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1. Introduction

Recently, K. Morita [4] has introduced the following idea. Let
$X$ be a topological space and $\{A_{\alpha}\}$ a closed covering of $X$. Then $X$

is said to have the weak topology with respect to $\{A_{\alpha}\}$ , if the union of
any subcollection $\{A_{\beta}\}$ of $\{A_{\alpha}\}$ is closed in $X$ and any subset of
$\bigcup_{\beta}A_{\beta}$ whose intersection with each $A_{\beta}$ is closed relative to the sub-

space topology of $A_{\beta}$ is necessarily closed in the subspace
$\bigcup_{\beta}A_{\beta}$

.
E. Michael [3] has introduced the following notion. A topological

space $X$ is called an absolute extensor (resp. absolute neighborhood
extensor) for metric spaces if, whenever $Y$ is a metric space and $B$ is
a closed subset of $Y$, then any continuous mapping from $B$ into $X$

can be extended to a continuous mapping from $Y$ (resp. some neigh-
borhood of $B$ in Y) into $X$. A topological space $X$ is called an
absolute retract (resp. absolute neighborhood retract) for metric spaces
if, whenever $X$ is a closed subset of a metric space $Y$, there exists
a continuous mapping from $Y$ (resp. some neighborhood of $Y$ in $X$)

onto $X$ which keeps $Xpointwi^{q}\llcorner e$ fixed. We shall use the following
abbreviations as Michael [3]:

AE =absolute extensor.
ANE $=absolute$ neighborhood extensor.
AR $=absolute$ retract.
ANR $=absolute$ neighborhood retract.

The purpose of this paper is to establish the following theorem.

THEOREM. Let $X$ be a topological space having the weak topology
with respect to a closed covering $\{A_{\alpha}\}$ . We assume that, for each finite
subcollection $\{A_{\alpha_{1}}, A_{\alpha_{2}},\cdots, A_{a_{n}}\}$ of $\{A_{\alpha}\}$ with non-void intersection, $\bigcap_{i\Rightarrow 1}^{n}A_{\alpha_{i}}$
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is an $ANE$ for metric spaces. Then $X$ is an $ANE$ for metric spaces.
The following theorems proved by K. Borsuk [1, p. 226] and O.

Hanner [2, 25.1] are consequencnces of the above theorem.

COROLLARY 1. If $A_{1}$ and $A_{2}$ are closed subsets of a metric space
$X$ such that $A_{1}\cup A_{2}=X$ and $A_{1},$ $A_{2}$ and $A_{1}\cap A_{2}$ are $ANR$ for metric
spaces, then $X$ is an $ANR$ for metric spaces.

COROLLARY 2. Any simplicial complex with the weak topology is
an $ANE$ for metric spaces.

The author wishes here to express his sincere gratitude to Pro-
fessor K. Morita for his helpful suggestions and kind criticism.

2. Lemmas

LEMMA 1. Let $X$ be a topological space having the weak topology
with respect to a closed covering $\{A_{\alpha}|\alpha\in\Lambda\}$ and $Y$ a metric space.
Let $f$ be a continuous mapping of $Y$ into X. Put $Y_{\alpha}=f^{-1}(A_{\alpha}),$ $\alpha\in\Lambda$ .
Then there exists a closed covering $\{B_{\alpha}|\alpha\in\Lambda\}$ of $Y$ which satisfies the
following conditions:

i) $B_{\alpha}\subset Y_{\alpha}$ , $\alpha\in\Lambda$ .
ii) $\{B_{\alpha}|\alpha\in\Lambda\}$ is locally finite.
PROOF. We assume that the set $\Lambda$ of indices $\alpha$ consists of all

ordinals $\alpha$ less than a fixed ordinal $\eta$. Put $B_{\alpha}=\overline{Y_{\alpha}-\bigcup_{\beta<\alpha}Y}_{\beta},$
$\alpha<\eta$ .

Then $\{B_{\alpha}|\alpha<\eta\}$ is a closed covering of Yand we have $Y_{\alpha}\supset B_{\alpha},$ $\alpha<\eta$ .
Now we shall show that $\{B_{\alpha}|\alpha<\eta\}$ is locally finite. Put, for

each $\tau<\eta$,
$P_{\tau}=\{B_{\alpha}|\alpha\leqq\tau\}$ , $Q_{\tau}=\{B_{\alpha}|\alpha<\tau\}$ .

We assume that for each $\theta$ less than $\tau(<\eta)P_{\theta}$ is locally finite.
Since $\bigcup_{\alpha<\tau}A_{\alpha}$ is closed in $X$ by the definition of the weak topology

and $Y_{\alpha}=f^{-1}(A_{\alpha}),$
$\alpha<\tau,\bigcup_{\alpha<\tau}Y_{\alpha}$ is closed. Moreover, since $\bigcup_{\alpha<\tau}Y_{\alpha}=\cup B_{\alpha}$,

$\bigcup_{\alpha<\tau}B_{\alpha}$ is closed in Y. Therefore, to prove that $Q_{\tau}$ is locally finite, it

is sufficient to prove that any point $p$ of $\bigcup_{\alpha<\tau}B_{\alpha}$ has some neighborhood
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which meets only a finite number of elements of $Q_{\tau}$ . Suppose that
every neighborhood of a point $p$ meets infinite elements of $Q_{\tau}$ . We
assume $p$ belongs to $B_{\beta}$ for some $\beta<\tau$ . Then, since $Y$ is a metric
space, we can find the following sequence of points $\{p_{k}\}$ of $Y$ :

$p_{k}\rightarrow p(k\rightarrow\infty)$ ,

$p_{k}\in B_{\beta_{k}},$ $\beta<\beta_{k}<\beta_{k+\downarrow<T}$ , $ k=1,2,\cdots$ .
Since

$ p_{k}\in B_{\beta_{k}}=\overline{Y_{\beta_{k}}-\bigcup_{\gamma<\beta_{k}}Y_{\gamma},}k=1,2,\cdots$
, we can find the following se-

quence $\{p^{j_{k}}|j=1,2,\cdots\}$ of points of
$Y_{\beta_{k}}-\bigcup_{\gamma\in\beta_{k}}Y_{\gamma}$

:

$p^{j_{k}}\rightarrow p_{k}(j\rightarrow\infty)$ .
For each $ k=1,2,\cdots$ , we can select $j_{k}$ such that

$p_{k^{k}}j\rightarrow p$ $(k\rightarrow\infty)$ .
Since $p\in B_{\beta}$ and $f$ is continuous, we have $f(p)\in A_{\beta}$ . On the other
hand, since

$p_{k^{k}}j\in Y_{\beta_{k}}-\bigcup_{\gamma<\beta_{k}}Y_{\gamma}$
and $Y_{a}=f^{-1}(A_{\alpha})$ , we have $f(p_{k^{k}}^{j})\in A_{\beta_{k}}-$

$\bigcup_{\gamma<\beta_{k}}A_{\gamma}$
. Therefore we have

$(^{\star})$ $f(p_{k}^{j_{k}})\neq f(p_{l}j_{l}),$ $k\neq l;f(p_{k}j_{k})\neq f(p),$ $,$

$ k=1,2,\cdots$ .

Put $A=\cup A_{\beta_{\oint}}$ and $B=\{f(p_{k^{k}}^{j})|k=1,2, \cdots\}$ . Since $A_{\rho_{k}}\cap B\subset\bigcup_{i=1}^{k}f(p_{i^{j}}i)$ ,
$B$ is closed in $A$ which is closed in $X$ by the definition of weak
topology. But $f(p)\not\in B$ by (’). This contradicts the fact that $f$ is
continuous. Thus $Q_{\tau}$ is locally finite. Since $P_{\tau}=\{Q_{\tau} ; B_{r}\},$ $P_{\tau}$ is locally
finite. This completes the proof of Lemma 1.

LEMMA 2. Let $Y$ be a metric space, $B$ a closed subset of $Y$ and
$\{B_{\alpha}|\alpha\in\Lambda\}$ a locally finite closed covering of B. Then there exists a
closed neighborhood $F$ of $B$ in $Y$ and a locally finite closed covering
$\{F_{\alpha}|\alpha\in\Lambda\}$ of $F$ which satisfies the following conditions:

i) $F_{\alpha}\cap B=B_{\alpha},$ $\alpha\in\Lambda$ .
ii) $\{F_{a}|\alpha\in\Lambda\}$ is similar to $\{B_{\alpha}|\alpha\in\Lambda\}$ .
PROOF. Since $B$ is fully normal and $\{B_{\alpha}|\alpha\in\Lambda\}$ is locally finite

closed covering, by K. Morita [4, 1.3] there exists a locally finite
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covering $\{S_{\alpha}|\alpha\in\Lambda\}$ of $B$ as follows:

i) $S_{\alpha}\supset B_{\alpha}$ , $\alpha\in\Lambda$ .
ii) $S_{\alpha}$ is open relative to $B$ .

iii) $\{S_{\alpha}|\alpha\in\Lambda\}$ is similar to $\{B_{\alpha}|\alpha\in\Lambda\}$ .
Since $S_{\alpha},$ $\alpha\in\Lambda$ , is $F_{\sigma}$ as an open set of the metric space $B$, by K.
Morita [6, Lemma 1], we can find a locally finite system { $ H_{\alpha}|\alpha$ EA}
of open sets in $Y$ as follows:

i) $H_{\alpha}\cap B=S_{\alpha}$ , $\alpha\in\Lambda$ .
ii) $\{H_{\alpha}|\alpha\in\Lambda\}$ is similar to $\{B_{\alpha}|\alpha\in\Lambda\}$ .

Take, for each $\alpha$ , an open set $V_{\alpha}$ of $Y$ such that

$H_{\alpha}\supset\overline{V}_{\alpha}\supset V_{\alpha}\supset B_{\alpha}$ .
Then $\{V_{\alpha}|\alpha\in\Lambda\}$ is a locally finite system of closed sets of $Y$ and is
similar to $\{B_{\alpha}|\alpha\in\Lambda\}$ . Put $F=\cup\{\overline{V}_{\alpha}|\alpha\in\Lambda\}$ . Then $F$ is a closed
neighborhood of $B$ in $Y$. By transfinite induction we shall prove the
existence of a locally finite closed covering of $F$ satisfying the condi-
tions of Lemma 2. We can assume the set $\Lambda$ of indices $\alpha$ consists of
all ordina1 $s\alpha$ less than a fixed ordinal $\eta$. Suppose that for each $\alpha$

less than $\tau(<\eta)$ there exists a locally finite closed covering $P_{\alpha}=$

$\{F_{\beta}, \beta\leqq\alpha;\overline{V}_{\gamma}, \alpha<\gamma\}$ of $F$ which satisfies the following conditions:
$i)_{\alpha}$ $F_{\beta}\cap B=B_{\beta},$ $F_{\beta}\subset\overline{V}_{\beta}$ . $\beta\leqq\alpha$ .

$ii)_{\alpha}$ If a point $p$ of $B$ belongs to only $B_{\alpha_{\oint}},$
$\alpha_{i}\leqq\alpha,$ $i=1,2,\cdots,$ $n$ ,

then $p\in Interior(F_{\alpha_{1}}\cup F_{\alpha_{2}}\cup\cdots\cup F_{\alpha_{n}})$ . Put $Q_{\tau}=\{F_{\beta}, \beta<\tau;\overline{V}_{\gamma}, \tau\leqq\gamma\}$ .
0bviously $Q_{\tau}$ is a locally finite closed covering of $F$ and we have

$i)_{\star}$ $F_{\beta}\cap B=B_{\beta},$ $F_{\beta}\cap\overline{V}_{\beta}$ , $\beta<\tau$ .
$ii)_{\star}$ If a point $p$ belongs to only $B_{\alpha_{i}},$ $\alpha_{j}<\tau,$ $i=1,2,\cdots,$ $n$, then

$p\in Interior(F_{\alpha_{1}}\cup F_{\alpha_{2}}\cup\cdots\cup F_{\alpha_{n}})$ .
We divide $\overline{V}_{\tau}\cap B-B_{\tau}$ into two disjoint subsets $S_{1},$ $S_{2}$ as follows. If a
point $p$ of $\overline{V}_{\tau}\cap B-B_{\tau}$ belongs to only $B_{\alpha_{i}},$ $\alpha_{i}<\tau,$ $i=1,\cdots,$ $n,$ $thenp\in S_{1}$ .
Put $S_{2}=\overline{V}_{\tau}\cap B-B_{\tau}-S_{1}$ . Take $p\in S_{1}$ . By the assumption we can find
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$B_{\alpha_{i}},$ $i=1,\cdots,$ $n$ , such that $p$ belongs to only $B_{\alpha_{i}},$ $\alpha_{i}<\tau,$ $i=1,\cdots,$ $n$ . We
have by $ii)_{\star}p\in Interior(F_{\alpha_{1}}\cup\cdots\cup F_{\alpha_{n}})$ . Therefore we can find an
open neighborhood $L_{1}(p)$ of $p$ as follows:

$L_{1}(p)\subset Interior(F_{\alpha_{1}}\cup F_{\alpha_{2}}\cup\cdots\cup F_{\alpha_{n}})$

and

$\overline{L_{1}(p)}\cap B_{\tau}=\phi$ .
Take $p^{\prime}\in S_{2}$ . By the assumption there exists some $V_{\gamma},$ $\gamma>\tau$ ,

containing $p^{\prime}$ . Therefore we can find an open spherical neighborhood
$L_{2}(p^{r})$ as follows:

$\overline{L_{2}(p^{J}})\subset V_{\gamma}$

and

the radius of $L_{2}(p^{\prime})\leqq\frac{1}{2}\rho(p^{\prime}, B_{\tau})$ ,

where $\rho$ is a metric function in Y. Put $F_{\tau}=\overline{V}_{\tau}-\bigcup_{p\in s_{1}}L_{1}(p)\bigcup_{p^{r}\in s_{2}}L_{2}(p^{\prime})$ .
By the construction we have $F_{\tau}\subset\overline{V}_{\tau}$ and $F_{\tau}\cap B=B_{\tau},$ $i$ . $e$ . $i)_{\tau}$ holds.
Put $P_{\tau}=\{F_{\beta}, \beta\leqq\tau;\overline{V}_{\gamma}, \tau<\gamma\}$ . Obviously $P_{\tau}\backslash $ is locally finite as a
refinement of $Q_{\tau}$ . Moreover $P_{\tau}$ is a closed covering of $F$ since $Q_{\tau}$ is
a closed covering of $F$ and

$\overline{V}_{\tau}-F_{\tau}\subset\bigcup_{p\subset S_{1}}L_{1}(p)\bigcup_{p^{\prime}\subset S_{2}}L_{2}(p^{\prime})\subset\cup\{F_{\beta}, \beta<\tau\}\cup\{\overline{V}_{\gamma}, \tau<\gamma\}$ .

Next, we shall prove that P. satisfies the condition $ii)_{\tau}$ . For this
purpose, it is sufficient to prove that if a point $q$ of $B$ belongs to
only $B_{\alpha_{1}},$ $B_{\alpha_{2}},\cdots,$

$B_{\alpha_{n}},$
$B_{\tau},$ $\alpha_{i}<\tau,$ $i=1,2,\cdots,$ $n$, then

$q\in Interior(F_{\alpha_{1}}\cup F_{\alpha_{2}}\cup\cdots\cup F_{\alpha_{n}}\cup F_{\tau})$ ,

since $P_{\tau}$ satisfies the condition $ii)_{\alpha}$ for each $\alpha<\tau$ . Suppose $ q\not\in$ Interior
$(F_{\alpha_{1}}\cup F_{\alpha_{2}}\cup\cdots\cup F_{\alpha_{n}}\cup F_{\tau})$ . Since $P_{\tau}$ is a locally finite closed covering
of $F$ and the condition $i)_{\tau}$ holds, $q$ does not belong to $Interior\cup\{F_{\beta}$,
$\beta\leqq\tau\}$ . Since $V_{\tau}$ is an open set containing $q$, we have

$q\in\overline{V_{\gamma}-\cup\{F_{\beta},\beta\leqq\tau\}}\subset\overline{\bigcup_{p\in S_{1}}L_{1}(p)\bigcup_{p^{\prime}\in S_{2}}L_{2}(p^{r})-\cup\{F_{\beta},\beta<\tau\}}$ .
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Moreover, since $\bigcup_{p\in S_{1}}L_{1}(p)\subset\cup\{F_{\beta}, \beta<\tau\}$ , we have

$q\in\overline{\bigcup_{p^{\prime}\in s_{2}}L}_{2}\overline{(p^{\prime})-\cup\{F_{\beta},\beta}^{-}\overline{<\tau\}}$ .

Therefore we can find the following sequence of points $of\bigcup_{p^{\prime}\in S_{2}}L_{2}(p^{\prime})-$

$\cup\{F_{\beta}, \beta<\tau\}$ :

$q_{i}\rightarrow q(i\rightarrow\infty);q_{i}\in L_{2}(p_{i}),$ $p_{i}\in S_{2},$ $ i=1,2,\cdots$ .
By the construction of $L_{2}(p_{i}),$ $p_{i}\in S_{2}$ , and $q\in B_{\tau}$ we have the follow-
ing inequality:

(1) $\rho(p_{i}, q_{i})<\frac{1}{2}\rho(p_{i}, B_{\tau})\leqq\frac{1}{2}\rho(p_{j}, q)$ .

Moreover,

(2) $\rho(p_{i}, q)\leqq\rho(p_{i}, q_{i})+\rho(q_{i}, q)$ .
Therefore, we have by (1) and (2)

$(^{\star})$ $\frac{1}{2}\rho(p_{i}, q)<\rho(q_{i}, q)$ .

On the other hand, since $\{B_{\alpha}|\alpha<\eta\}$ is the locally finite closed cover-
ing of $B$ and the point $q$ belongs to only $B_{\alpha_{1}},\cdots,$

$B_{\alpha_{n}},$
$B_{\tau}$ , we have

$q\in Interior_{B}(B_{\alpha_{1}}\cup\cdots\cup B_{\alpha_{n}}\cup B_{\tau})$ ,

where $Interior_{B}$ means the set of interior points relative to $B$. By
the construction of $S_{2},$ $S_{2}\cup Interior_{B}(B_{\alpha_{1}}\cup\cdots\cup B_{\alpha_{n}}\cup B_{\tau})=\phi,$

$i$ . $e$ . $\rho(q, S_{2})$

$>0$ . Therefore, by $(^{\star})$ and $p_{i}\in S_{2},$ $ i=1,2,\cdots$ , we have

$0<\frac{1}{2}\rho(q, S_{2})<\rho(q_{i}, q)$ , $ i=1,2,\cdots$ .

This contradicts the fact that $q_{i}\rightarrow q(i\rightarrow\infty)$ . Therefore $q\in Interior$

$(F_{a_{1}}\cup\cdots\cup F_{\alpha_{h}}\cup F_{\tau})$ . We have proved that $P_{\tau}$ satisfies the conditions
$i)_{\tau}$ and $ii)_{\tau}$. Put $\mathfrak{F}=\{F_{\beta}, \beta<\eta\}$ . Then it is obvious that $\mathfrak{F}$ is a locally
finite closed covering of $F$ which we require.

LEMMA 3. Let $Y$ be a topological space, $B$ a closed subset of $Y$
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and $F$ a closed neighborhood of $B$ in Y. Moreover let $\{F_{\alpha}|\alpha\in\Lambda\}$ be a
locally finite closed covering of F. Suppose that for each $\alpha$ there is a
closed neighborhood $C_{\alpha}$ of $F_{\alpha}\cap B$ in $F_{\alpha}$ . Then

$C=\cup\{C_{\alpha}|\alpha\in\Lambda\}$

is a closed neighborhood of $B$ in Y.
PROOF. Since this theorem is a trivial modification of [2, 20.2],

we omit the proof.

LEMMA 4. Let $Q$ be a class of topological spaces. Let $X$ be a
topological space and $\{A_{i}|i=1,\cdots, n\}$ a closed covering of X. If $\bigcup_{j\leftarrow 1}^{p}A_{i_{j}}$

$\neq\phi,$ $i_{j}\in(1,\cdots, n),j=1,\cdots,p$, let $\bigcup_{j=1}^{p}A_{i_{j}}$ be an $ANE$ for Q-spaces. More-
over let $Y$ be a Q-space, $B$ a closed subset of $Y$ and $\{Y_{i}|i=1,\ldots, n\}a$

closed covering of Y. Put $B_{i}=B\cap Y_{i},$ $i=1,\cdots,$ $n$. Let $f$ be a continuous
mapping of $B$ into $X$ such that $f(B_{i})\subset A_{i},$ $i=1,\cdots,$ $n$ . Let Q-spaces be
normal. Then there exist a closed neighborhood $F$ of $B$ in $Y$ and an
extention $h$ of $f$ such that $h:F\rightarrow X$ and $h(F\cup Y_{i})\subset A_{i},$ $i=1,2,\cdots,$ $n$ .

PROOF. Put $H=\cup\{\bigcap_{j=1}^{p}Y_{i_{j}}|\bigcap_{j=1}^{p}Y_{i_{j}}\cap B=\phi, i_{1},\cdots, i_{p}\in(1,\ldots, n)\}$ . Since
$ H\cap B=\phi$ and $Y$ is normal, we can find a closed neighborhood $D$ of
$B$ in $Y$ such that $ D\cap H=\phi$ . Put $D_{j}=D\cap Y_{i},$ $i=1,\cdots,$ $n$ . Then $\{D_{i}\}$ is
similar to $\{B_{i}\}$ . Denote by $K$ the nerve of $\{D_{i}\}$ . A simplex of $K$ is
denoted by $(i_{0},\cdots, i_{p}),$ $i_{0},\cdots,$ $i_{p}\in(1,\cdots, n)$ . For each simplex $s=(i_{0},\cdots, i_{p})$

of $K$ put $|s|=\bigcap_{j=1}^{p}D_{i_{j}}$ . Give a simple order to the simplexes of $K$ as
follows; at first, give same dimensional simplexes a suitable order;
next, if $\dim s>\dim s^{\prime}$ , we define $s$ is less than s’, i. e. $s<s^{t}$ . Assume
that for each simplex $s<$ a fixed $\overline{s}$ the following mapping $f_{s}$ and a
closed set $M(s)$ are constructed:

$i)_{s}$ $M(s)$ is a closed neighborhood of $M(s)nB$ in $|s|$ .
$ii)_{s}$ $f_{s}$ is a continuous mapping of $M(s)$ into $\cap A_{i_{j}}$, where $s=$

$(i_{0},\ldots, i_{p})$ , such that $f_{s}|B\cap M(s)=f|B\cap M(s)$ .
$iii)_{s}$ Let $s_{1}=(i_{0},\cdots, i_{p})$ and $s_{2}=(j_{0},\cdots,j_{q})$ be two simplexes such that

$s_{1}\leqq s_{2}\leqq s$ and $s_{1},$ $s_{2}$ spans a simplex $s_{3}=(h_{0},\cdots, h_{r})$ of $K$, where
$h_{0}=i_{0},\cdots,$ $h_{\gamma-q}=i_{\gamma-q}=j_{0},\cdots,$ $h_{p}=i_{p}=j_{p+q-v},\cdots,$ $h_{r}=j_{q}$ . Then we
have
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$(M(s_{1})\cap|s_{3}|)\cup(M(s_{2})\cap|s_{3}|)\subset M(s_{3})$

and

$f_{s_{1}}|M(s_{1})\cap M(s_{2})=f_{s_{2}}|M(s_{1})\cap M(s_{2})$ .
We shall construct a closed neighborhood $M(\overline{s})$ of $|\overline{s}|\cap B$ in $|\overline{s}|$ and
a mapping $f_{\overline{s}}$ satisfying $i)_{\overline{s}},$ $ii)_{\vec{s}}$ and $iii)_{\overline{s}}$ .

Let $\overline{s}=(k_{0},\cdots, k_{r}),$ $k_{j}\in(1,\cdots, n),$ $j=0,\cdots,$ $r$. At first, let $\overline{s}$ be a prin-

cipal simplex. Then since $|\overline{s}|\cap(\cup\{|s|, s<\overline{s}\})=\phi$ and $\bigcap_{j=0}^{r}A_{k_{j}}$ is an

ANE for Q-spaces, there exist a closed neighborhood $M(\overline{s})$ of $|\overline{s}|\cap B$

in $|\overline{s}|$ and an extention $f_{\overline{s}}$ of $f||\overline{s}|\cap B$ over $M(\overline{s})$ such that $ f_{\overline{s}}(M(\overline{s}))\subset$

$\bigcap_{j=0}^{r}A_{k_{j}}$. It is obvious that the conditions $i)_{\dot{s}},$ $ii)_{\overline{s}}$ and $iii)_{\dot{s}}$ are satis-

fied. Next, let $\overline{s}$ be a face of $s_{i}^{r+1},$ $i=1,\ldots,$ $m$ . Then since $M(s_{i}^{\gamma+1})$ is
a closed neighborhood of $|s_{i}^{r+1}|\cap B$ in $|s_{i}^{r+1}|$ and $|s_{i}^{r+1}|\subset|\overline{s}|,$ $i=1,\cdots,$ $m$,

we have $(\bigcup_{i=0}^{m}\overline{|s_{i}^{r+1}|-M(s_{l}^{r+1}}))\cap|\overline{s}|\cap B=\phi$ . Since $|\overline{s}|$ is a normal space

there exists a closed neighborhood $N$ of $|\overline{s}|\cap B$ in $|\overline{s}|$ such that

$ N\cap(\bigcup_{i=1}^{m}|\overline{s_{i}^{r+1}|-M(s_{i}^{\gamma+1})})=\phi$ . Define $g:\bigcup_{i=1}^{m}M(s_{i}^{r+1})\cup(|\overline{s}|\cap B)\rightarrow\bigcap_{j=0}^{r}A_{k_{j}}$ as
follows:

$g|M(s_{i}^{r}1)=f_{s_{i}^{r+1}},$ $i=1,\cdots,$ $m,$ $g||\overline{s}|\cap B=f$ .

Then $g$ is a single-valued continuous mapping by the assumption of

induction. Since $\bigcap_{j=0}^{r}A_{k_{j}}$ is an ANE for Q-space there exist a closed

neighborhood $M(\overline{s})$ of $\bigcup_{i=1}^{m}M(s_{i}^{r+1})\cup(|\overline{s}|\cap B)$ in $\bigcup_{i=1}^{m}M(s_{i}^{r+1})\cup N$ and an

extention $f_{\overline{s}}$ of $g$ over $M(\overline{s})$ . Since $\bigcup_{i=1}^{m}M(s_{i}^{\gamma+1})\cup N$ is a closed neigh-

borhood of $|\overline{s}|\cap B$ in $|\overline{s}|$ , it is obvious that the conditions $i)_{\overline{s}},$ $ii)_{\overline{s}}$ and
$iii)_{\overline{s}}$ are satisfied. Therefore we can construct $M(s)$ and $f_{s}$ satisfying
$i)_{s},$ $ii)_{s}$ and $iii)_{s}$ for each $s$ of $K$ If we put $F=\cup\{M(s), s\in K\},$ $F$ is
a closed neighborhood of $B$ in $Y$ by Lemma 3. Define $h:F\rightarrow X$ by
$h|M(s)=f_{s}$ . Since condition $iii)_{s}$ is satisfied for each $s$ of $K,$ $F$ and
$h$ are respectively the closed neighborhood and the extention which
we require.
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3. The proof of Theorem

Let $Y$ be a metric space, $B$ a closed subset of $Y$ and $f$ a continuous
mapping from $B$ into $X$. We shall show that there exist a closed
neighborhood $G$ of $B$ in $Y$ and an extention $h$ of $f$ such that $h|B=f$
and $h:G\rightarrow Y$.

Put $C_{\alpha}=f^{-1}(A_{\alpha})$ and $B_{\alpha}=C_{\alpha}-\bigcup_{\beta<\alpha}C_{\beta}$ for each $\alpha<\eta$. Then $\mathfrak{F}_{1}=$

$\{B_{\alpha}|\alpha<\eta\}$ is a locally finite closed covering of $B$ by Lemma 1. By
the application of Lemma 2 we can find a closed neighborhood $F$ of
$B$ in $Y$ and a locally finite closed covering $\mathfrak{F}_{2}=\{F_{\alpha}|\alpha<\eta\}$ such that
$\mathfrak{F}_{2}|B=\mathfrak{F}_{1}$ and $\mathfrak{F}_{2}$ is similar to $\mathfrak{F}_{1}$ . Since $\mathfrak{F}_{2}$ is a locally finite open
covering of $F$ there exists a locally finite open covering $\{V_{\pi}\}$ of $F$

each closure of which meets only finite number of elements of $\mathfrak{F}_{2}$ .
Put $\mathfrak{V}=\{V_{\pi}|V_{\pi}\cap B\neq\phi\}$ . Then $\mathfrak{V}$ is a locally finite closed covering
of $B$ and $\cup\{\overline{V}_{\pi}|V_{\pi}\in \mathfrak{V}\}$ is a closed neighborhood of $B$ in Y. We
assume that the set of indices $\pi$ consists of all ordinals $\pi$ less than
a fixed ordinal $\delta$ and put, for each $\theta<\delta$ ,

$Q_{\theta}=\cup\{\overline{V}_{\pi}|\pi<\theta\}$ . $P_{\theta}=\cup\{\overline{V}_{\pi}|\pi\leqq\theta\}$ .
Let $\mu<\delta$ . Assume for each $\theta<\mu$ the following closed set $N_{\theta}$ and
continuous mapping $f_{\theta}$ are constructed:

$i)_{\theta}$ $N_{\theta}$ is a closed neighborhood of $P_{\theta}\cap B$ in $P_{\theta}$ .
$ii)_{\theta}$ $f_{\theta}$ is a continuous mapping of $N_{\theta}\cup B$ into $X$.

$iii)_{\theta}$ $f_{\theta}|B=f$.
$iv)_{\theta}$ If $\nu<\theta$ we have $N\subset N_{\theta}$ and $f_{\theta}|N_{\nu}=f_{\nu}$ .

$v)_{\theta}$ For each $\alpha<\delta$ we have
$f_{\theta}(N_{\theta}\cap F_{\alpha})\subset A_{\alpha}$ .

Put $M=\cup\{N_{\theta}|\theta<\mu\}\cup B$. Define $g:M\rightarrow X$ by $g|N_{\theta}\cup B=f_{\theta}$ . By $iv)_{\theta}$

and the local finiteness of $\mathfrak{V},$ $g$ is single-valued and continuous. Let
$F_{\alpha_{1}},$ $F_{\alpha_{2}},\cdots,$

$F_{\alpha_{n}}$ be all elements of $\mathfrak{F}_{2}$ which meet $\overline{V}_{\mu}$ . Now we apply
Lemma 4 to $V_{\mu},$ $V_{\mu}\cap M,$ $\{\overline{V}_{\mu}\cap F_{\alpha_{i}}, i=1,\cdots, n\}$ and $A_{\alpha_{1}}\cup\cdots\cup A_{\alpha_{n}}$ . We
can find a closed neighborhood $M_{\mu}$ of $\overline{V}_{\mu}\cap M$ in $\overline{V}_{u}$ and a continuous
mapping $h:M_{\mu}\rightarrow A_{\alpha_{1}}\cup\cdots\cup A_{\alpha_{n}}$ such that $h|\overline{V}_{\mu}\cap M=g|\overline{V}_{\mu}\cap M$ and
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$h(M_{\mu}\cap F_{\alpha_{i}})\subset A_{\alpha_{i}},$ $i=1,\ldots n’$ . Put $N_{\mu}=\cup\{N_{\theta}|\theta<\mu\}\cup M_{\mu}$ . Define $f_{\mu}$ :
$N_{\mu}\cup B\rightarrow X$ by $f_{\mu}|M=g$ and $f_{\mu}|M_{\mu}=h$ . It is obvious that the condi-
tions $i)_{\mu},$ $ii)_{\mu},$ $iii)_{\mu}iv)_{\mu}$ and $v)_{\mu}$ are satisfied. Put $G=\cup\{N_{\theta}|\theta<\delta\}$ .
Define $h:G\rightarrow X$ by $h|N_{\theta}\cup B=f_{\theta},$ $\theta<\delta$ . Then $G$ is the closed neigh-
borhood of $B$ in $Y$ by Lemma 3 and $h$ is an extention of $f$ over $G$

by the construction. This completes the proof of the theorem.

REMARK. The above theorem cannot be strengthend by replacing
“

$\bigcup_{j=1}^{n}A_{\alpha_{j}}$ is an ANE for metric spaces for each finite collection $\{A_{\alpha_{1}}$ ,

$A_{\alpha_{2}},\cdots,$
$A_{\alpha_{n}}$ } with non-void intersection ” by “ $A_{\alpha}$ is an ANE for metric

spaces for each $\alpha$ , as is shown by the following simple example.

Let $S_{i}$ be the circumference in the xy-plane with $(\div,$ $0),$ $(\frac{1}{i+1}$

$0)$ as the end points of diameter, $ i=1,2,\cdots$ . Put $X=(0,0)\cup(\bigcup_{i=0}^{\infty}S_{i})$ ,

$A_{1}=$ { $(x,$ $y)|(x,$ $y)\in X$ and $y\geqq 0$ } and $A_{2}=$ { $(x,$ $y)|(x,$ $y)\in X$ and $y\leqq 0$ }.
Then it is easily shown that $X$ is not ANE for metric spaces, though
$A_{1}$ and $A_{2}$ are AE for metric spaces.

Next, the above theorem cannot be strengthend by replacing
“ ANE for metric spaces” by “ ANE for compact Hausdorff spaces ‘’.
This is shown by an example of $O$ , Hanner [2, 23.4].

Tokyo University of Education
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