On the fundamental conjecture of GLC III.

By Gaisi Takeuti

(Received Nov. 11, 1954)

This paper is a continuation of [1] and [2]. We use the same notions and the notations as in these papers. See in particular [1] as to the meaning of the fundamental conjecture. We have proved this conjecture under several conditions in [1], [2]. In this paper, we shall prove it under some other conditions.

§ 1. Formulation of the theorem.

Until at the end of Appendex, the logical symbols \exists and V are not used. In this section we introduce some new notions and notations.
1.1. A formula in a proof-figure and a logical symbol in a formula

We shall speak of a 'formula in a proof-figure', when the formula is considered together with the place where it occupies in the prooffigure. Let A and B be two formulas in a proof-figure \mathfrak{P}. Then A is equal to B if and only if A is in the same place as B in \mathfrak{P}. We shall also speak of logical symbol in a formular or in a proof-figure sequence and inferences etc. in a proof-figure in analogous meanings. We use the symbols \#, 4 etc. as metamathematical variables to represent logical symbols in a formula or in a proof-figure.
1.2. Semi-formula, quasi-formula.

A figure of the form $H(x, \cdots, y, \varphi, \cdots, \psi)$ with bound variables x, \cdots, y and bound f-variables φ, \cdots, ψ is called a semi-formula, if rnd only if $H(a, \cdots, b, \alpha, \cdots, \beta)$ obtained from $H(x, \cdots y, \varphi, \cdots, \psi)$ by substituting free variables a, \cdots, b and free f-variables $\alpha, \cdots \beta$ for $\boldsymbol{x}, \cdots, y$ and φ, \cdots, ψ is a formula and $x, \cdots, y, \varphi, \cdots, \psi$ are difierent from each other and are not contained in $H(a, \cdots, b, \alpha, \cdots, \beta)$.

If $\{x, \cdots, y\} H(x, \cdots, y)$ is a formula with argument-places, then $H(x, \cdots, y)$ is clearly a semi-formula.

We use the word 'quasi-formula' as the neutral word for 'semiformula' or 'formula with argument-places'.

1.3.

Let \# be a logical symbol in a semi-formula \mathfrak{N}. Then we define: 1.3.1. If $\#$ is the outermost logical symbol of \mathfrak{A}, then $\#$ is positive in \mathfrak{A}.
1.3.2. Let \mathfrak{A} be of the form $\mathfrak{B} \backslash \mathfrak{C}$. If $\#$ is positive in \mathfrak{B} or \mathfrak{C}, then \# is positive in \mathfrak{N}. If \# is negative in \mathfrak{B} or \mathfrak{C}, then \# is negative in \mathfrak{A}. 1.3.3. Let \mathfrak{A} be of the form $フ \mathfrak{B}$ and \# be not the outermost logical symbol of \mathfrak{N}. Then \# is positive or negative in \mathfrak{A}, according as \# is negative or positive in \mathfrak{B}.
1.3.4. Let \mathfrak{A} be of the form $\forall x \mathfrak{G}(x)$ or $\forall \varphi \mathscr{C}(\mathcal{P})$ and \# be not the outermost logical symbol of \mathfrak{A}. Then $\#$ is positive or negative in \mathfrak{A}, according as \# is positive or negative in $\mathfrak{B}(x)$ or $\mathfrak{F}(\phi)$ respectively.

Let \# be a logical symbol in a formula with i argument-places $\{x, \cdots, y\} H(x, \cdots, y)$. Then we say that $\#$ is positive or negative in $\{x, \cdots, y\} H(x, \cdots, y)$ according as $\#$ is positive or negative in $H(x, \cdots, y)$.

Let \# and 4 be two logical symbols in a quasi-formula \mathfrak{H}. If $\#$ and $\{$ are positive in \mathfrak{A} or $\#$ and $\mathfrak{4}$ are negative in \mathfrak{A}, then we say that \# is positive to 4 . If \# is not positive to \mathfrak{A}, then we say that \# is negative to 4 .

1.4.

Let \mathfrak{A} be a quasi-formula, and \mathfrak{B} be a semi-formula of the $\forall \varphi \mathscr{C}(\mathscr{P})$ contained in \mathfrak{A} and, moreover, \# be the outermost logical symbol of \mathfrak{B}. Then all the variables, f-variables, functions and logical symbols in $\mathfrak{C}(\mathscr{P})$ are said to be 'tied by $\#$ in \mathfrak{A} '.

Let \mathfrak{A} be a quasi-formula, and \mathfrak{B} be a semi-formula of the form $\forall \varphi \mathscr{C}(\varphi)$ contained in \mathfrak{A} and, moreover, 4 be a \forall on an f-variable in $\mathfrak{G}(\mathscr{(})$ and \# be the outermost logical symbol of \mathfrak{B}. Then we say ' \# affects 4 ', if and only if 4 ties an f-variable of the form φ.

1.5.

Let \mathfrak{A} be a quasi-formula and \# be a logical symbol \forall on an f-variable in \mathfrak{A}. \# is called 'semi-simple in \mathfrak{H} ', if and only if the following conditions are fulfilled:
1.5.1. If \# ties a \forall on an f-variable denoted by \mathfrak{q}, then q is positive to \#.
1.5.2. Let 4 be \# itself or be tied by \#. Then 4 does not affect, and is not affected by any \forall on an f-variable.

A quasi-formula \mathfrak{A} is called 'semi-simple' if and only if every \forall on f-variable in \mathfrak{A} is semi-simple in \mathfrak{A}.

Then we prove easily the following lemma by the method of [1].
Lemma. The end-sequence of a proof-figure, in which every implicit formula is semi-simple, is provable withbut cut.

In fact the lemma can be still generalized. The author has in mind to publish a proof of the lemma in its generalized form in a forth coming paper.
1.6.

Let \mathfrak{A} be a quasi-formula and \# be a logical symbol \forall on an f-variable in \mathfrak{A}. \# is called 'simple in \mathfrak{A} ', if and only if the following conditions are fulfilled:
1.6.1. \# is semi-simple in \mathfrak{N}.
1.6.2. \# ties no free f-variable.

A quasi-formula A is called 'simple' if and only if every \forall on f-variable in \mathfrak{A} is simple in \mathfrak{A}.

An inference left on f-variable of the following form

$$
\begin{array}{r}
F(H), \Gamma \rightarrow \Delta \\
\forall \varphi F(\varphi), \Gamma \rightarrow \Delta
\end{array}
$$

is called 'simple', if and only if H is simple.
A proof-figure \mathfrak{P} is called 'simple', if and only if every implicit inference \forall left on f-variable in \mathfrak{F} is simple.

Now the aim of this paper is to prove the following theorem:
THEOREM. The end-sequence of a simple proof-figure is provable without cut.

1.7. Grade

Let \mathfrak{A} be a quasi-formula. The first grade of \mathfrak{A} is the number of the logical symbols \forall on f-variables in \mathfrak{A}, which are not simple in \mathfrak{A}. The second grade of \mathfrak{A} is the number ot the logical symbols
in \mathfrak{A}. The grade of \mathfrak{A} is the ordinal number $\omega m+n$, there m is the first grade of \mathfrak{A} and n the second grade of \mathfrak{A}.

Now, we have several propositions concerning the grade.
1.7.1. Let H be a simple formula with i argument-places and α be a free f-variable with i argument-places. Then the first grade of $F(H)$ is not greater than the first grade of $F(\alpha)$.

Proof. Let \# be a \forall on an f-variable in $F(H)$. If is \# contained in H which is indicated in $F(H)$, then clearly $\#$ is simple. If \# ties a free f-variable in $F(H)$, then clearly the logical symbol \forall in $F(\alpha)$ corresponding to $\#$ ties also a free f-variable in $F(\alpha)$. If \# affects $\mathfrak{4}$, then the logical symbol \forall corresponding to \# in $F(\alpha)$ affects also the \forall corresponding to 4 in $F(\alpha)$. Therefore the proposition is clear.

From 1.7.1 follow immediately 1.7.2. and 1.7.3.
1.7.2. Let H be a simple formula with i argument-places and $F(\alpha)$ be a simple formula and, moreover, α be a free f-variable with i argument-places. Then $F(H)$ is a simple formula.
1.7.3. Let H be a simple formula with i argument-places and $\boldsymbol{F}(\alpha)$ be a not simple formula and, moreover, be a free f-variable with i argument-places. Then the first grade of $\forall \varphi F(\varphi)$ is greater than the first grade of $F(H)$. Therefore the grade of $\forall \varphi F(\varphi)$ is greater than the grade of $F(H)$.
1.7.4. Let A be an implicit simple formula in simple proof-figure \mathfrak{F} and B be an ancestor of A. Then B is a simple formula.

Proof. Without the loss of generality, we assume that A is a chief-formula of a logical inference \mathfrak{J} and B is a subformula of \mathfrak{J}.

If the outermost logical symbol of A is $7, \wedge$ or \forall on a variable, then the proposition is clear. If the outermost logical symbol of \mathfrak{A} is \forall on an f-variable, then the proposition follows from 1.7.1.

§2. Proof of the theorem.

All the proof-figures considered in this section are simple; we shall not mention it further.

Let \mathfrak{F} be a (simple) proof-figure and \mathfrak{F} be a cut in \mathfrak{P}. Then \mathfrak{F} is called 'simple', if and only if the cut-formula of \mathfrak{J} is simple. The grade of \mathfrak{F} is defined as the grade of the cut-formula of \mathfrak{F}.

The grade of \mathfrak{P} is defined as the ordinal number $\sum_{\mathfrak{F}} \omega^{\alpha} \S$, where Σ indicates the natural sum, \mathfrak{F} runs over all the cuts which are not simple in \mathfrak{P}, and $\alpha_{\widetilde{\mathfrak{\delta}}}$ is the grade of \mathfrak{F}.

If the grade of \mathfrak{P} is zero, then the theorem holds for \mathfrak{P} by the lemma and 1.7.4. Therefore we prove the theorem by the transfinite induction on the grade of the proof-figure. Let the grade of a prooffigure \mathfrak{P} be not zero. Clearly, there exists a cut \mathfrak{Y} in \mathfrak{P} which is not simple and such that every cut above \mathfrak{J} is simple. Then, as other cases are easy to treat, we can assume that \mathfrak{F} is of the form

$$
\frac{\Gamma \rightarrow \Delta, \forall \varphi F(\varphi) \quad \forall \varphi F(\varphi), \Pi \rightarrow \Lambda}{\Gamma, \Pi \rightarrow \Delta, \Lambda} \Im
$$

and the proof-figure to $\Gamma, \Pi \rightarrow \Delta, \Lambda$ is denoted by $\mathfrak{\Re}_{0}$.
Let A or B be the left or the right cut-formula of \mathfrak{F} respectively. Without the loss of generality, we can assume that every leading formula of A or B is not a beginning formula nor a weakening formula, and moreover the predecessor of every leading formula of A is of the form $F(\alpha)$.

Let \mathfrak{P}_{1} be obtained from the proof-figure to $\Gamma \rightarrow \Delta, \forall \varphi F(\mathcal{P})$ by substituting $F(\alpha)$ for each formula equivalent to A. Then, the endsequence of \mathfrak{P}_{1} is $\Gamma \rightarrow \Delta, F(\alpha)$.

Let $\Pi_{1} \rightarrow \Lambda_{1}$ be an arbitrary sequence above the right upper sequence of \mathfrak{F}. Now, we construct, recursively as follows, a prooffigure, whose end-sequence is of the form $\Pi_{1}^{*}, \Gamma \rightarrow \Delta, \Lambda_{1}$ where Π_{1}^{*} is obtained from Π_{1} by eliminating the formulas equivalent to B.
2.1. If $\Pi_{1} \rightarrow \Lambda_{1}$ is a beginning sequence, then we construct the prooffigure of the form

$$
\begin{gathered}
\Pi_{1} \rightarrow \Lambda_{1} \\
\text { Some weakenings and exchanges } \\
\Pi_{1}, \Gamma \rightarrow \Delta, \Lambda_{1}
\end{gathered}
$$

2.2. Let $\Pi_{1} \rightarrow \Lambda_{1}$ be the lower sequence of an inference \Im_{1}, and the construction of the proof-figure be defined for the upper sequence of \mathfrak{F}_{1}. We must consider the following three cases.
2.2.1. The case, where \Im_{1} is a weakening, a contraction, a exchange or a cut.

As other cases are to be treated similarly, we assume that \mathfrak{J}_{1} is of the following form

$$
\frac{\Pi_{2} \rightarrow \Lambda_{2}, D \quad D, \Pi_{3} \rightarrow \Lambda_{3}}{\Pi_{2}, \Pi_{3} \rightarrow \Lambda_{2}, \Lambda_{3}}
$$

where $\Pi_{1} \rightarrow \Lambda_{1}$ is $\Pi_{2}, \Pi_{3} \rightarrow \Lambda_{2}, \Lambda_{3}$.
By the assumption, the proof-figure Ω_{1} to $\Pi_{2}^{*}, \Gamma \rightarrow \Delta, \Lambda_{2}, D$ and the proof-figure $\mathfrak{\Omega}_{2}$ to $D, \Pi_{3}^{*}, \Gamma \rightarrow \Delta, \Lambda_{3}$ are defined. Then we construct the proof-figure of the form

$$
\frac{: \mathfrak{Q}_{1}}{V_{\prime}^{\prime}}
$$

2.2.2. The case, where \mathfrak{F}_{1} is a logical inference and the chief-formula of \mathfrak{Y}_{1} is not equivalent to B.

As other cases are to be treated similaly, we assume that \mathfrak{F}_{1} is of the following form

$$
\begin{array}{r}
G(X), \Pi_{2} \rightarrow \Lambda_{2} \\
\forall x G(x), \Pi_{2} \rightarrow \Lambda_{2}
\end{array}
$$

where $\Pi_{1} \rightarrow \Lambda_{1}$ is $\forall x G(x), \Pi_{2} \rightarrow \Lambda_{2}$.
By the assumption, the proof-figure Ω_{1} to $G(X), \Pi_{2}^{*}, \Gamma \rightarrow \Delta, \Lambda_{2}$ is defined. Then we construct the proof-figure of the form

$$
\begin{array}{c:c}
\mathfrak{N}_{1} \\
G(X), \Pi_{2}^{*}, \Gamma \rightarrow \Delta, \Lambda_{2} \\
\hline \forall x G(x), \Pi_{2}^{*}, \Gamma \rightarrow \Delta, \Lambda_{2}
\end{array}
$$

2.2.3. The case, where \mathfrak{F}_{1} is \forall left on f-variable and the chiefformula of \mathfrak{F}_{2} is equivalent to B.

Without the loss of generality, we assume \mathfrak{F}_{1} is of the following form

$$
\begin{array}{r}
F(H), \Pi_{2} \rightarrow \Lambda_{2} \\
\forall \varphi F(\phi), \Pi_{2} \rightarrow \Lambda_{2}
\end{array}
$$

where $\Pi_{1} \rightarrow \Lambda_{1}$ is $\forall \varphi F(\phi), \Pi_{2} \rightarrow \Lambda_{2}$.
By the assumption, the proof-figure \mathfrak{Q}_{2} to $F(H), I I_{2}^{*}, \Gamma \rightarrow \Delta, \Lambda_{2}$ is defined. The we construct the proof-figure of the form

Some exchanges and contractions

$$
\Pi_{2}^{*}, \Gamma \rightarrow, \Delta \Lambda_{2}
$$

where $\mathfrak{\Omega}_{1}$ is obtained from $\mathfrak{\Re}_{1}$ by substituting H for α after the necessary changes of eigen-variables in \mathfrak{F}_{1}.

By successive constructions 2.2.1, 2.2.2 and 2.2.3, we can form a proof-figure Ω_{0} to $\Pi, \Gamma \rightarrow \Delta, \Lambda$. Now, we construct the proof-figure $\mathfrak{\Omega}_{0}^{\prime}$ of the following form

Then we see easily by 1.7 .3 , that the grade of $\mathfrak{\Omega}_{0}^{\prime}$ is less than the grade of \mathfrak{F}_{0}.

Let \mathfrak{Q} be the proof-figure obtained from \mathfrak{P} by substituting $\mathfrak{\Omega}_{0}^{\prime}$ for \mathfrak{B}_{0}. Then clearly \mathfrak{Q} is a simple proof-figure and the grade of \mathfrak{Q} is less than the grade of \mathfrak{P}. Therefore the theorem is proved.

§ Appendix

A.1. A function $\gamma(A)$ of the formula or the formula with argumentplaces taking ordinal numbers as values will be called monotone if it fulfills the following conditions:
A.1.1. $\gamma(7 A) \geqq(A)$.
A.1.2. $\gamma(A \backslash B) \geqq \max (\gamma(A), \gamma(B))$.
A.1.3. $\quad \gamma(\forall x G(x)) \geqq \gamma(G(X))$.
A.1.4. $\gamma\left(\left\{x_{L}, \cdots, x_{i}\right\} H\left(x_{L}, \cdots, x_{i}\right)\right)=\gamma\left(H\left(\left(X_{1}, \cdots, X_{i}\right)\right)\right.$.
A.1.5. If A is homologous to B, then $\gamma(A)$ is equal to $\gamma(B)$.
A.1.6. If $\gamma(H)=0$ and $\gamma(\forall \varphi F(\varphi))>0$, then $\gamma(\forall \varphi F(\varphi))>\gamma(F(H))$.

We say that A is γ-simple, if and only if $\gamma(A)=0$. An inference \forall left on f-variable

$$
\frac{F(H), \Gamma \rightarrow \Delta}{\forall \varphi F(\varphi), \Gamma \rightarrow \Delta}
$$

is called γ-simple, if H is γ-simple, it is called strictly γ-simple, if H and $\forall \varphi F(\varphi)$ are γ-simple. A proof-figure \mathfrak{P} is called (strictly) γ-simple, if every implicit inference \forall left on f-variable in \mathfrak{F} is (strictly) -simple.
A.2. In the same way as in § 2, we have then the following proposition:

If γ is monotone and the fundamental conjecture is verified for every strictly γ-simple proof-figure, then the fundamental conjecture is verified for every γ-simply proof-figure.
A.3. Let us suppose that a set \mathfrak{M} of formulas and formulas with argument-places is given, and that \mathfrak{M} is closed' in the following some.
A.3.1. If $\forall x G(x)$ belongs to \mathfrak{M}, then $G(X)$ belongs to \mathfrak{M}.
A.3.2. If $B \wedge C$ belongs to \mathfrak{M}, then B and C belong to \mathfrak{M}.
A.3.3. If $>B$ belongs to \mathfrak{M}, then B belongs to M.
A.3.4. If $\forall \boldsymbol{\varphi} F(\mathcal{P})$ belongs to \mathfrak{M}, then $F(\alpha)$ belongs to \mathfrak{M}.
A.3.5. $\left\{x_{1}, \cdots, x_{i}\right\} H\left(x_{1}, \cdots, x_{i}\right)$ belongs to \mathfrak{M}, if and only if $H\left(X_{1}, \cdots, X_{i}\right)$ belongs to \mathfrak{M}.
A.3.6. If B is homologous to C and B belongs to \mathfrak{M}, then C belongs to \mathfrak{M}.
A.3.7. If $F(\alpha)$ and H belongs to \mathfrak{M} and the types of α and H are
the same, then $F(H)$ belongs to \mathfrak{M}.
A.3.8. If A has no logical symbol, then A belongs to \mathfrak{M}.
A.4. Now let us define a function γ recursively as follows, and call it 'the function determined by \mathfrak{M} ':
A.4.1. $\gamma(A)$ is equal to zero, if and only if A belongs to \mathfrak{M}.
A.4.2. If A is of the form $>B$ and does not belong to \mathfrak{M}, then $\gamma(A)$ is equal to $\gamma(B)+1$.
A.4.3. If A is of the form $B \backslash C$ and does not belong to \mathfrak{M}, then $\gamma(A)$ is $n+1$, where n is the maximum of $\gamma(B)$ and $\gamma(C)$.
A.4.4. If A is of the form $\forall x G(x)$ and does not belong to \mathfrak{M}, then $\gamma(A)$ is equal to $\gamma(G(a))+1$.
A.4.5. If A is of the form $\left\{x_{1}, \cdots, x_{i}\right\} H\left(x_{1}, \cdots, x_{i}\right)$, then $\gamma(A)$ is equal to $\gamma\left(H\left(a_{1}, \cdots, a_{i}\right)\right)$.
A.4.6. If A is of the form $\forall \varphi F(\varphi)$ and does not belong to \mathfrak{M}, then $\gamma(A)$ is equal to $\gamma(F(\alpha))+1$.
A.5. We shall prove the following proposition:

Let \mathfrak{M} be closed and γ be the function determined by \mathfrak{M}. If H belongs to \mathfrak{M} and has the same type as α, then $\gamma(F(\alpha))$ is equal to $\gamma(F(H))$.

PROOF. If $\gamma(F(\alpha))=0$, the proposition is clear. Let us proceed by the mathematical induction on $a+b$, where a is $\gamma(F(\alpha))$ and b is the number of logical symbols in $F(\alpha)$. We have several cases according to the kind of the outermost logical symbol of $F(\alpha)$, but, as all cases are treated similarly we deal only with the case, where $F(\alpha)$ is of the form $\forall \varphi G(\varphi, \alpha)$. Then, by the hypothesis of the induction, $\gamma(G(\beta, \alpha))$ is equal to $\gamma(G(\beta, H))$, and we see easily that $\gamma(\forall \varphi G(\varphi, \alpha))$ is equal to $\gamma(\forall \varphi G(\varphi, H))$. Q. E. D.
A.6. From the above proposition follows immediately the following proposition:

Let \mathfrak{M} be closed and γ be the function determined by \mathfrak{M}. Then γ is monotone.
A.7. Now we shall give several examples of sets of formulas and formulas with argument-places, which are easily seen to be closed.

A.7.1. The first example \mathfrak{M}_{1}.

We define that belongs to \mathfrak{M}_{1}, if and only if every \forall on f-variable in A affects no \forall on f-variable in A.

A.7.2. The second example \mathfrak{M}_{2}.

We define that A belongs to \mathfrak{M}_{2}, if and only if the following condition is fulfilled:

Let \# and 4 be \forall on f-variables in A and let \# affect \ddagger. Then $\#$ is positive to \mathscr{A}, and, moreover, if ∇ is an arbitrary \forall on f-variable, which is tied by \# and ties 4 , then ∇ is positive to \#.
A.7.3. The third example \mathfrak{M}_{3}.

We define that A belongs to \mathfrak{M}_{3}, if and only if A contains no logical symbol \forall on any variable.

Let γ_{3} be the function determined by \mathfrak{M}_{3}. Then from our former paper [2] follows that the fundamental conjecture is verified for the strictly γ_{3}-simple proof-figure. Therefore by A. 2 we have the following theorem:

Theorem 2. Let \mathfrak{F} be a proof-figure satisfying the following condition: If

$$
\begin{array}{r}
F(H), \Gamma \rightarrow \Delta \\
\varphi F(\varphi), \Gamma \rightarrow \Delta
\end{array}
$$

is an implicit \forall left on f-variable in \mathfrak{F}, then H has no \forall on variable. Then the end-sequence of \mathfrak{P} is provable without cut.

Hereafter, we use the logical symbol \exists and \forall. Accordingly, we define that \mathfrak{M} is closed, if and only if \mathfrak{M} satisfies A.3.1-A.3.8 and the following conditions:
A.3.9. If $B \bigvee C$ belongs to \mathfrak{M}, then B and C belong to \mathfrak{M}.
A.3.10. If $\exists x G(x)$ belongs to \mathfrak{M}, then $G(X)$ belongs to \mathfrak{M}.
A.3.11. If $\exists \varphi F(\varphi)$ belongs to \mathfrak{M}, then $F(\alpha)$ belongs to \mathfrak{M}.

The concept of 'function determined by \mathfrak{M} ' should be also modified accordingly.
A.7.4. The fourth example \mathfrak{M}_{4}.

We define that A belong to \mathfrak{M}_{4}, if and only if A does not contain the logical symbol 7 .

Let γ_{4} be the function determined by \mathfrak{M}_{4}. We see easily that the fundamental conjecture holds for the strictly γ_{4}-simple prooffigure. (the author intends to prove a theorem, implying this as a special case in a forth coming paper). Therefore by A.2, we have the following theorem:

THEOREM 3. Let \mathfrak{F} be a proof-figure satisfying the following condition: If
$F(H), \Gamma \rightarrow \Delta$
$\forall \varphi F(\varphi), \Gamma \rightarrow \Delta$
is an implicit \forall left on f-variable in $\mathfrak{\beta}$, then H has no 7 . Then the end-sequence of \mathfrak{F} is provable without cut.

Department of Mathematics
Tokyo University of Education

References

[1] G. Takeuti, On the fundamental conjecture of GLC I. Math. Soc. Japan, 7 (1955)
[2] G. Takeuti, On the fundamental conjecture of GLC II. Math. Soc. Japan, 7 (1955)

