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Analogue of a theorem of F. and M. Riesz
for minimal surfaces.

By Maxwell O. READE1)

(Received Dec. 10, 1955)

In a fundamental paper published some years ago, Beckenbach
and Rad\’o showed how certain function-theoretic methods and results.
could be extended to obtain analogous results for functions of class
$PL$ ; they also showed how the new results could be utilized to obtain
additional theorems relating to minimal surfaces [1].

In that same spirit, we use a function-theoretic technique to obtain
an analogue for functions of class $PL$, of the well-known theorem of
F. and M. Riesz [2; p. 46]; then we obtain the corresponding result
for minimal surfaces. It should be noted that our first theorem could
also be obtained from the deep results due to Littlewood [4] and
Deny and Lelong [3].

Let $p(z)\equiv p(x, y)$ be a real-valued function defined for $z$ in the
unit disc $\mathfrak{D}:|z|<1$ . Then $p(z)$ is said to be of class $PL$ if and only
if the following conditions hold [1; p. 651]: (i) $p(z)$ is continuous,
(ii) $p(z)\geqq 0$ , and (iii) $\log p(z)$ is subharmonic in that part of $\mathfrak{D}$ where
$p(z)>0$ .

For functions of class $PL$ we have the following result, which
generalizes a theorem due to Beckenbach and Rad6 [1; p. 652].

THEOREM 1. Let $p(z)$ be of class $PL$ and bounded in $\mathfrak{D}$ , and let
$E\equiv[\theta|\lim_{r\rightarrow 1}p(re^{i\theta})=0],$

$z=re^{i\theta}$. If the (linear) measure $mE$ of $E$ is

positive, then $p(z)\equiv 0$ .
PROOF. First, $E$ is measurable. Moreover, if $ mE=2\pi$, then it

follows from Lebesgue’s theorem that

(1) $\lim_{r\rightarrow 1}\int_{0^{\pi}}^{2}p(re^{i\theta})d\theta=\int_{0}^{2\pi}\lim_{r\rightarrow 1}p(re^{i\theta})d\theta=0$ .
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Science Foundation (USA).
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But the integral mean on the left hand side of (1) is a non-decreasing
function of the radius $r$. Hence the non-negative function $p(z)$ vanishes
identically in $\mathfrak{D}$ .

Now suppose $ 0<mE<2\pi$. We define the bounded harmonic func-
tion $u(z)\equiv u(x, y)$ , by means of the Poisson integral for $\mathfrak{D}$ , with
boundary values $A/mE$ on $E$, and $A/(mE-2\pi)$ on the complement $E^{\prime}$

of $E$ ; here $A$ is an arbitrary positive constant. We see that $u(O)=0$

and that $\lim_{\gamma\rightarrow 1}u(re^{i\theta})$ exists and equals the assigned boundary values

for almost all $\theta,$ $ 0\leqq\theta\leqq 2\pi$ . Now the function $g(z)\equiv e^{u(z})$ is bounded
and of class $PL$ in $\mathfrak{D}$ ; moreover $g(O)=1,$ $\lim_{\gamma\rightarrow 1}g(re^{i\theta})=e^{A/mE}$ almost

everywhere on $E$, and $\lim_{r\rightarrow 1}g(re^{i\theta})=e^{-A/(2\pi-mE)}$ almost everywhere on $E^{\prime}$ .
The function $p(z)g(z)$ is again bounded and of class $PL$ in $\mathfrak{D}$ , since
the class of $PL$ functions is closed under multiplication. Since a
function of class $PL$ is also subharmonic, we obtain the following set

$\triangleleft f$ inequalities;

$ 0\leqq p(0)=p(0)g(0)\leqq\frac{1}{2\pi}\int_{0^{\pi}}^{2}p(re^{i\theta})g(re^{i\theta})d\theta$

$\leqq\frac{1}{2\pi}\lim_{\gamma\rightarrow 1}\int_{0^{\pi}}^{2}p(re^{i\theta})g(re^{;\theta})d\theta$

$\leqq\frac{1}{2\pi}\int_{0^{\pi}}^{2}\lim_{r\rightarrow 1}[p(re^{i\theta})g(re^{i\theta})]d\theta$

$\leqq\frac{M}{2\pi}mE^{\prime}e^{-\frac{A}{2\pi-mE}}$ ,

where $M$ is an upper bound for $p(z)$ in $\mathfrak{D}$ . Since $A$ was an arbitrary
positive constant, it follows that $p(O)=0$ .

Now let $z_{0}$ be an arbitrary point in $\mathfrak{D}$ . Then there is a linear
fractional transformation $z=L(\zeta)$ of $\mathfrak{D}$ onto itself such that $L(O)=z_{0}$ ,
and such that $p(z)$ is transformed into another function $P(\zeta)$ which
is again bounded and of class $PL$ in $\mathfrak{D}$ . Moreover, since we have a
theorem of Lindel\"of type available for bounded functions of class
$PL$ [ $1$ ; p. 652], it follows that $\lim_{\rho\rightarrow 1}P(\rho e^{i\varphi})=0$

, $\zeta=\rho e^{i\varphi}$, for all $\varphi$ be-

longing to the image of $E$ under the transformation $z=L(\zeta)$ . Hence,
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as before, we conclude $0=P(O)=p(z_{0})$ . Now it follows that $p(z)\equiv 0$

in $\mathfrak{D}$ .
A simple application of the preceding result is the following;
THEOREM 2. Let $X_{j}(z)\equiv X_{j}(x, y),$ $j=1,2,3$ , be the coordinate func-

tions of a bounded minimal surface $S$ given in isothermic representation

for $z=x+iy$ in the unit disc $D$, and let $E_{a}\equiv[\theta|\lim_{r\rightarrow 1}\sum_{j\rightarrow 1}^{3}\{X_{j}(z)-a_{j}\}^{2}=0]$ ,

where $a_{1},$ $a_{2},$ $a_{3}$ are constants. If the (linear) measure $mE_{a}$ is positive
for a fixed triple $a_{1},$ $a_{2},$ $a_{3}$ , then $X_{j}(z)\equiv a_{j},$ $j=1,2,3$ holds in $D$.

PROOF. Let $a_{1},$ $a_{2},$ $a_{3}$ denote a fixed triple of constants. Then it
is known that under our present hypothesis, the function $ p(z)\equiv$

$\sum_{j=1}^{3}[X_{j}(z)-a_{j}]^{2}$ is a (bounded) function of class $PL$ in $D$ [ $1$ ; p. 654].

The present theorem now follows from the first theorem.
This last result is an analogue of a corresponding one for plane

conformal maps. In the plane case, we also have the same sort of
conclusion for schlicht maps, and it would be of interest to obtain
its generalization to schlicht maps on minimal surfaces.
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