R @3-+ Rv)]}

=44 (v)yv? .

REMARK 2.18. (3) gives us a proof of Proposition 2.11 if p=2
and 7 is even. , .

THEOREM 2.14. Let x<= H+F,Z,) be a transgressive element of
even degree, and let y < H*'(B, Z,) be an image of x under the trans-
gression, then

A, (yRx?"1)=0 for 2<r<Fk(p—1)
and
A (YRxP™!) = £ — 4% PH(3)K1) ,

where s=k(p—1)+1.

This theorem has been proved independently by T. Kudo and
by T. Nakamura. Partly it has been also proved by A. Borel [7]. (On
the notation, see [3]).

§3. The operation 4/, and the cohomology
sequence

" Let E/F=B be a fibering of a space E, and A a principal ring.
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Then Serre has proved: the sequences in the following com-
mutative diagram

™ * T
3.1 H%#Y(F, A)e—H*"*»\(E, Ay«—H'#"Y(B, A) «— H**#(F, A)«..-

i* j* 4
Hi+w\(F, Aye—H"+"\(E, A)«—H} - \(E, F'; A) «— H*4=(F, Ay

—H*B, A) «— H'(F, A)«H'(E, A)«H'(B, A) «—0
! !
—HE,F; A)—H'(F, A)—H'(E, A)«—H'(E, F; A)<0

is exact under the conditions that the local system formed by Hi(F, A)
is trivial for each ¢>0, and H/(B, A)=0 for

0<<i<<x and H/(F, A)=0 for 0 <<i<<pu.

Hence we can obtain some informations about the effect of 4.
in H*(F, Z,) if we know the effects of p* and of 4, in H*(E, Z,) and
in H*(B, Z,), in utilizing the lower exact sequence.

' The notations 2*, 7* will keep the meaning in this lower sequence
also in the sequel.

Now we have

THEOREM 38.2. Let « and B be respectively elements of HNE, Z,)
and of H“*\E,F;Z,) such that 5, (a)=0 and 47(a)=3*(8) mod &,_,
image. Then we have

dodyt ot* ()= —4p(8) mod 4-6,HF, Z,) .

Proor. (Cf."diagram’ (8)).
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0 C*tYE, F; Zp2)

\
CE, F; Zy)
Y
C*YE F; 2) » - —*CSHE, Fi Zp+1)
CtUE, F; Z2)] CHYE, F; Zpr+2)
W

A 0
Zp) / . /O

N y y g,
() —CTE 2 C* N E, Zyr+1) =30 CFNE, Zpr) =3 ()
. [4 )
CS+I(E, Zp""z . CS_H(E, Zp)
d
? CXE, Zpr+1) - C(E, Zp7)
b,
CYE 2)
CXE, Zyr+2)
v Y \
CY(F, Zb), o C5YF, Zyr+1) —*Cﬁl(Fﬁ' Zy)
4
C*LU(F, Z,
C**XF, Zy)
R
CX(F, Zpr+1) w3 C5(F, Zyr)
Y / \ }
CXF, Zy+2) C<F. 2Zp)

Diagram 8.

Let a,b,c,e and f be respectively a cocycle of Cs(E, Z,), a cocycle
of C(E, Zy), an element of C(E, Z,+1), a cocycle of C*'(E, F'; Z,) and
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an element of C*'(E, F'; Z,,) such that {(a}=a,g,_.(d)=a, g(c)=b, {e}=
B, &, (f)=e. By a suitable choice of & and ¢, we may assume j*(e)=
fted(c).

Since j*(e)=f,'-d(c),i*(c) is a cocycle. Let ¢’ be an element of
- Cs*\(E, Zyr+2) whose g.,, image coincides with ¢. Since
& 1ot od(C') =g, 1081 (') =d g, 1 (') =d1* g}, (') =d-1*(c) =0

and z* is epimorphic, there exists an element g&= Cs*'(E, Z,) whose ¢*
image is f,;{-t*-d(c’). The class {f,;l1-¢*-d(c’)} mod §, image coincides
with 47+'.¢*(ax). Obviously we have *.f,, () =t*-d(c¢’), that is *(f,,,(2)
—d(c’))=0. Therefore there exists an element 2= C*'(E, F'; Z,»+2) such
that

() =f,.(8)—d(C).
Further

8rs1°7% (M) =8 1i(f14:1(8) —d(c)) = — &;.1°d(C)

= _d°g;+1(c/) = —d(c)= _g;-+1°f,°j*(f)
because

&rsiof J*(f)=F 187 ()=F,7* -8 (f) =f,°7*(€) =d(c) .
This implies
gk +f'(f)=0.
Therefore we have k< Cs*'(E, F'; Z,) such that

FraR)=f"f(RY=h+f'(f).
The above relations show that
F'(f—fik)-+h=0.
Thus
I g (f —fuR)=7*f'(f—fi(R))
| = —* W) = —(fr(@—d()) .
This implies
dof og*(f—fi(R))=f"o5* d(f—f,(R))

= —dof, (&)= —f"f,-d(g) .
Thus
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j* °d(fo1(k) :j* °f1 Ofl ! od(fﬁf1(k))
=fio7* o frd(f—fi(R) = —f,-d(&) ,

because f’ is monomorphism. In other words,

F*efited(f—fi(R) = —d(g) -
This shows that '

AE*(Q)) = 4{f3108% od(c)) = Ao A7 oi* ()

= —{fit-d(f—fi(R)} = —{fi'-d(f)} = —4(B) .
Q. E. D.

REMARK 3.83. We have also a corresponding theorem to Theorem
2.2 on homology groups. The same remark holds also on the follow-
ing theorems in §8. (We give here only theorems on cohomology
groups, as we need them solely for our purpose.)

REMARK 38.4. Theorem 8.2 gives an information on the effect of
4, (r=1,2,.--) on H*(F, Z,) when we have the knowledge on the effects
of 7* on H¥(E,F;Z,), and of 4% (r=1,2,-.-) on H*(E, F;Z,) and on
H*(E,Z,;). We can prove in a similar way the following proposition
giving an information on the effect of 4% (»=1,2,---) on H*(E, Z,) from
the knowledge on the effects of 4 on H*(F, Z,), and of 4, (r=1,2,.-")
on H*(F,Z,) and H*(E, F; Z,). (The same remark holds also on the
following theorems in § 8).

PROPOSITION. Let a and g be respectively elements of HN(E, F'; Z,)
and of H(F,Z,) such that 6, ,(«)=0 and 4(B)=4%(a) mod. &, , image.

Then we have

i* A7 of* (@) = — 4%(8) mod i* 6, HNE, Z,) .

REMARK 8.5. Theorem 8.8 can be also generalized in the follow-
ing form: »

Let « and B be respectively elements of HS(E, Z,) and of H*!(E,
F;Z,) such that 5, ,(a)=0, 9, (8)=0 and 4%(«x)=3j*(8) modJ,_, image.
Assume that the elements of Hs*'(E, Z, ), each of which has the g, ,
image coinciding with 4%(«), are contained in the j* image of Hs'(E,
F; Zy)mod o, ,HYE, Z,). Then we have |

dodrtof* (@) = — Alp(B) .mod 440, ,_ H(F, Zy+i-1).
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THEOREM 38.6. Let a and B be elements of HNE, Z,) and of H(E,
F; Z,) such that 6, (a)=0 (r=2), j*(B)=a. Then there exists an ele-
ment y = HN(F, Z,) such that
A(r)=—4,8) ,
457 () =t* o d5(a) mod ¢* <5,  HN(E, Z,r-1) + 0, H\(F, Z,;r-2) .
Proor. (Cf. diagram (9)).

C’+](E. F;Zp)
\/ /K
C* -H(E Z) / 0
C’(E F;2,
[on “(“ Zp?)
E F;2)
CHHYE, 2,) e C*(E, Zy 1) 0
C{E, z,,) CAE, Zpr —r)
C’(E Zp)
CS(E Zpr 741) cmmememeeemamie C° E, Zy)
C’(E 22 \
0
CHYE, z, 0
U, Zp)
—5 3 ,,
CXF, Zy-2) /- ‘
0 —>C1F. 2= r G

Diagram 9. '
Let a,b,c,e and f be respectively a cocycle of C(E, Z,) a cocycle of
C:(E, Z,), an element of Cs(E,Z,-1), a cocycle of CYE, F;Z,) and an
element of C(E, F'; Z,,) such that {a}=q«, g,_,(b)=a, g,(c)=b, {e} =8, g,(f)
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—=e¢. Also we may assume without loss of gnerality that the j* image
of e is a. Then there exists an element g<& Ci(FE, Z,) such that f,(g)
=g'(b) —j*(f), for we have
g, 1(0)=g,-8'(0)=a=5*-g,(f)=&j*(f)-
Obviously g’(b) is a cocycle. Therefore
fiod(@) =d-f,(8) = —d-j*(f)= —j* -d(f)
= —j*ofofited(f)=—fioj*fTtod(f) -
Since f, is monomorphic, this implies d(g) = —j*-f*d(f). Of course,
{fr'-d(f)} coincides with 4)(5). Therefore we have
4{*(8)} = —4dy{e} = — 4,(8) .
On the other hand, we have
*of (8) =f,-1*(8) =1*(&'(b) —7* (1))
=1*og'(b)=g"-i*(b) .

Since g,_, is epimorphic, there exists an -element a’ < Cs(F, Z,—1)
such that g,_,(@’)=¢*(g). Then we have

&' of @) =f 8, (@) =f,-i*(8) =& -1* (D).
Therefore there exists an element & & Cs(F, Z,—) such that
[ =i*()—f,.(@) .
This implies
1@+ fri(@) =i*(0) —f,_ (@) + f,_ (@) =i* (D) .
Namely
fraa(fr—(0) +a') =1*(]) ,
and
& —Af—0)+a) =g, (a')=i*(g).
Thus '
dof, (f,—(0') + @) =d-i* (b) =i* -d(b) =0.
This shows that f,_,(b')+a’ is a cocycle, for f,_, is monomorphic.
As g,_, is epimorphic, there exists an element ¢’ < Cs(F, Z,») such that

&(€)=f,s(b") +a.
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And so we have
g f () =f-1°8/ () =f,_i(f,o(0') + @)
=1*(b)=i* g (c) =g ,-1*(c) .
Therefore there exists an element ¢/ & C:(F, Z,) such that
fAe)=i*(c)—f,(c).
This implies ’
fuey=r,ofiu(e)=2*(c)—f,(c'),
and so
ff,_e)+c)=i*(c).
Further we have
fredo(f_(€)+¢)=d-f(f,_i(e)+ )
=dot*(c) =t*od(c) =f,of ;7 oi* od(c)
=f 8% of [7lod(C) =f,of |_ot* of " 'od(C) .
-Since f, is monomorphic, we have
do(f/-i(€)+C)=f; 18" of ;7 edc) .
This implies that
{t* of 7'od(c)} coincides with 457'(z*(g)} mod *-5,_, image
+90,_,image . Q. E. D.

REMARK 8.7. Theorem 3.6 can be also generalized in the follow-
ing form:

Let a and pB be respectively elements of H(E,Z,) and of
H\E,F;Z,) such that 4, (a)=0,05_,(8)=0,r>¢t>0 and j*(p)=a.
Assume further that the elements of HS(E,Z,), each of which has
the g,_, image coinciding with «, are contained in the j* image of
HYE, F; Z,). Then there exists an element r & H%F, Z,) such that

A(r) =45(8) »
457 (r) = —* o () mod ¢* <0, HNE, Zy—1)+0,_,_ H(F, Zy—i—1).

THEOREM 8.8. Let «, 8 and r be respectively elements of H\E, Z,),
of HY\(E, F; Z,) and of HE, F; Z,) such that

dy()=5*(8) (r=2) and a=j5*(r).
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Then there exists an element ¢ of H¥F, Z,) with the following pro-
Derties :
A(e) =4,(r) »
dodi(e)=4y(8) mod 405, JH(F, Z,—1).
PrOOF is left to the reader. (Cf. diagram (10)). This theorem is
a sort of combination of Theorem 3.2 and Theorem 38.6.

C*HYE, F; Z)
s+ 2, .
CHAE F.2Zp) CHE Fi 2
CHYE, Fi 2Zp) > CHE, F; Zyr+1) =——————3CH(E, F; Zy)
-~/ 1 ”"(E Fi2)
Ci*WE Fi 22 —-76‘“@ F; Zp+2)
/ CE. F; Zy) CHYE F; z,)

E, Z2) CNE F, Z)
“(E Z

_7

0 ——>C"(E 2) CHE Zy+1) CHE. Zp) C(E Fiz

N

CstY

C(EF

t

Zp?) C*TE, Zy+2)

C*XE, Z)
CUE, Zyr+1)

CYE. '
CHXE, Zi?)
0 CXE, Z) fo *‘(E Z)
+l F, Zor
CYYF, Zp’)/ ( » CUE 2 X
NG CE Z?)

CH(E, z»;;-———-ﬂz‘ 7t CHUF Zy +')—-——--—-—> CUNF Zp) e z,,)
s s
I > CYF, z,,
i, Zf)\A CAF. 27)

CF. Zy+) - f (F, Zy) === C{F, I~

F z,,,»Ql C (F, Zp)

Diagram 10.

REMARK 38.9. Theorem 3.8 can be also generalized like Theorem
3.3 and Theorem 3.6. (Cf. Remark 3.5 and Remark 3.7).
THEOREM 8.10. Let « and [ be elements of HY(E,Z,) and of
HS(E F;Z,) such that 95, (a)=0,05,(8)=0,*0,HNE, F;Z, )ca,_le‘(E,
Z,) and j* o457 (B) = 43(v).
Moreover we assume that j*(8) =0, then there exists an element r
of H-"(F, Z,) satisfying the following conditions

Ar)=#,
4y(r)=—1*(@) mod *.56;'(0) (C*HNE, Z,))
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Ca-H(E’ F; ZpH—Z)————_—’C’-H(E. F; Zp+1)

[

CHYE, F; Zp) ==eteC*H(E, F ' Zpr4+1)

C\E, F;,2Zp)
SHU(E, F; Zpy)

»CSE, F; Zyr+1)

CYE.F.Zp+?)"
/ / CNE. F: Zp)
7 CHE, F ' Zy+1) = C*E, F; Zy) /
——
. CYE,F; Z)

)‘5, pr+2)
/ )
r &,

Q—»C**iE 2Zy) "}E- Zpr+1) - CHYE, }z',)-_" 0 / OO

P4
0 0 //‘
, CiE, z,.:m—-ﬁg“i L C 0 /

r+1

{E. Zr+~lk.c
/, (E, Zp?)
. Lras (£ 2
030 E, Zp) S CY(E, Zp7 +1) ety C( E, zd f,
0 / A ~ /

r- T CNE, Z,
0 0 A
I 0 CNEZTT 0
7"5, Zpr+1)
Fid Cs—l(E‘ Zp')
0 C*YE. Zp»)
C’+’(F, Zp)—*— Cs+l(1,-' Zp"“) Cs(l"- zﬁ)
0 C{F. Zp?)
CH(F, Zpr+1) e C(F', Z}7) C5F.2,)
CXF, Zp)
C\F. Z)
C*\F. Zp)
Diagram 11.

Proor. (Cf. diagram (11)). Let @ be a representative cocycle of
« such that there exists a cocycle b= C(E, Z,») with g,_(b)=a. More-
over we assume that b is a g, image of c=C(E, Z,~+1). On the other
hand, let &', 5" and ¢’ be respectively an element of Cs(E, F'; Z,) which
represents p3, a cocycle of C(E, F; Z,+1) and an element of C:(E, F;
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Zy+2) such that g,(b')=a’ and g,,,(c’)=0.
Also we can assume without loss of generally

J*of5ied(c’)=f,""-d(c),

then there exists an element e Cs~!(E, Z,r+2) such that d-g, ,(e) =5*(a'),
because j*(8)=0 and g,,, is epimorphic. Then we have

£,1(7*(¢") = fr1a(€) —d(e)
=J* &, u(c') —dog, 1 (e) =7* (&) —j* (@) =0.
Therefore there exists an element ¢’ = Cs(E, Z,7+1) such that

7 () =f,ulc+c)+de) .
Then
J*od(c)=d-j* (') =d-f,\(c) +d-f,.(c") .

On the other hand, we have
J*od(¢") =f 1107 of Fiod(c)
=fri1of 7 ed(€) =f,110d(C) -

Since f,., is monomorphic, this implies that ¢” is a cocycle. Ob-
viously 43{g,(c")+a} coincides with 4z{a}=4j(«x). Thus we can take
g,/(c"")+a for a, so we shall write a for g,(c"”)+a from now on.

On the other hand, we have

8'ogl11o7(¢) =8 &/ r1ofprulc+C") + 8 o811 odle)
=f1(@) + 8 o g, iof,i(C")+dog o8/, (e) ,
and therefore
%o’ og)110§* () =1* o8’ g/ 1of pa(C+ ) 5% odogl o g/ \(e)
0=i*of, (@) +i* odog’ g, 1:(e) -

This implies

*{(@)} = — 4,{t* - g, 1a(0)} -
Furthermore we have

g odog' g, (e)=d-g -8 -g/ ()=j*(@).
This shows that
4{t* g, (e)} ={a'}. Q. E. D.
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REMARK 8.11. Theorem 3.10 can be also generalized in the fol-
lowing form:

Let « and B be elements of H(E, Z,) and of H'(E, F'; Z,) such that
8, (@)=0,8,,,,_(8)=0 (' =1), 5,_ H(E, Z,;—)Dj*8,,, HE, F; Zyt+r-1)
and j*o47"7(8)=4j(ax). Then there exists an element r of H~'(F, Z))
such that

A(r)=~
A;’(r) = —7*(a) mod 6;,_1FIS“’(F, Zpr’—l) +* -07'(0)
THEOREM 3.12. Let « and B be elements of HV(E, Z,) and of H:(E,
F; Z,)) such that (HE,Z,)D)5,'(0)Cs* tmage, s, ,(a)=0, 0,(8)=0, j*o
8, HNE, F; ZyryC 6, [HNE, Z,—), j* - 4571 (B) = 43(«), 7*(B) =0 and j*(r)=«,
then there exists an element ¢ of H'(F,Z,) salisfying the following
conditions
A(e) =7
dofy(e) =44(r) mod 4.4, HNF, Z,) .
PROOF. This is obtained in combining the proofs of Theorem 3.6
and of Theorem 3.10. Complete proof is left to the reader.

REMARK 3.13. In combining Remark 8.7 and Remark 3.11, we
can generalize also the Theorem 3.12.

§4. A generalization of the Pontrjagin square
' operation and auxiliary operations

1. A generalization of the Pontrjagin square operation.
J. H. C. Whitehead [11, 15, 17] defined the Pontrjagin square ope-
ration

P.: H«X,Z)— H"X,Z,),
with the following properties
(1) if n is even Piu+v)=Piu)+ Piv)+f,(uv),
if n is odd Piu+v)=Piu)+Piyv).
(2) if n is even 2Py u)=f, (4%,
if » is odd 2PYu)=0.

We shall now generalize this operation. Denoting by 6 the homo-
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morphism Ht*(X, Z,»—1)— H?*(X, Z,»—1) induced by the injection Z,r—1—
Zy+1, we define an operation

P;: Ker o, N H"(X, Z,)— H"(X, Zn+)|0H(X, Zn—1)

in the following manner.

case p=2.

Let a =Ker d,_,nH"(X, Z,) be represented by a cocycle u' & C"(X,
Z), and let # be an element of C7(X,Z) such that G, (x)=2#' and
o(u)=2"u". As is shown in the proof of Proposition 2.11 in §2,
G, (u—u+u—.5(u)) is a cocycle of C»(X, Z,n+1). Now we put

Pi(@) = (Gt gt + u—,0(u))}) mod 6H (X, Zymr) .

In fact {G, (u— u+u—,0(n))} is determined by « only, depends
neither on the choices of #’ and #%, nor on the ways of performing

~ 0 ~1°

We shall verify this in the following paragraphs 1°~3°.

1°.  {G,(#—,u+u— 6(n))} is independent of the ways of perform-
ing —; the choice of # being already made.

Let —9? and —! denote. Steenrod’s i-products performed in two

z

ways. Then Steenrod has proved
02\ o08) =t~ Y0t — —J0t — [0(2) ot + (—1)"28,,00(2)]
and . :
8(t4010(14)) = 14— 13(28) — U —0(28) — 20,,o0(28) + B(2h) 2t — B(28),0(11) .
(For the meaning of \/i see [9]). Therefore we have
O(2yo + 1 /10(28)) = t— 2t + U—10(%8) — (U~ 2t -+ U~10(2))
=14+ (=) Juy 2 — 2% ',
and so
G 00(s ot +- 7"\/1‘?(“)) =G (u—u + u—10(u))
v — Ghﬂ(uvgujuuv?a(u)) . . ‘
2°., (G, (u~m+u—0(u))} is independent of the choice of » (for
a fixed #'). '

If G,(u)=G,(v)=u' and o(u) =2, 6(v) =2"", then we have v=u
+22,2&C(X, Z), 8(2)=2r13". Now we have :
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(2 +22)— (1 + 22) + (% + 22)— ,6(x) - 26(R))
=~ YU+ U~ O(%) + 2(U— A+ A— s+ 22— 2+ 22— 5(R)
+ s 3(R) + A—,6())
=u— U+ u— 0(u) +2[ —o(u— )+ [1+(—1)"]1— u
+0(#)— A+ [14+ (—1)"Jue—~ 0(R) + 22~ A+ 22— 8(%) + A—,0(%)] ,
because the following equality holds
d(t—,2) = — s A+ (—1)" 2= ot + 8(2)— 2 + (— 1)"st— 5(2) .

Obviously G,_,(2— %+ 2—2) is a cocycle in C**(X, Z,»1). Therefore
we have

{Gpi(v— 0 +v—,0(v))}
={G [ (1 +22)— (% +22) + (2 + 22)—,(5(2t) + 25(2)) ]}
={Gpp(— @+ u— 0()} + {0+ G, [[1+(—1)"]/22—u
+ A=A} =G (#~u+u— 6(w)} mod 6H (X, Z,n—1).

3°. (G, (w—m+u—06(n)) is independent of the choice of ='.

If (W)=} =a, G,(u)=u', 6(u)=2"", then we have v =u'+dw’),
w & C"'(X, Z,). Taking any we C* (X, Z) with G,(w)=w' and putting
v=wu-+0d(w), we now have G,(v)=v', and further

V— 0+ 0v— 0(v)
= (2 +0(w))— (2 + 0(w)) + (u + d(w))— ,6(2)
=U~— U+ U~ 0(%) + U~ 0(W) + (W)~ u + 6(w)— ,0(w)
+ o0(w)~,0(u)
=u— U+ u—,0(u) — o(u—,0(w)) +[1+ (—1)"]o(w)— u
+ 0(w) —,06(w) + 6(u)—,6(w) + d(w)— (%)
=s— 4+ u— 0(u) —(u— o(w)) +[1+(—1)"16(w— %)
+[1+ (—1)*"Jw—,0(%) + d(w— ,0(w)) — 6(0(2)—,0(w)) ,
because of the equalities:
d(u—,0(w)) = — s~ B(w) + (—1)"0(w)— % + 6(%)— 6(w) ,

B(ew— ) =8(W) — + (— 1y ~w—3(2) ,
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and
3(0(u)—,0(w)) = — 0(¢)— ,6(w) — 6(w)—,0(«) .
Thus
(Gl (V=0 + 01— 0(0)} ={G) - (t— -+ U~ 0(%))} .
Case p>2.

Let a«= Kers, ,NH*(X,Z,) be represented by a cocycle '
C"(X,Z,) and let # be an element of C*(X,Z) such that

G,(u)=u' and 6(u)=p"w’ for some u'<=Cr (X, Z).
First let #» be even. As is shown in the proof of Proposition 2.13
in § 2,
) )
G (D(uR---Qu) +k§ kD (4 R0(#)Q---Qu))

is a cocycle of C(X, Z,n+1). We set

b (R)
Pﬁ(a) = {Gh+1(Do(u®‘ .t ®u) + kEﬂl kD1(u® o ®6(u)® * ®u))}
mod 6 Hr*( X, th—l) .

This is again determined only by «, independently of D, operators
and of the choices of #/,u. In fact:

» ®
1°. {Gn(Dy (R Qu) +kz=l kD (#R)---Qd(u)&Q- - Qu))}

is independent of the choice of D,.
Let E; be the Steenrod’s notation [10], then there exists the fol-
lowing properties.

E,=0 and
E. -0+(—1)6-E; ,=D,—D;—E/(—1+T) if i is odd,
E; o0+ (—1)o-E; ,=D,—D;—E1+T+..-+T?") if { is even.
Now we have

E 0u®---Qu)+0-E, @@ Qu)

€))
=D, — D)) uQ---Qu),
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and
(k) (k)
E, 0.+ R0)®--Qth) — - By QbW Q- --Qts)
(—(D,~ D) 4R @AW Q) ~ E,(~ 4R Q) D B
+ U Q)R- Qu) for k=kp

~(D,— D)) (U Q) Q-+ Rtt) — E\(— uD---Q0(t) + 5(t) D
\ ---Qu) for k=p.

Thus we have

P (k) D k)

E,S RS+ @)D Q) — 333 RE D+ @)D Q)
p (k) y23 (k)

_ 3 k(D, - D)) (4R---QU)D--Qu) + E,3 (- - R5()®
Q) — PE,b) QU Q)

(k)
:kzi)lk(Dl D)) (uR--- Q)R- Q)+ (D, — D) (4R Quh)
OB, (- R) — PE,(5() QU ---Qt) -

This implies
b (R)
(Gl D(uR---Ru) + g)lle(u@ +0(2#) Q- - - Qut) — (D% - -+

(k)
@) + 35 kDR R+ Du))])

? )
= {Gh+1°6(;lkE2(u®---®6(u)®-~®u) +E Q- --Qu))}=0,
proving the stated independence.
b . )
2°. {Gh+1(Do(u®---®u)+§le(u®---®5(u)®~-®u))}
is independent of the choice of # (for a fixed #').

If G,(u)=G,(v)=v' and 6(u)=p"u"’, 6(v)=p"', then we have v=u
+pAAECH(x, Z), 6(3) =p*14"". Now we have
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p
D (s + PR+~ @0+ ) + 33 kD, (-+ pHD--
Q61 PRt -+2))
(k)
=D0(u®---®u)+é ED, (- Qb)) Qut)

b (iy) p—1
+3], T D Rl @i+ 5 3
! TS

310D, (D AR DD DI+ D)

+2 > Z’W*‘D (#Q)-- ®l® ®5(1)® ®l® *Qu)

r=11< <1
uxk

(R)

+EkﬁDl(u® RN --Qu)
A similar computatmn as in (8) in the proof of Proposition 2.13,

§ 2 yields
(1)

i1=1
5?11

®5(u)® "QQu A+ u- ®5(l)® ®%)—“2_115 oD, (u)- -
®3®'“®u)+PDo(l®"'®%) .

Therefore

ZPDo(u® ®1® ®%)+Z ZkPD (- ®5(u)®

1=1 i1=1 k=
11 k

(71)

QA ®u)+2ka (&) ®5(1)® ‘Qu)
—PE Z(k—z)D (U&)-- ®l® ®5(u)® "QQu) — Z

i1=1
11=\=k

i,05-D, (U @I+ @) + DDy ((QUE) Q) -

Thus we have
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(G Dy (4 PVR @ (e +p2)) + kﬁ kD, (4 4+ )@

QL PHR- R+ pA))])
(€3]
~ Gyl D, (UD @) + 2} kD D+ @@ Q)]

G [D(QQuE)-- ®u)+2 2, P"'D (#)- -

r=2 11
(€2)) (iy)

Q-+ RAQ--- )]} -

Obviously
(€20
Gy [D(RUD @)+ 33 3 DD DD
(lr)
RAR)- - Qu)]

is a cocycle of C?*(X, Z,»-1). This proves our assertion.

(k)
0. (G [Dy U@ Q) + kﬁ: kD, (4D~ DU)D--Qe)])

is independent of the choice of #'.

If (}={}=a, G(v)=u' and o(u)=p"u”’, then we have v' =o'+
dw'), w =C'(X,Z,), and we can find v=u-+dw), w=C" (X, Z) such
that G,(v)=v'. We have immediately

b
3) D (s + 6(w)) Q- - (4 + 5(w)) +,§ kD, ((%+ 6(w))Q):---

RS-+ 3(w)))
=D (u)---QQu) + EkD (#)-- ®6(u)® ®u)+2 >

r=1101<<ip

Do) ®5(w)® ®5(w)® ®“)+Ek2 >

k=1 r= lu< -<f
P 7

(1) (k ’ (i,)
Dl(u®-~®5(W)®-~-®5(u)®---®6(w)®-"®u)
Let (¢,---,7,) be any increasing subsequence of (1,2, ,P) with
i,=1.
We denote by (ji,---,j,-,) the subsequence of (1,2,.--,p) comple-
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mentary to (¢,---,4,). Then the following equalities can be easily
verified :

(11) (1 )

4) ZD T/((w)X)-- ®5(w)® -&u)

(11) (1 @ 1)

=pD,(6(w))- ®6(w)® -Qu) — 2[(]+1)D 20T/ OW)&

) (i ()

- @D D ®u)-2(1+1)5°l) T/ (3(w)X- ®5(w)® "Qu)] 5

(z)

oTI(3(w) Q- ®5(w)® ‘Qu)

p—1 (’1) (’k) (l )

*T’Z O(W)D- - X))+ RO ) -

With regard to the difference between the second summand in
the right hand side of (4) and the corresponding terms in the last
summand of the right hand side of (3), we have

p—r (11) (Jm (@ 9]

(4) —E(J+1)D T’E(5(w)® *0(1) X+ ®5(w)® -Xu)

p—r P=Im G ¢ G,

+Z 2 U+ D T/ ew)Q)- Qo)D) ®5(w)® ®u)

m=1 7=0

Yy ot ) Grd G

+ Z 2 Unti—P)DT/ew)R)- Q)R- QW) L- - &Kt) -

m=1 G fytt

p—r p_j;'n ('1 (] ) ' ")
:,;1 ]20 (. — 1D, T/(0(w)):-- ®5(u)® ®5(w)® @“)
p—r (11) (]m 1

+ Z (Jm—l —D)D, T8 (w)&)--- Qo () -+ ®6(w)® -Qu)

p—r p—1 . (ip Gy @)
=X 2 (U —1D, - TIEw)R: R Q- R (W) Q-+ Q)
m=1 =0

p—r p— (ip) G )

-2 Z D, T/ (3(w)X---XRo(#) Q)+ ®5(w)® "Qu)

ML jm o=t
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—r ay) i W)
:pzl(j;n—l)[Dz°5(5(w)®---®6(u)®---®5(w)®...®u)
(J ) (x)

—6002(6(20)@ . Qo) R QW) R- - Q)]

p—r p— (‘l) (] ) (l)

Z PD THRW)R) Do) D ®5(w)® ®u)

m=1j=p—7j,

Since there exist the following equalities

G )
{Gh1[ DD, (0(w) Q- - Qo) Q- - RQue]}
(11) (t (11) (Jm)

(G99 Dy0@uUD) - RIS - S) +PZD(W® L CAN2Y

QBN @) =

we have
(i) @ » p—r D Jm
®) {Gh+1[ZD TR ®6(w)® Qu) +m2_1 Zo (Jm+7)
G G, p—r p—1
D, T/ (6(w)Q:-- ®5(u)® ®5(w)® ®“)—2 b
m"IJ =p—jpH1

(i ) (J ) ' )
(Gt 5 =)D, - Ti (W) D+ R0~ Ro(w) )& Ru)]} =
It is easily verifies that (5) is a sufficient condition for our

assertion. Q. E. D.
Next let »n be o_dd. Then we have

» )
80D (UX)---X)ue) =.Zf (— 1) Dy(uR)- - Q)R- - Ru)
and |
D, -o(u(x)-- -®6(;?)®- ~Ret) + 6D, (X .®5(22)®.. -Ru)
= DD+ QU D+ @t) — Dy DRI R- Q) i< p—1
:Do(a(u)®®u)_Do(u®®5(u)) i=p.

Therefore we have
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(k)
a(Do(u®--~®u>+§_:1 k(—1)'D, (@ Q@)@+ Q)

@)
— P, (D) RUR Qi — 3 k(—1)D,(3 (— 1)~ Q3D

U+ R + 3 (~ 1D @AM+~ DA Q)
This implies that

(k)
Gun DD @) + 33 b(— 1D U@ @U@+~ C)]

is a cocycle. We set

(k)
Pi(0t) = (G [ Dyt @- Q) + 2" k(— 1) D, @R @5 Qu)]}
mod 0H"(X, Z,n—) .

This is also determined only by «, independently of D, operators
and of the choice of #/,u. The proof is analogously performed as in
the proof of the case where »n is even.

REMARK 1.1. In a similar way we can also define an operation

‘Pt HY(X, Z,n) — HP"(X, Z,pt1) .
REMARK 1.2. If » is odd, then it is easily verified that

(&)
Bt1{G [ Do) - Qne) + kzl_,; k(—1)*'D, (- Qo)) --Qu) 1} =0 .

2. Addition formula of the generalized Pontrjagin square.
In this section, we shall prove the following property of P}:
6)  Pila+p)=Pja)+PyB)

+f, (azH 8 +§ (-1 1)'.,';1}(1!’.:&151.)_ ar—rpr 4 apr~t|, if D(a) is even.

Pi(a+ B) =Pi(a)+ P(B), if D(a) is odd.

PrROOF. of (6). Let # and v be cochains &C*(X,Z) such that
(G,(w)}=«, {G,)}=p and 0-G,(#)=5-G,(v)=0. Case p=2. We have
the following equalities '

(#+v)—(u+0) 4 (1 +0v)—,(6(n) + 6(v))

=U—~ U+ U~ 0(U) + UV~ U+ V— 0(0)+U— 0+ V— U
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+ u—,0(v) +v—,0(2)

=t~ U+ U—,0(%) + UV~ U+ V— 0(V) — (b~ V) + 2u~ ,6(V)

+[1+ (—D7Jo—0(x) +[1+(—1)"Jv— 2,
for

(= v)= —u—w+(—1)yv—u+o(u)— v+ (—1)"u—0().
Therefore

G, [(+v)— (6 +0)+ (u+0v)—,(6(2) + 0(v))]

=G, (e—pt+u—0n)+ G, (v—w+v—,0(v))

+ fr(v— %) if n is even,

=G (U=t + u— o) + G, ,(V—w+v—,0(v)) if » is odd.

Case p>2. We give the proof only for the case » is even, as
the case n is odd is treated analogously.
We have the following equalities

(k)
D,((%+ )R +2)) +§; kD, ((# +v)R)---R(3(x) + ()X
(e +0))
4 (k)
=D, uX)---Xu) + Z kD (uX)---R3(u)R)- - Rut) + Dy (vX)- - Xv)

R (71)

+2kD (@& -RdV)Q- - ®v)+v 2 D(u® R

r=1 ll
(lr)

-+ QU+ ®u)+2,le[2 2 “® ®v® @5(u)®

r=1 11
fu¥
()

VD Rut 3 3 5 @ D DI~

2

@ @ul + 3 kD, D RO

Let (#,---,¢,) be any increasing subsequence of (1,2,.--,p) with
5,=1, and (j;,---,7,-,) be the subsequence of (1, 2,-.-,p) complementary
to (¢,---,2,). Then the following equalities can be easily verified:

(11) a 2

(M) ZD Ti(v&)-- ®v® ")
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(tl) « ) (11) (z

=D, (v QUD)- RV ®u)—2 (7+1)D, 00 T/ (vQQu:- - ®v®

(11) 6 »)

- Ru) — Z(]+1)50D TH(vX)- - ®v® Qu) ,

(11)
8- Ti(v:-- ®U® *Xu)
, D () R L) G

~TIE (0@ @O D@ @) + 3 0@+~ @o(w)

...@J@...@u)] .

In virtue of the similar computation as in (4), we have

(11) (zk) ¢S ) P (11)

—Z(J+1)DT/[ZU® X)) R ®“+Zv®

Jj=0
(]k) (t , p—zk (11)
@OV ®u]+2 [2; @+i)D, TR
(tk) . Gp (zk)
KI)K)- ®v® ®%)+ Z (i +5— DD, - Ti(OR)-- ®5(v)®
=p— 1k+1
8] _, p—ip () A @)

®v® (X)u)HZ1 [> (Jr+ D, TH(0R: X3 (u) Q-+ ®v®

(i (Jk) (z

- Qu) + 2 o+ i — DD, THOR-+ RO R RV Q)]

i=p— Jk+1
r p—1 (11) (zk) (z )
=355 (= DD, THR- @A D Qo+~

, —1 (11) (zk) G, )

-2 E D, TH (0RO D+ QU+~ Q)

k=1 jmp—if1

p—r p—1 (11) (]k) “ )
+3 5 4~ DD, THR RO @D+~
p—r p— G (J ) G, )

-2 Z D, T/ (v ®5(u)® VR~ R0)

k=1 jop— Jk+1
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(l‘) @) k) (i 1)

—Z(lk*l)[D 20(v)- ROV K)-- ®U® "Qu) —8-D, (v

(lk) (: (11) (lk)

RO D- QU@+ Qa)] — E E D, T/ Q)R

k=1 ;- p—zk+l
A o—r Y Gp) )
- QU+ ) + Z (Je— DID;0(vR)- - Q(#) X - - V- - 1)

(xl (J ) ' ) (11)

—0:D,(0Q - AW DID Q) — 3y = pD, T

sl"'lk"‘l
Gy )
.. .®6(u)® . .®y®. . ®u) .
Therefore we have

r (11) (]k)

@)  {Guul- E(J+1)D T2, v& QWD+ ®v® Qu

p—r H) (,k) (t,) , b— lk G
+3 v®-~®6<u)®---®v®---®u+,; 3 (i +)D,- Tito®
Gy —1 G (ip)
D DD @+ S Gyt i DD TIOD--DADD
j=b—iptt
p—r b~ Ik (iy) (]k)
®U® ®u)]+2[2 @+ D T (& R (U)Q- - ®v®
p—1 (tl (J) (x,,)
~@u S Giti— DD, TR @AW QoD+ Qully =0
j=b=jpts

It is easily verified that (8) is a sufficient condition for our
assertion.
REMARK 2.1. For the operation ‘Pj we have analogously

p—1 1
\Pg(a+ﬂ):‘Pz(a)+‘Pz(ﬂ)+fh(ap—1ﬂ+z-l 1) ) ’E‘{) r+1)

ar~rpr+aptl) .

3. Auxiliary operations.
Consider the exact sequence
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9 - Hor (X, th)_)Hpn(X, Zp)'—)Hp"(X’ th+1)__)H1m(X, Zph)—>+++
induced by the exact sequence

h - 8
0—>Z,—>Z pr1i—>Zn—0.

Let « be an element of H*(X, Z,») such that a?=0. Then the
exactness of (9) implies that there exists an element g& H"(X, Z,)
such that f,(8)="Pi«). Obviously 8 is uniquely determined mod Im o,
and we now define ‘

(1/,2°P}) (@) =5 mod 6, H?*(X, Z ) .

Let « be an element of H"(X, Z,) such that ¢, ,(¢)=0 and a?=0,
then by the exactness of the following sequence

oo ms HO X, Z,) > Ho (X, Zyp)—>Hon(X, Zii)—> HP (X, Z,)>++-

there exists an element r such that f,(r)=Pi«).
We set

(1/,P%) () =r mod 8, Ht»\(X, Z,) + f,,_H"(X, Z—) .

ExAMPLE 8.1. Let S*!' (n>=1) be an odd-dimensional sphere. Then
Serre proved that H*(2(S"*'),Z) has a base («,, a,---) with D(«,)=
in £=1,2,..- such that a,a;=(}")a; ;. This shows H*(2(S""), Z,)=
Qp[ﬁo’ ﬂly :827"']7 D(ﬁl) :pi” Z:O; 1’ 2;"', where AQp[ﬂo’ 1917 ﬂz;"'] means the
- factor algebra of the polynomial algebra generated by the elements
Bos Bys By++, by the ideal generated by the elements p3, 5%, 5,---. Then
it is easily verified that '

Bipn =1/, P(—8,) (=1],P)(—8)) i=0,1,2,.--.
REMARK 8.2. We have the following relations (D(«) even).
If p>2, 05,0 (1/,P%) () =a?~ 4%(cx)
mod &), H"(X, Z, 1) .
If p=2 and =1, 0;-(1/,P}) («) =adi(«a) +Sg"4i(x),
if p=2 and h>1, 5,-(1/,P?) (@) =adl(a)
mod o), H(X, Z,n—1).
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