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In the present paper, we define the notion of birational isomor-
phisms for algebraic groups by making use of the rational representa-
tions treated in Chevalley’s book $[$ 1 $]^{}$ and formulate the following
problem. Given a family $\mathfrak{F}$ of algebraic groups, is it birationally
invariant (that is, does $\mathfrak{F}$ contain every algebraic group which is
birationally isomorphic with a group in $\mathfrak{F}$ ) ?

Here we take as $\mathfrak{F}$ the family composed of classical groups,2) and
shall show that the answer is affirmative if the field of definition of
the groups is of characteristic zero and the dimension of the vector
space on which groups operate is large enough. The proof depends
on Weyl’s representation theory and Dieudonn\’e’s structure theory of
classical groups. We don’t know whether the same assertion is true
or not for algebraic groups defined over a field of characteristic $p$.

The writer wishes to express his thanks to Mr. N. Iwahori and
Mr. J. Hano for their discussions with him.

\S 1. Birational isomorphism.

Let $V$ be a finite dimensional vector space over an infinite field
$K^{3)}$ and let $E$ be the vector space of endomorphisms of $V$. We shall
say that two algebraic groups $G$ and $G^{\prime}$ on $V$ are birationally iso-
morphic if there is an isomorphism $\rho$ of $G$ onto $G^{\prime}$ such that $\rho$ and

1) [1] p. 101, Definition 4. In this paper, we shall freely use definitions and results
in [1].

2) By classical groups we mean the following groups operating on a vector space
$V:GL(V),$ $SL(V),$ $Sp(V,f),$ $f$ being a non-degenerate skew symmetric bilinear form on
$V,$ $O(V,f),$ $f$ being a non-degenerate symmetric bilinear form on V, and $SO(V,f)=$
$SL(V)\cap O(V,f)$ . we denote their Lie algebras by the corresponding small German letters.

3) Hereafter, by a field we shall always mean a field with infinitely many elements.
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$\rho^{-1}$ are rational representations of $G$ and $G^{\prime}$ respectively. We shall
denote the birational isomorphism by $G_{(}\cong_{r)}G^{\prime}$ .

PROPOSITION 1. Let $G_{1}$ and $G_{1}$
‘ be the algebraic components of $G$

and $G^{\prime}$ respectively. If $\rho$ is a birational isomorshism of $G$ with $G$‘,
then it induces a birational isomorphism of $G_{1}$ with $G_{1}$ ‘.

PROOF. Let $H$ be tine smallest algebraic group containing $\rho(G_{1})$ .
Then, $H$ is irreducible and of finite index in $G^{\prime}$ . By the uniqueness
of the subgroup in $G^{\prime}$ of this property, we have $H=G_{1}$ ‘ and it follows
that $\rho(G_{1})\subset G_{1}^{\prime}$ . By the similar argument on $\rho^{-1}$ , we have $\rho^{-1}(G_{1^{\prime}})\subset G_{1}$ .
Therefore we see that $\rho(G_{1})=G_{1}^{\prime}$ .

PROPOSITION 2. Let $\mathfrak{g}$ and $\mathfrak{g}^{\prime}$ be the Lie algebras of $G$ and $G^{\prime}$

respectively. Then, the differential $ d\rho$ of a birational isomorphism $\rho$

gives an isomorphism $\mathfrak{g}$ with $\mathfrak{g}^{\prime}$ . Furthermore, if $\rho$ is the restriction on
$G$ of a linear endomorphism $\lambda$ of the vector space $E$, then $ d\rho$ is also
the restriction of $\lambda$ on $g$ .

PROOF. By definition of the differential, we $1\rceil aved\rho(\mathfrak{g})\subset \mathfrak{g}^{\prime}$ and
$d\rho^{-1}(\mathfrak{g}^{\prime})\subset \mathfrak{g}$ . Since $d\rho^{-1}\circ d\rho=d(\rho^{-1}\circ\rho)=d_{\iota}$ , where $\iota$ is the identity map-
ping on $G,$ $d_{\iota}$ is the identity mapping on $\mathfrak{g}$ . Hence $ d\rho$ is a univalent
mapping of $\mathfrak{g}$ into $\mathfrak{g}^{\prime}$ . In the same way, $d\rho^{-1}$ is a univalent mapping
of $\mathfrak{g}^{\prime}$ into $\mathfrak{g}$ . This proves the first part. The second part comes from
the equalities $d\rho(X)=d\rho(I, X)=d\lambda(I, X)=\lambda(X)$ for all $X\in \mathfrak{g}$, where $I$

is the identity element of $G$.
PROPOSITION 3. Suppose that $K$ is of characteristic zero, and $G$ ,

$G^{\prime}$ are irreducible. Let $\lambda$ be a linear endomorphism of the vector space
$E$ such that the image $\lambda(G)$ is an algebraic group. Suppose that $\lambda$

induces a birational isomorphism of $G$ with $\lambda(G)$ . If $\lambda(\mathfrak{g})=\mathfrak{g}^{\prime}$ , then we
have $\lambda(G)=G^{\prime}$ .

PROOF. Let $\mathfrak{h}$ be the Lie algebra of $\lambda(G)$ . By Proposition 2, we
see that $\lambda(\mathfrak{g})=\mathfrak{h}$ . Therefore we have $\mathfrak{h}=\mathfrak{g}^{\prime}$ . By our assumption on $K$

and $G,$ $G^{\prime}$ , we have X $(G)=G^{\prime}$ .
If we apply the above two propositions to the linear endomor-

phism $\lambda(u)=tut^{-1},$ $u\in E,$ $t\in GL(V)$ , we have at once the following
PROPOSITION 4. Under the same assumption as in Proposition 3,

we have $c/=tGt^{-1}$ if and only if $\mathfrak{g}^{\prime}=t\mathfrak{g}t^{-1},$ $t\in GL(V)$ .
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\S 2. Birational invariance of irreducible classical groups.

First, we shall give an alternative proof of the irreducibility of
classical groups by making use of their structure theory.

PROPOSITION 5. Let $K$ be an arbitrary field. Each of the groups
$GL(V),$ $SL(V),$ $sp(V, f)$ is irreducible. Suppose that the characteristic
of $K$ is not 2 and $\dim V\geqq 5$ . Then, $SO(V, f)$ is irreducible.4)

PROOF. As to $GL(V)$ the proposition is trivial. As to $SL(V)$ and
$Sp(V,f)$ , we may assume that $\dim V\geqq 2$ , since $SL(V)$ and $sp(V, f)$

reduce to the identity for $\dim V=1$ . Thus, these groups are of in-
finite order. Let $G_{1}$ be the algebraic component of $SL(V)$ or $sp(V,f)$ .
Then, $G_{1}$ is an infinite group, and it can not be contained in the center
which is of finite order. Thus, we have $G_{1}=SL(V)$ or $Sp(V, f)$ by the
argument of Dieudonn\’e.6) As for the last group $SO(V, f)$ we may
assume that $K$ is algebraically closed, since the irreducibility of groups
is independent of the extension of the scalar field. Thus, the bilinear
form $f$ is of index $>0$ and $SO(V, f)=\Omega(V, f)$ : the commutator sub-
group of $O(V,f)$ . Thus, by the similar argument as above,6) we
conclude the irreducibility of $SO(V, f)$ .

In the following propositions, we shall determine the algebraic
groups which are birationally isomorphic with irreducible classical
groups.

PROPOSITION 6. Let $K$ be an arbitrary field. If an algebraic group
$G$ is birationally isomorphic with $GL(V)$ , then $G=GL(V)$ .

PROOF. We have an isomorphism of $\mathfrak{g}$ with $\mathfrak{g}\mathfrak{l}(V)$ and it follows
at once that $\mathfrak{g}=\mathfrak{g}1(V)$ . Therefore $G$ is a subgroup in $GL(V)$ of finite
index. Since both groups are irreducible, we have $G=GL(V)$ .

PROPOSITION 7. Let the characteristic of $K$ be zero. If $G_{(r)}\cong SL(V)$ ,

then $G=SL(V)$ .
PROOF. Let $\rho$ be the birational isomorphism of $G$ with $SL(V)$ .

Then $ d\rho$ gives an isomorphism g\cong \S 1(V). Since the statement is trivial
for the case of $\dim V=1$ , we may assume that $\dim \mathfrak{g}\geqq 3$ . It is easy

4) $SO(V,f)$ is irreducible without any assumption on $\dim$ V. ([1], pp. 123-125) It
is sufficient for our purpose to prove it under the above restriction.

5) [3], pp. 38-40. [2], p. 12 Theorem 1.
6) [2], p. 29 Theorem 2.
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to see that the mapping $X\rightarrow t_{\gamma}X$ of $\mathfrak{g}$ into $K$ is a homomorphism of
the Lie algebras. As is well known $\mathfrak{g}$ is a simple Lie algebra. There-
fore the kernel of the trace mapping is the whole $\mathfrak{g}$ and it follows
that g\subset @1(V). Thus, we have g–@1(V) and hence $G=SL(V)$ .

To prove the Proposition 8, we need the following two lemmas.
LEMMA 1. Let $K$ be of characteristic zero. If @p(V, f)=@p(V, $g$ )

or $0(V,f)=o(V, g)$ , then $g=\lambda f$ with $\lambda\in K^{\star 7)}$

PROOF. Let $F$ and $G$ be the skew symmetric matrices of $f$ and
$g$ respectively with respect to some base of $V$. Then, we know that
$e\mathfrak{p}(V, f)=\{X;X\in K_{2}, {}^{t}XF+FX=0\}$ and $\mathcal{B}\mathfrak{p}(V, g)=\{X;X\in K_{n},{}^{t}XG+$

$GX=0\},$ $n=\dim V$. From the assumption, we have $-{}^{t}X=GXG^{-1}=$

$FXF^{-1}$ for all X\in @p(V,f). Therefore $F^{-1}G$ commutes with all
$X\in e\mathfrak{p}(V,f)$ . As is well known, @p(V, f) is an absolutely irreducible
matric system. Thus, from Schur’s lemma it follows tbat $G=\lambda F$,
$\lambda\in K^{\star}$ . In the same way, the statement on $o(V,f)$ is proved.

LEMMA 2. Let $L$ be an over field of $K,$ $K$ being of characteristic
zero. Let $\mathfrak{g}$ be a Lie algebra over $K$ such that $\mathfrak{g}^{L}=\hat{\mathfrak{s}}\mathfrak{p}(V^{L},f)$ or
$=0(V^{L},f)$ , where $f$ is a form on $V^{L}$ . Then, there is a form $f_{1}$ on $V$

such that $f_{1}=\lambda f$ with $\lambda\in L^{\star}$ , and $\mathfrak{g}=e\mathfrak{p}(V,f_{I})$ or $=o(V,f_{1})$ .
PROOF. Let $F$ be the (skew) symmetric matrix of $f$ with respect

to some base of $V$. From our assumption, we have $\mathfrak{g}^{L}=\{X;X\in L_{n}$ ,
${}^{t}XF+FX=0\}$ . Let $\mathfrak{S}$ be the vector space composed of all (skew)
symmetric matrices in $K_{n}$ . Now, to each $X\in\backslash q,$ we define an endo-
morphism $\Lambda_{X}$ of $\mathfrak{S}$ by $\Lambda_{X}(S)={}^{t}XS+SX,$ $S\in \mathfrak{S}$ . Let $\mathfrak{T}$ be the vector
space composed of all $S\in \mathfrak{S}$ with $\Lambda_{X}(S)=0$ for all $X\in \mathfrak{g}$ . Then, it is
easily verified that the scalar extension $\mathfrak{T}^{L}$ is the vector space com-
posed of all $S^{\prime}\in \mathfrak{S}^{L}$ with $\Lambda_{X}(S^{\prime})=0$ for all $X\in \mathfrak{g}^{L}$. Obviously we have
$F\in \mathfrak{T}^{L}$. Conversely, take any $T\in \mathfrak{T}^{L}$ . Since the determinant $D(T+$
$\lambda F)=D(F)\lambda^{n}+\cdots,$ $D(F)\neq 0$ , we may take an $F^{\prime}=T+\lambda F$ with $D(F^{\prime})\neq 0$

for a suitable $\lambda$ . We put $\mathfrak{g}^{\prime}=\{X;X\in L_{n},{}^{t}XF^{\prime}+F^{\prime}X=0\}$ . Since $F^{\prime}\in \mathfrak{T}^{L}$,
it follows that $\mathfrak{g}^{L}\subset \mathfrak{g}^{\prime}$ by definition of $\mathfrak{T}$ . By the above choice of $F^{\prime}$ ,
we have $\mathfrak{g}^{L}=\mathfrak{g}^{\prime}$ . From Lemma 1, it follows that $F^{\prime}=\lambda^{\prime}F,$ $\lambda^{\prime}\in L^{\star}$ , and
$T=F^{\prime}-\lambda F=(\lambda^{\prime}-\lambda)F$. Thus, the space $\mathfrak{T}^{L}$ is 1 dimensional: $\mathfrak{T}^{L}=\{F\}$ .
By taking a base $F_{1}$ of $\mathfrak{T}$ , our lemma is proved.

PROPOSITION 8. Let $K$ be of characteristic zero. If $G\cong_{\gamma}Sp(V, f)()$

7) $K^{\star}$ denotes the totality of non zero elements in $K$.
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then $G=Sp(V, g)$ . Suppose that $\dim V>6,$ $\neq 8$ . If $c_{(}\cong_{r)}SO(V,f)$ , then

$G=SO(V, g)$ .
PROOF. By taking the differential of the birational isomorphism,

we have $\mathfrak{g}\cong e\mathfrak{p}(V,f)$ or $\cong o(V,f)$ . Let $L$ be the algebraic closure of
$K$ Then, naturally we have $\mathfrak{g}^{L}\cong e\mathfrak{p}(V^{L}, f)$ or $\cong o(V^{L}, f)$ . Thus, we
have a faithful representation of $@\mathfrak{p}(V^{L},f)$ or $o(V^{L},f)$ of degree $n$ .
However, under the above restriction on the dimension of $V$, we know
that the degree of the non trivial irreducible representation of
$@\mathfrak{p}(V^{L}, f)$ or $o(V^{L},f)$ is $\geqq n$ and there is one and only one representa-
tion class of degree $n^{8)}$ Therefore the above representation is equi-
valent to the identity representation of $e\mathfrak{p}(V^{L}, f)$ or $0(V^{L},f)$ . Thus,
there exists a form $g^{t}$ on $V^{L}$ such that $\mathfrak{g}^{L}=8\mathfrak{p}(V^{L}, g^{\prime})$ or $=o(V^{L}, g^{\prime})$ .
From Lemma 2 it follows that $\mathfrak{g}=e\mathfrak{p}(V, g)$ or $=0(V, g)$ , where $g$ is a
form on $V$. By the irreducibility of the groups $sp(V, g)$ and $SO(V, g)$ ,
we get our proposition.

Now, let $\mathfrak{F}$ be a family of algebraic groups on $V$. We shall say
that $\mathfrak{F}$ is birationally invariant if any algebraic groups $G$ which is
birationally isomorphic with some group $F$ in $\mathfrak{F}$ is in $\mathfrak{J}$ .

THEOREM 1. Let $K$ be a field of characteristic zero and let $V$ be
a vector space over $K$ with $\dim V>6,$ $\neq 8$ . Let $\mathfrak{C}_{1}$ be the totality of
irreducible classical groups on V. Then, $\mathfrak{C}_{1}$ is birationally invariant.

PROOF. This follows immediately from Proposition 6, 7 and 8.
THEOREM 2. Under the same assumption as in Theorem 1, let $\mathfrak{C}$

be the totality of the algebraic groups on $V$ whose algebraic components
are irreducible classical gronps on V. Then, $\mathfrak{C}$ is birationally invariant.

PROOF. Let $G\cong C(r)$
$C\in \mathfrak{C}$ . Then, from Proposition 1, $G_{1}\cong_{r}C_{1}()$

where $G_{1}$ and $C_{1}$ are the algebraic components of $G$ and $C$ respectively.
Since $C_{1}\in \mathfrak{C}_{1}$ , we have $G_{1}\in \mathfrak{C}_{1}$ by Theorem 1. It implies that $G\in \mathfrak{C}$ .

\S 3. Birational invariance of classical groups.

We begin with the explicit determination of certain groups which
have $SO(V,f)$ as their algebraic components.

8) This fact follows, for example, from Weyl’s formula which gives the degrees of
the irreducible representations of a semi-simple Lie algebra with given highest weights.
[4], p. 342 Satz 4, p. 353 Satz 6.
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LEMMA 3. Let $\mathfrak{g}$ be the Lie algebra $o(V, f)$ over a field $K$ of
characteristic zero. If $s\in GL(V)$ satisfies the condition $s\mathfrak{g}s^{-1}\subset \mathfrak{g}$ , then, $s$

is a similarity transformation with respect to $f,$ $i$. $e$ . $f(sx, sy)=\gamma f(x, y)$ ,
$\gamma\in K^{\star},$ $x,$ $y\in V$.

PROOF. Let $S,$ $F$ be the matrices of $s,$ $f$ relative to some base
of $V$. Then, we have $\mathfrak{g}=\{X;{}^{t}XF+FX=0\}=\{X;FXF^{-1}=-{}^{t}X\}$ . Since
$SXS^{-1}\in \mathfrak{g}$ for all $X\in \mathfrak{g}$ , we have $FSXS^{-1}F^{-1}=-{}^{t}(SXS^{-1})={}^{t}S^{-1}(-{}^{t}X)^{l}S$

$=^{l}S^{-1}FXF^{-1}{}^{t}S$ . Therefore $F^{-1}{}^{t}SFS$ commutes with all $X\in \mathfrak{g}$ . Since
$\mathfrak{g}$ is an absolutely irreducible matric system, we have ${}^{t}SFS=\gamma F$ from
Schur’s lemma. This proves our lemma.

Now, let $f$ be a symmetric form on $V$. We shall denote by $A(V,f)$

the group composed of all similarity transformations with respect to
$f,$ $i$ . $e$ . $A(V,f)=\{s:f(sx, sy)=N(s)f(x, y),$ $N(s)\in K^{\star},$ $x,$ $y\in V$ ). It is easy
to verify that the mapping $N:s\rightarrow N(s)$ is a homomorphism of $A(V,f)$

into $K^{\star}$ . We shall call $N(s)$ the norm of $s$ . As is easily seen, we
have

$N(s)^{n}=D(s)^{2}$ , $N(\alpha s)=\alpha^{2}N(s)$ $(\alpha\in K^{\star})$

where $D(S)$ means the determinant of $s$ .
PROPOSITION 9. Suppose that $K$ is of characteristic zero and

algebraically closed. If $n$ is odd, then $O(V,f)$ is the only extension of
index 2 of $SO(V,f)$ . If $n$ is even, then there are th $ree$ algebraic groups
$O(V,f),$ $P(V,f)$ and $Q(V,f)$ which are extensions of index 2 of $SO(V,f)$ .

PROOF. Let $G$ be an algebraic group which contains $SO(V,f)$ as
a subgroup of index 2. Thus, $SO(V, f)$ is normal in $G$ and $\varphi_{s}(u)=sus^{-1}$ ,
$u\in SO(V, f)$ , gives a birational automorphism of $SO(V, f)$ for any
$s\in G$. By Proposition 4, the differential $d\varphi_{s}$ induces an automorphism
of the Lie algebra $\mathfrak{g}=o(V, f)$ such that $d\varphi_{5}(X)=sXs^{-1},$ $X\in \mathfrak{g}$ . There-
fore from Lemma 3, $s$ belongs to $A(V, f)$ . Now, put $R(V, f)=\{t$ ;
$t\in A(V, f),$ $D(t)^{2}=N(t)^{2}=1$ }. Since $s^{2}\in SO(V, f)$ , it is obvious that
$s\in R(V, f)$ and it follows that $G\subset R(V, f)$ . Suppose that $n$ is odd.
Then, we have $1=D(t)^{2}=N(t)^{n}=N(t)$ for any $t\in R(V, f)$ . Thus, we
have $R(V, f)=O(V, f)$ . Therefore $G=O(V, f)$ . This proves the state-
ment for any odd $n$ . Next, suppose that $n$ is even. For any $t\in O(V,f)$ ,
we have $N(\sqrt{}-1t)=-1$ and $D(1^{/}-1t)=(_{1}/-1)^{n}D(t)=\pm 1$ . Thus,
$1^{/_{-1}^{-}}t\in R(V, f)$ and $\not\in O(V, f)$ . This shows that $O(V, f)$ is the
kernel of the norm homomorphism $N$ of $R(V, f)$ onto $\{\pm 1\}$ , and we
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see that the factor group $R(V, f)/SO(V, f)$ is an abelian group of
order 4. Now let $P(V, f)$ be the kernel of the determinant homomor-
phism $D$ of $R(V, f)$ into $\{\pm 1\}$ . This is obviously an onto mapping.
Thus, $(R(V, f):P(V, f))=2$. If $n\equiv 0mod 4$ , then thet element $\sim-1t_{r}$

where $t\in SO(V, f)$ , belongs to $P(V, f)$ but not to $O(V, f)$ , since
$N(\sqrt{-1}t)=-1$ and $D(\sqrt{-1}t)=(\sqrt{-1})^{n}D(t)=1$ . If $n\equiv 2mod$ . $4$ , then
the element $\sqrt{-1}t$ , where $t\in O(V, f)$ and $\not\in SO(V, f)$ , belongs to
$P(V, f)$ but not to $O(V, f)$ , since $N(\sqrt{-1}t)=-1$ and $D(\sqrt{-1}t)=$

$(\sim-1)^{n}D(t)=1$ . Therefore $P(V, f)\neq O(V, f)$ for any even $n$ . Thus,
we see that $R(V, f)/SO(V, f)$ is the abelian group of type $(2, 2)$ , and
by the above argument $G$ must be one of the three groups $O(V, f)_{r}$

$P(V, f)$ and $Q(V, f)$ , where $Q(V, f)$ is the kernel of the homomorphism
$t\rightarrow D(t)N(t)$ of $P(V, f)$ onto $\{\pm 1\}$ . Thus, our proposition is proved.

To prove the next proposition we need a lemma.
LEMMA 4. Suppose that $n$ is even $and\geqq 6$ . Let $G$ be one of the

three groups $O(V, f),$ $P(V, f)$ and $Q(V, f)$ defined in the proof of Pro-
position 9. Let $\sigma\in G$ be an involution and let $V_{i}(i=1,2)$ be the non
isotropic subspaces associated with $\sigma$ such that $\sigma(x)=-x,$ $x\in V_{1},$ $\sigma(y)=y$,
$y\in V_{2}^{9)}$ and let $f_{i}$ be the restrictions of $f$ on $V_{i}(i=1,2)$ . Let $\Omega_{\sigma}$ be the
commutator subgroup of the centralizer $Z_{\sigma}$ of $\sigma$ in $G$ .

i) If $G=O(V, f)$ , then $\Omega_{\sigma}\cong SO(V_{1}, f_{1})\times SO(V_{2}, f_{2})$

ii) If $G=P(V, f)$ or $Q(V, f)$ and $n_{i}\neq 2,$ $n_{i}=\dim V_{i},$ $i=1,2$, then
$\Omega_{\sigma}\cong SO(V_{1}, f_{1})\times SO(V_{2}, f_{2})$

iii) If $G=P(V, f)$ or $Q(V, f)$ and if one of $n_{i}(i=1,2)$ is equal
to 2, then the center of $\Omega_{\sigma}$ is at least of order 2.

PROOF. It follows easily that $\tau V_{i}=V_{i}(i=1,2)$ for all $\tau\in Z_{\sigma}$ for
each $G$. Let $\tau_{i}$ be the restrictions of $\tau$ on $V_{i}$ . Then, the mapping
$\varphi;\tau\rightarrow(\tau_{1}, \tau_{2})$ gives an isomorphism of $Z_{\sigma}$ into $A(V_{1}, f_{1})\times A(V_{2}, f_{2})$ .
Therefore $\varphi$ maps $\Omega_{\sigma}$ into $SO(V_{1}, f_{1})\times SO(V_{2}, f_{2})$ . If one of $n_{i}(i=1,2)$ ,
say $n_{1}$ , is equal to $0$ or to 1, then $n_{2}\geqq 5$ and $\varphi$ maps $\Omega_{\sigma}$ onto
$\{1\}\times SO(V_{2}, f_{2})$ , since $SO(V_{2}, f_{2})$ is identical with its commutator sub-
group. $1\ovalbox{\tt\small REJECT}$ ) If both $n_{i}(i=1,2)$ are $\neq 2$ , then for the same reason $\varphi$ is
an onto mapping. As for $G=O(V, f)$ , this is also valid for $n_{1}=2$,

9) The existence of such $V_{i}$ for similarity involutions is proved in the same way as
for orthogonal involutions. cf. [2], Prop. 3 (p. 9)
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since $SO(V_{1},f_{1})$ is the commutator subgroup of $O(V_{1}, f_{1})^{10)}$ On the
other hand for the case iii), we have $\{1\}\times SO(V_{2}, f_{2})\subset\varphi(\Omega_{\overline{\sigma}})\subset SO(V_{1}, f_{1})$

$\times SO(V_{2}, f_{2})$ , since $n_{2}\geqq 4$ . Since $n_{2}$ is even, it follows from this rela-
tion that the center of $\varphi(\Omega_{\sigma})$ is at least of order 2.

PROPOSITION. 10. Let $K$ be the same as in Proposition 9 and sup-
pose that $n$ is even $and\geqq 6$ . Then, any two of the three groups $O(V,f)$ ,
$P(V, f)$ and $Q(V, f)$ are not isomorphic with each other.

PROOF. By using the same notations as in Lemma 4, let $n_{i}=\dim V_{l}$

$(i=1,2)$ . As for $G=O(V, f)$ , let $\sigma$ be a symmetry with respect to a
hyperplane $V_{2}$ . Then, $n_{1}=1,$ $n_{2}=n-1$ and $\Omega_{\sigma}\cong SO(V_{2}, f_{2})$ . Since $n-1$

is odd and $\geqq 5,$ $\Omega_{\sigma}$ is a simple group.11) On the other hand, as for
$C=P(V, f)$ or $Q(V, f)$ , any involution $(\neq 1)$ cannot be a symmetry,
since $G\cap O(V, f)=SO(V, f)$ . Thus, we have $n_{i}\geqq 2$, and if $n_{i}\neq 2$

{$i=1,2$), then $\Omega_{\sigma}\cong SO(V_{1}, f_{1})\times SO(V_{2}, f_{2})$ is not simple and if, say,
$n_{1}=2$, then the center of $J2_{\sigma}$ is at least of order 2 and this is not
simple too. Therefore $O(V, f)$ cannot be isomorphic neither with
$P(V, f)$ nor with $Q(V, f)$ . Next, let $Z$ and $Z^{\prime}$ be the center of $P(V, f)$

and $Q(V, f)$ respectively. Since any $z\in Z$ or $Z^{\prime}$ must commute with
every plane rotation, it leaves every non-isotropic plane invariant,
and it follows that $z(x)=\lambda x,$ $\lambda\in K^{\star 12)}$ Therefore, we have $D(z)=\lambda^{n}=1$ ,
$N(z)=\lambda^{2}=\pm 1$ for $P(V, f)$ and $D(z)N(z)=\lambda^{n+2}=1$ for $Q(V, f)$ . From
these relations, if follows that if $n\equiv 0mod 4$ , then $Z_{=}\{\pm E, \pm\sqrt{}-rE\}$

and $Z^{\prime}=\{\pm E\}$ , and if $n\equiv 2$ $mod 4$ , then $Z=\{\pm E\}$ and $Z^{\prime}=\{\pm E$,
$\sqrt{}-\overline{1}E\}$ . Thus, $P(V, f)$ and $Q(V, f)$ cannot be isomorphic. Thus,
our proposition is proved.

THEOREM 3. Let $K$ be a field of characteristic zero and let $V$ be
a vector space over $K$ with $\dim V>6,$ $\neq 8$ . Let $\mathfrak{C}_{2}$ be the totality of
the classical groups on V. Then, $\mathfrak{C}_{2}$ is birationally invariant.

PROOF. From Theorem 1, it is sufficient to show that if
$C_{(r}\cong_{)}O(V, f)$ , then $G=O(V, g)$ with some form $g$ on $V$. From Pro-

position 1, we have $G_{1}\cong_{\gamma}SO(V, f)()$ Therefore $G_{1}=SO(V, g)$ from

Proposition 8. Let $L$ be the algebraic closure of $K$ It follows that

10) [3], p. 55.
11) [2], p. 29, Theorem 2.
12) See argument in [ $2^{\urcorner_{-}}$ , p. 24.
13) $E$ denotes the identity matrix.
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$C^{L}\cong O(V^{L}, f)\cong O(V^{L}, g)(r)(r)G_{1}=SO(V, g)$ , since any two forms are equi-

valent. From Proposition 9 and 10, it follows that $G^{L}=O(V^{L}, g)$

and by taking the intersections with $GL(V)$ of both sides, we have
$G=O(V, g)$ .

REMARK. If the dimension of $V$ is small, then the classical groups
are not necessarily birationally invariant as the following simple
exampl $e$ shows. Let $\dim V=2$, and let $G=\{\lambda E;\lambda\in K^{\star}\},$ $C=SO(V, f)$

with $\nu(f)=1$ , where $\nu(f)$ denotes the index of $f$. Then, $c_{(}\cong_{r)}c$, but $G$

is not classical.
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