Journal of the Mathematical Society of Japan

On the fundamental conjecture of GLC III.

By Gaisi TAKEUTI

(Received Nov. 11, 1954)

This paper is a continuation of [1] and [2]. We use the same notions and the notations as in these papers. See in particular [1] as to the meaning of the fundamental conjecture. We have proved this conjecture under several conditions in [1], [2]. In this paper, we shall prove it under some other conditions.

§ 1. Formulation of the theorem.

Until at the end of Appendex, the logical symbols \exists and \lor are not used. In this section we introduce some new notions and notations.

1.1. A formula in a proof-figure and a logical symbol in a formula We shall speak of a 'formula in a proof-figure', when the formula is considered together with the place where it occupies in the proof-figure. Let A and B be two formulas in a proof-figure P. Then A is equal to B if and only if A is in the same place as B in P. We shall also speak of logical symbol in a formular or in a proof-figure sequence and inferences etc. in a proof-figure in analogous meanings. We use the symbols #, \$\$\mathbf{H}\$ etc. as metamathematical variables to represent logical symbols in a formula or in a proof-figure.

1.2. Semi-formula, quasi-formula.

A figure of the form $H(x,...,y,\varphi,...,\psi)$ with bound variables x,...,y and bound f-variables $\varphi,...,\psi$ is called a semi-formula, if rnd only if $H(a,...,b,\alpha,...,\beta)$ obtained from $H(x,...y,\varphi,...,\psi)$ by substituting free variables a,...,b and free f-variables $\alpha,...,\beta$ for x,...,y and $\varphi,...,\psi$ is a formula and $x,...,y,\varphi,...,\psi$ are different from each other and are not contained in $H(a,...,b,\alpha,...,\beta)$.

If $\{x, \dots, y\}H(x, \dots, y)$ is a formula with argument-places, then $H(x, \dots, y)$ is clearly a semi-formula.

We use the word 'quasi-formula' as the neutral word for 'semiformula' or 'formula with argument-places'.

1.3.

Let # be a logical symbol in a semi-formula \mathfrak{A} . Then we define: 1.3.1. If # is the outermost logical symbol of \mathfrak{A} , then # is positive in \mathfrak{A} .

1.3.2. Let \mathfrak{A} be of the form $\mathfrak{B} \wedge \mathfrak{E}$. If \sharp is positive in \mathfrak{B} or \mathfrak{C} , then \sharp is positive in \mathfrak{A} . If \sharp is negative in \mathfrak{B} or \mathfrak{C} , then \sharp is negative in \mathfrak{A} . 1.3.3. Let \mathfrak{A} be of the form $\neg \mathfrak{B}$ and \sharp be not the outermost logical symbol of \mathfrak{A} . Then \sharp is positive or negative in \mathfrak{A} , according as \sharp is negative or positive in \mathfrak{B} .

1.3.4. Let \mathfrak{A} be of the form $\forall x \mathfrak{B}(x)$ or $\forall \varphi \mathfrak{C}(\varphi)$ and \sharp be not the outermost logical symbol of \mathfrak{A} . Then \sharp is positive or negative in \mathfrak{A} , according as \sharp is positive or negative in $\mathfrak{B}(x)$ or $\mathfrak{E}(\varphi)$ respectively.

Let # be a logical symbol in a formula with *i* argument-places $\{x,\dots,y\}H(x,\dots,y)$. Then we say that # is positive or negative in $\{x,\dots,y\}H(x,\dots,y)$ according as # is positive or negative in $H(x,\dots,y)$.

Let # and $\[mu]$ be two logical symbols in a quasi-formula \mathfrak{A} . If # and $\[mu]$ are positive in \mathfrak{A} or # and $\[mu]$ are negative in \mathfrak{A} , then we say that # is positive to $\[mu]$. If # is not positive to $\[mu]$, then we say that # is negative to $\[mu]$.

1.4.

Let \mathfrak{A} be a quasi-formula, and \mathfrak{B} be a semi-formula of the $\forall \varphi \mathfrak{C}(\varphi)$ contained in \mathfrak{A} and, moreover, \sharp be the outermost logical symbol of \mathfrak{B} . Then all the variables, *f*-variables, functions and logical symbols in $\mathfrak{C}(\varphi)$ are said to be 'tied by \sharp in \mathfrak{A} '.

Let \mathfrak{A} be a quasi-formula, and \mathfrak{B} be a semi-formula of the form $\forall \varphi \mathfrak{E}(\varphi)$ contained in \mathfrak{A} and, moreover, $\boldsymbol{\mu}$ be a \forall on an *f*-variable in $\mathfrak{E}(\varphi)$ and # be the outermost logical symbol of \mathfrak{B} . Then we say '# affects $\boldsymbol{\mu}$ ', if and only if $\boldsymbol{\mu}$ ties an *f*-variable of the form φ .

1.5.

Let \mathfrak{A} be a quasi-formula and # be a logical symbol \forall on an f-variable in \mathfrak{A} . # is called 'semi-simple in \mathfrak{A} ', if and only if the following conditions are fulfilled:

G. TAKEUTI

1.5.1. If # ties a \forall on an *f*-variable denoted by $\not{\mu}$, then $\not{\mu}$ is positive to #.

A quasi-formula \mathfrak{A} is called 'semi-simple' if and only if every \forall on *f*-variable in \mathfrak{A} is semi-simple in \mathfrak{A} .

Then we prove easily the following lemma by the method of [1].

LEMMA. The end-sequence of a proof-figure, in which every implicit formula is semi-simple, is provable without cut.

In fact the lemma can be still generalized. The author has in mind to publish a proof of the lemma in its generalized form in a forth coming paper.

1.6.

Let \mathfrak{A} be a quasi-formula and # be a logical symbol \forall on an f-variable in \mathfrak{A} . # is called 'simple in \mathfrak{A} ', if and only if the following conditions are fulfilled:

1.6.1. # is semi-simple in \mathfrak{A} .

1.6.2. # ties no free *f*-variable.

A quasi-formula A is called 'simple' if and only if every \forall on f-variable in \mathfrak{A} is simple in \mathfrak{A} .

An inference left on *f*-variable of the following form

$$\frac{F(H), \ \Gamma \to \Delta}{\forall \varphi F(\varphi), \ \Gamma \to \Delta}$$

is called 'simple', if and only if H is simple.

A proof-figure \mathfrak{P} is called 'simple', if and only if every implicit inference \forall left on *f*-variable in \mathfrak{P} is simple.

Now the aim of this paper is to prove the following theorem:

THEOREM. The end-sequence of a simple proof-figure is provable without cut.

1.7. Grade

Let \mathfrak{A} be a quasi-formula. The first grade of \mathfrak{A} is the number of the logical symbols \forall on *f*-variables in \mathfrak{A} , which are not simple in \mathfrak{A} . The second grade of \mathfrak{A} is the number of the logical symbols in \mathfrak{A} . The grade of \mathfrak{A} is the ordinal number $\omega m + n$, there *m* is the first grade of \mathfrak{A} and *n* the second grade of \mathfrak{A} .

Now, we have several propositions concerning the grade. 1.7.1. Let H be a simple formula with i argument-places and α be a free *f*-variable with i argument-places. Then the first grade of F(H) is not greater than the first grade of $F(\alpha)$.

PROOF. Let # be a \forall on an *f*-variable in F(H). If is # contained in *H* which is indicated in F(H), then clearly # is simple. If # ties a free *f*-variable in F(H), then clearly the logical symbol \forall in $F(\alpha)$ corresponding to # ties also a free *f*-variable in $F(\alpha)$. If # affects \natural , then the logical symbol \forall corresponding to # in $F(\alpha)$ affects also the \forall corresponding to \natural in $F(\alpha)$. Therefore the proposition is clear.

From 1.7.1 follow immediately 1.7.2. and 1.7.3.

1.7.2. Let H be a simple formula with *i* argument-places and $F(\alpha)$ be a simple formula and, moreover, α be a free *f*-variable with *i* argument-places. Then F(H) is a simple formula.

1.7.3. Let H be a simple formula with i argument-places and $F(\alpha)$ be a not simple formula and, moreover, be a free f-variable with i argument-places. Then the first grade of $\forall \varphi F(\varphi)$ is greater than the first grade of F(H). Therefore the grade of $\forall \varphi F(\varphi)$ is greater than the grade of F(H).

1.7.4. Let A be an implicit simple formula in simple proof-figure \mathfrak{P} and B be an ancestor of A. Then B is a simple formula.

PROOF. Without the loss of generality, we assume that A is a chief-formula of a logical inference \Im and B is a subformula of \Im .

If the outermost logical symbol of A is \neg , \land or \forall on a variable, then the proposition is clear. If the outermost logical symbol of \mathfrak{A} is \forall on an *f*-variable, then the proposition follows from 1.7.1.

§2. Proof of the theorem.

All the proof-figures considered in this section are simple; we shall not mention it further.

Let \mathfrak{P} be a (simple) proof-figure and \mathfrak{F} be a cut in \mathfrak{P} . Then \mathfrak{F} is called 'simple', if and only if the cut-formula of \mathfrak{F} is simple. The grade of \mathfrak{F} is defined as the grade of the cut-formula of \mathfrak{F} .

G. TAKEUTI

The grade of \mathfrak{P} is defined as the ordinal number $\sum_{\mathfrak{F}} \omega^{\alpha} \mathfrak{F}$, where \sum indicates the natural sum, \mathfrak{F} runs over all the cuts which are not simple in \mathfrak{P} , and $\alpha_{\mathfrak{F}}$ is the grade of \mathfrak{F} .

If the grade of \mathfrak{P} is zero, then the theorem holds for \mathfrak{P} by the lemma and 1.7.4. Therefore we prove the theorem by the transfinite induction on the grade of the proof-figure. Let the grade of a prooffigure \mathfrak{P} be not zero. Clearly, there exists a cut \mathfrak{F} in \mathfrak{P} which is not simple and such that every cut above \mathfrak{F} is simple. Then, as other cases are easy to treat, we can assume that \mathfrak{F} is of the form

$$\frac{\Gamma \to \varDelta, \, \forall \varphi F(\varphi) \quad \forall \varphi F(\varphi), \, \Pi \to \Lambda}{\Gamma, \, \Pi \to \varDelta, \, \Lambda} \, \Im$$

and the proof-figure to Γ , $\Pi \rightarrow A$, Λ is denoted by \mathfrak{P}_0 .

Let A or B be the left or the right cut-formula of \Im respectively. Without the loss of generality, we can assume that every leading formula of A or B is not a beginning formula nor a weakening formula, and moreover the predecessor of every leading formula of A is of the form $F(\alpha)$.

Let \mathfrak{P}_1 be obtained from the proof-figure to $\Gamma \to \Delta, \forall \varphi F(\varphi)$ by substituting $F(\alpha)$ for each formula equivalent to A. Then, the endsequence of \mathfrak{P}_1 is $\Gamma \to \Delta, F(\alpha)$.

Let $\Pi_1 \to \Lambda_1$ be an arbitrary sequence above the right upper sequence of \Im . Now, we construct, recursively as follows, a prooffigure, whose end-sequence is of the form Π_1^* , $\Gamma \to \Delta$, Λ_1 where Π_1^* is obtained from Π_1 by eliminating the formulas equivalent to B. 2.1. If $\Pi_1 \to \Lambda_1$ is a beginning sequence, then we construct the prooffigure of the form

$$\Pi_{1} \rightarrow \Lambda_{1}$$

Some weakenings and exchanges
$$\Pi_{1}, \Gamma \rightarrow \varDelta, \Lambda_{1}$$

2.2. Let $\Pi_1 \rightarrow \Lambda_1$ be the lower sequence of an inference \mathfrak{F}_1 , and the construction of the proof-figure be defined for the upper sequence of \mathfrak{F}_1 . We must consider the following three cases.

2.2.1. The case, where \Im_1 is a weakening, a contraction, a exchange or a cut.

As other cases are to be treated similarly, we assume that \mathfrak{Z}_1 is of the following form

$$\frac{\Pi_2 \to \Lambda_2, D \quad D, \Pi_3 \to \Lambda_3}{\Pi_2, \Pi_3 \to \Lambda_2, \Lambda_3}$$

where $\Pi_1 \rightarrow \Lambda_1$ is $\Pi_2, \Pi_3 \rightarrow \Lambda_2, \Lambda_3$.

By the assumption, the proof-figure \mathfrak{Q}_1 to $\Pi_2^*, \Gamma \to \Delta, \Lambda_2, D$ and the proof-figure \mathfrak{Q}_2 to $D, \Pi_3^*, \Gamma \to \Delta, \Lambda_3$ are defined. Then we construct the proof-figure of the form

2.2.2. The case, where \mathfrak{F}_1 is a logical inference and the chief-formula of \mathfrak{F}_1 is not equivalent to **B**.

As other cases are to be treated similarly, we assume that \mathfrak{J}_1 is of the following form

$$\frac{G(X), \Pi_2 \to \Lambda_2}{\forall x G(x), \Pi_2 \to \Lambda_2}$$

where $\Pi_1 \rightarrow \Lambda_1$ is $\forall x G(x), \Pi_2 \rightarrow \Lambda_2$.

By the assumption, the proof-figure \mathfrak{Q}_1 to G(X), Π_2^* , $\Gamma \to \Delta$, Λ_2 is defined. Then we construct the proof-figure of the form

$$\begin{array}{c}
 & \mathfrak{D}_{1} \\
 & \swarrow \\
 & \overbrace{G(X), \Pi_{2}^{*}, \Gamma \rightarrow \varDelta, \Lambda_{2}} \\
 & \forall x G(x), \Pi_{2}^{*}, \Gamma \rightarrow \varDelta, \Lambda_{2}
\end{array}$$

2.2.3. The case, where \Im_1 is \forall left on *f*-variable and the chiefformula of \Im_2 is equivalent to *B*.

Without the loss of generality, we assume \mathfrak{Z}_1 is of the following form

G. TAKEUTI

$$F(H), \Pi_2 \to \Lambda_2$$

$$\forall \varphi F(\varphi), \Pi_2 \to \Lambda_2$$

where $\Pi_1 \rightarrow \Lambda_1$ is $\forall \varphi F(\varphi), \Pi_2 \rightarrow \Lambda_2$.

By the assumption, the proof-figure \mathfrak{Q}_2 to F(H), Π_2^* , $\Gamma \to \Delta$, Λ_2 is defined. The we construct the proof-figure of the form

where \mathfrak{Q}_1 is obtained from \mathfrak{P}_1 by substituting H for α after the necessary changes of eigen-variables in \mathfrak{P}_1 .

By successive constructions 2.2.1, 2.2.2 and 2.2.3, we can form a proof-figure \mathfrak{D}_0 to $\Pi, \Gamma \to \Delta, \Lambda$. Now, we construct the proof-figure \mathfrak{D}'_0 of the following form

Then we see easily by 1.7.3, that the grade of \mathfrak{D}_0' is less than the grade of \mathfrak{B}_0 .

Let \mathfrak{Q} be the proof-figure obtained from \mathfrak{P} by substituting \mathfrak{Q}_0' for \mathfrak{P}_0 . Then clearly \mathfrak{Q} is a simple proof-figure and the grade of \mathfrak{Q} is less than the grade of \mathfrak{P} . Therefore the theorem is proved.

§ Appendix

A.1. A function $\gamma(A)$ of the formula or the formula with argumentplaces taking ordinal numbers as values will be called monotone if it fulfills the following conditions: A.1.1. $\gamma(7A) \geq (A)$.

A.1.2. $\gamma(A \wedge B) \geq \max(\gamma(A), \gamma(B))$.

A.1.3. $\gamma(\forall x G(x)) \geq \gamma(G(X))$.

A.1.4. $\gamma(\{x_L, \dots, x_i\} H(x_L, \dots, x_i)) = \gamma(H((X_1, \dots, X_i)))$.

A.1.5. If A is homologous to B, then $\gamma(A)$ is equal to $\gamma(B)$.

A.1.6. If $\gamma(H) = 0$ and $\gamma(\forall \varphi F(\varphi)) > 0$, then $\gamma(\forall \varphi F(\varphi)) > \gamma(F(H))$.

We say that A is γ -simple, if and only if $\gamma(A) = 0$. An inference \forall left on *f*-variable

$$\frac{F(H), \ \Gamma \to \Delta}{\forall \varphi F(\varphi), \ \Gamma \to \Delta}$$

is called γ -simple, if H is γ -simple, it is called strictly γ -simple, if H and $\forall \varphi F(\varphi)$ are γ -simple. A proof-figure \mathfrak{P} is called (strictly) γ -simple, if every implicit inference \forall left on f-variable in \mathfrak{P} is (strictly) -simple.

A.2. In the same way as in §2, we have then the following proposition:

If γ is monotone and the fundamental conjecture is verified for every strictly γ -simple proof-figure, then the fundamental conjecture is verified for every γ -simply proof-figure.

A.3. Let us suppose that a set \mathfrak{M} of formulas and formulas with argument-places is given, and that \mathfrak{M} is 'closed' in the following some.

A.3.1. If $\forall x G(x)$ belongs to \mathfrak{M} , then G(X) belongs to \mathfrak{M} .

A.3.2. If $B \wedge C$ belongs to \mathfrak{M} , then B and C belong to \mathfrak{M} .

A.3.3. If $\neg B$ belongs to \mathfrak{M} , then B belongs to M.

A.3.4. If $\forall \varphi F(\varphi)$ belongs to \mathfrak{M} , then $F(\alpha)$ belongs to \mathfrak{M} .

A.3.5. $\{x_1, \dots, x_i\} H(x_1, \dots, x_i)$ belongs to \mathfrak{M} , if and only if $H(X_1, \dots, X_i)$ belongs to \mathfrak{M} .

A.3.6. If B is homologous to C and B belongs to \mathfrak{M} , then C belongs to \mathfrak{M} .

A.3.7. If $F(\alpha)$ and H belongs to \mathfrak{M} and the types of α and H are

the same, then F(H) belongs to \mathfrak{M} .

A.3.8. If A has no logical symbol, then A belongs to \mathfrak{M} .

A.4. Now let us define a function γ recursively as follows, and call it 'the function determined by \mathfrak{M} ':

A.4.1. $\gamma(A)$ is equal to zero, if and only if A belongs to \mathfrak{M} .

A.4.2. If A is of the form $\neg B$ and does not belong to \mathfrak{M} , then $\gamma(A)$ is equal to $\gamma(B) + 1$.

A.4.3. If A is of the form $B \wedge C$ and does not belong to \mathfrak{M} , then $\gamma(A)$ is n+1, where n is the maximum of $\gamma(B)$ and $\gamma(C)$.

A.4.4. If A is of the form $\forall xG(x)$ and does not belong to \mathfrak{M} , then $\gamma(A)$ is equal to $\gamma(G(a)) + 1$.

A.4.5. If A is of the form $\{x_1, \dots, x_i\} H(x_1, \dots, x_i)$, then $\gamma(A)$ is equal to $\gamma(H(a_1, \dots, a_i))$.

A.4.6. If A is of the form $\forall \varphi F(\varphi)$ and does not belong to \mathfrak{M} , then $\gamma(A)$ is equal to $\gamma(F(\alpha)) + 1$.

A.5. We shall prove the following proposition:

Let \mathfrak{M} be closed and γ be the function determined by \mathfrak{M} . If H belongs to \mathfrak{M} and has the same type as α , then $\gamma(F(\alpha))$ is equal to $\gamma(F(H))$.

PROOF. If $\gamma(F(\alpha)) = 0$, the proposition is clear. Let us proceed by the mathematical induction on a+b, where a is $\gamma(F(\alpha))$ and b is the number of logical symbols in $F(\alpha)$. We have several cases according to the kind of the outermost logical symbol of $F(\alpha)$, but, as all cases are treated similarly we deal only with the case, where $F(\alpha)$ is of the form $\forall \varphi G(\varphi, \alpha)$. Then, by the hypothesis of the induction, $\gamma(G(\beta, \alpha))$ is equal to $\gamma(G(\beta, H))$, and we see easily that $\gamma(\forall \varphi G(\varphi, \alpha))$ is equal to $\gamma(\forall \varphi G(\varphi, H))$. Q. E. D.

A.6. From the above proposition follows immediately the following proposition:

Let \mathfrak{M} be closed and γ be the function determined by \mathfrak{M} . Then γ is monotone.

A.7. Now we shall give several examples of sets of formulas and formulas with argument-places, which are easily seen to be closed.

62

A.7.1. The first example \mathfrak{M}_1 .

We define that belongs to \mathfrak{M}_1 , if and only if every \forall on *f*-variable in *A* affects no \forall on *f*-variable in *A*.

A.7.2. The second example \mathfrak{M}_2 .

We define that A belongs to \mathfrak{M}_2 , if and only if the following condition is fulfilled:

Let # and \notin be \forall on *f*-variables in *A* and let # affect \notin . Then # is positive to \notin , and, moreover, if r is an arbitrary \forall on *f*-variable, which is tied by # and ties \notin , then r is positive to #.

A.7.3. The third example \mathfrak{M}_{3} .

We define that A belongs to \mathfrak{M}_3 , if and only if A contains no logical symbol \forall on any variable.

Let γ_3 be the function determined by \mathfrak{M}_3 . Then from our former paper [2] follows that the fundamental conjecture is verified for the strictly γ_3 -simple proof-figure. Therefore by A.2 we have the following theorem:

THEOREM 2. Let \mathfrak{P} be a proof-figure satisfying the following condition: If

$$\frac{F(H), \ \Gamma \to \Delta}{\forall \varphi F(\varphi), \ \Gamma \to \Delta}$$

is an implicit \forall left on f-variable in \mathfrak{P} , then H has no \forall on variable. Then the end-sequence of \mathfrak{P} is provable without cut.

Hereafter, we use the logical symbol \exists and \forall . Accordingly, we define that \mathfrak{M} is closed, if and only if \mathfrak{M} satisfies A.3.1-A.3.8 and the following conditions:

A.3.9. If $B \lor C$ belongs to \mathfrak{M} , then B and C belong to \mathfrak{M} . A.3.10. If $\exists x G(x)$ belongs to \mathfrak{M} , then G(X) belongs to \mathfrak{M} . A.3.11. If $\exists \varphi F(\varphi)$ belongs to \mathfrak{M} , then $F(\alpha)$ belongs to \mathfrak{M} .

The concept of 'function determined by \mathfrak{M} ' should be also modified accordingly.

A.7.4. The fourth example \mathfrak{M}_4 .

We define that A belong to \mathfrak{M}_4 , if and only if A does not contain the logical symbol 7.

Let γ_4 be the function determined by \mathfrak{M}_4 . We see easily that the fundamental conjecture holds for the strictly γ_4 -simple prooffigure. (the author intends to prove a theorem, implying this as a special case in a forth coming paper). Therefore by A.2, we have the following theorem:

THEOREM 3. Let \mathfrak{P} be a proof-figure satisfying the following condition: If

$$F(H), \ \Gamma \to \Delta$$
$$\forall \varphi F(\varphi), \ \Gamma \to \Delta$$

is an implicit \forall left on f-variable in \mathfrak{P} , then H has no 7. Then the end-sequence of \mathfrak{P} is provable without cut.

Department of Mathematics Tokyo University of Education

References

[1] G. Takeuti, On the fundamental conjecture of GLC I. Math. Soc. Japan, 7 (1955)
[2] G. Takeuti, On the fundamental conjecture of GLC II. Math. Soc. Japan, 7 (1955)