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0. Introduction

The purpose of this note is to determine the Lie groups of
dimension greater than $n(n-1)/2$ which can be treated as groups of
isometries on an n-dimensional Riemannian space and study the
differential.geometrical and topological structure of the space.

In this regard, K. Yano [5] has recently proved the following
interesting theorem.

THEOREM A. A necessary and sufficient condition that an n-dimen-
sional Riemannian space for $n>4,$ $n\neq 8$ admit a group of motions of
order $n(n-1)/2+1$ is that the space be the product space of a straight line
and an $(n-1)$ -dimensional Riemannian space of constant curvature or
that the space be of negative constant curvature.

In this theorem the cases $n=4$ and $n=8$ are exceptional. For
$n=4$ , S. Ishihara [1] has solved the problem completely by deter-
mining all 4-dimensional homogeneous Riemannian spaces, but it
was open for $n=8$ .

On the other hand, to prove Theorem $A$ , K. Yano used essential-
ly the following theorem due to D. Montgomery and H. Samelson [3].

THEOREM B. The rotation group $R(n)$ in an n-dimensional vector
space, for $n\neq 4,$ $n\neq 8$ , contains no proper closed subgroup whose dimen-
sion is greater than $(n-1)(n-2)/2$ . If $H$ is a subgroup whose dimension
is equal to $(n-1)(n-2)/2$ , then $H$ is the subgroup which leaves fixed one
and only one direction.

As to the case $n=8$ , it has already been known that $R(8)$ con-
tains the universal covering group of $R(7)^{1)}$ . This implies that the

1) Prof. S. Murakami has kindly informed me this fact and others concerned. I
should like to express my heartv thanks to him.
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Lie algebra of $R(7)$ admits an irreducible representation in an 8-
dimensional vector space. Using this fact it will be proved that if
$n=8$ the possible exceptional space in Theorem A is locally flat and
homeomorphic to a Euclidean space.

After a preliminary section 1, we shall study in \S 2 the case
where the group is of dimension $n(n+1)/2$ and prepare some theo-
rems and lemmas concerning the rotation group, the Lorentz group
and the homogeneous space of the group in question. In \S 3, applying
the results of \S 2 we shall treat of the case where the group is of
dimension less than $n(n+1)/2$ . We shall give an algebraic treatment
of Theorem A by determining the Lie algebra of the group. The
last section is concerned with the case $n=8$ .

1. Preliminaries

Let $G$ be a connected Lie group of dimension $r$ and $H$ a compact
subgroup of $di\iota_{1}^{v}lensionr-n(0<n\leqq r)$ . Since $H$ is compact, on the
Lie algebra $\mathfrak{g}$ of $G$ there exists a positive-definite bilinear form $B$

invariant under $ad(H)$ . Then the subset

$\mathfrak{m}=$ { $X$ ; $X\in \mathfrak{g}$ , $B(X,$ $U)=0$ for all $U\in \mathfrak{h}$ }

is a subspace of $\mathfrak{g}$ such that $\mathfrak{g}=\mathfrak{m}+\mathfrak{h}$ (direct sum of vector spaces)

and $ad(h)\mathfrak{m}\subset \mathfrak{m}$ for all $h$ in $H,$ $\mathfrak{h}$ being the subalgebra of $\mathfrak{g}$ corre-
sponding to the identity component of $H$.

The group $G$ is said to be effective on the homogeneous space $G/H$

as a transformation group of the homogeneous space $G/H$ if every
element of $G$, except the identity, moves at least one point on $G/H$

This is the case if $H$ does not contain any non-trivial normal sub-
group of $G$. Now we shall say $G$ is almost effective if $\mathfrak{h}$ contains no
non-trivial ideal of $\mathfrak{g}$ , or equivalently if the representation $\mathfrak{h}\rightarrow ad(\mathfrak{h})$

in $\mathfrak{m}$ is faithful. Of course, if $G$ is effective, then it is also almost
effective. Throughout this note we assume that $G$ is almost effective
on $G/H$.

2. The case $\dim G\geqq n(n+1)/2$

In this section we assume $\dim G=r\geqq n(n+1)/2$ .
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2.1. Determination of the space $[\mathfrak{m}, \mathfrak{m}]$ . We shall first prove
LEMMA 1. $G$ is of dimension $n(n+1)/2$ and $\mathfrak{h}$ is isomorphic to the

Lie algebra $\mathfrak{r}(n)$ of the rotation group $R(n)$ in the vector space $\mathfrak{m}$ for
any $n$.

PROOF. Since $H$ is compact and $\dim \mathfrak{m}=n,$ $ad(\mathfrak{h})$ in $\mathfrak{m}$ is a sub-
algebra of $\mathfrak{r}(n)$ in the vector space $\mathfrak{m}$ . $G$ being almost effective
on $G/H$, the representation $\mathfrak{h}\rightarrow ad(\mathfrak{h})$ in $\mathfrak{m}$ is faithful, so that $\mathfrak{h}$ is
isomorphic to ad $(\mathfrak{h})$ in $\mathfrak{m}$ . Therefore we have

$\dim ad(\mathfrak{h})=\dim \mathfrak{h}=r-n\geqq\frac{1}{2}n(n-1)=\dim \mathfrak{r}(n)$ .

On the other hand, ad $(\mathfrak{h})$ in $\mathfrak{m}$ being a subalgebra of $\mathfrak{r}(n)$ , we
have $\dim$ ad $(\mathfrak{h})\leqq\dim \mathfrak{r}(n)=n(n-1)/2$ . Therefore we have dim ad $(\mathfrak{h})$

$=n(n-1)/2$ and ad $(\mathfrak{h})=\mathfrak{r}(n)$ in $\mathfrak{m}$ . Hence we have $\dim G=n(n+1)/2$ .
From Lemma 1 it follows that in case $n=1G$ is l-dimensional

and $H$ is a finite group and the structures of $G$ and $H$ are known.
We shall accordingly assume $n\geqq 2$ in the rest of this note.

LEMMA 2. If $n\neq 3,$ $n\neq 4$ , we have either $[\mathfrak{m}, \mathfrak{m}]=\mathfrak{h}$ or $[\mathfrak{m}, \mathfrak{m}]=(0)$ ,
where $[\mathfrak{m}, \mathfrak{m}]$ is the subspace spanned by all elements of the form [X, $Y$],
$X,$ $Y\in \mathfrak{m}$ .

To prove this, we need a trivial lemma.
LEMMA 3. Let $\mathfrak{g}$ be a vector space of a semi-simple representation

of a group. If $\mathfrak{g}=\mathfrak{g}_{1}+\mathfrak{g}_{2}$ is a decomposition of $\mathfrak{g}$ as a direct sum of
irreducible subspaces and $\dim \mathfrak{g}_{1}\neq\dim \mathfrak{g}_{2}$ , then there exists no proper
non-trivial invariant subspace except $\mathfrak{g}_{1}$ and $\mathfrak{g}_{2}$ .

PROOF OF LEMMA 2. The subspace $[\mathfrak{m}, \mathfrak{m}]$ is invariant under $ad(\mathfrak{h})$

in $\mathfrak{g}$ . In fact, for any $X,$ $Y\in \mathfrak{m}$ and $U\in \mathfrak{h}$ , we have $[U, X]\in \mathfrak{m}$

and $[U, Y]\in \mathfrak{m}$ , and the Jacobi identity shows that

$[U, [X, Y]]=[[U, X],$ $Y$] $+[X, [U, Y]]$ .
Therefore $[U, [X, Y]]\in[\mathfrak{m}, \mathfrak{m}]$ , which proves that $[\mathfrak{m}, \mathfrak{m}]$ is invariant
under ad $(\mathfrak{h})$ .

On the other hand, by Lemma 1 $ad(\mathfrak{h})$ in $\mathfrak{m}$ coincides with
$\mathfrak{r}(n)$ in $\mathfrak{m}$ , and accordingly $ad(\mathfrak{h})$ in $\mathfrak{m}$ is irreducible. $\mathfrak{r}(n)$ being simple
for $n\neq 4,$ $ad(\mathfrak{h})$ in $\mathfrak{h}$ is also irreducible. Therefore the decomposition
$\mathfrak{g}=\mathfrak{m}+\mathfrak{h}$ is an irreducible one of $\mathfrak{g}$ under the representation $\mathfrak{h}\rightarrow ad(\mathfrak{h})$

in $\mathfrak{g}$ . Furthermore we have $\dim \mathfrak{m}\neq\dim \mathfrak{h}$ for $n\neq 3$.
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Since $\dim \mathfrak{m}=n$, we have $\dim[\mathfrak{m}, \mathfrak{m}]\leqq n(n-1)/2$ and $[\mathfrak{m}, \mathfrak{m}]$ is a
proper subspace invariant under $ad(\mathfrak{h})$ in $\mathfrak{g}$ . By Lemma 3, if it is
not trivial, we have either $[\mathfrak{m}, \mathfrak{m}]=\mathfrak{h}$ or $[\mathfrak{m}, \mathfrak{m}]=\mathfrak{m}$ .

Now, we shall prove that the case $[\mathfrak{m}, \mathfrak{m}]=\mathfrak{m}$ cannot occur. In
order to do this, suppose that $[\mathfrak{m}, \mathfrak{m}]=\mathfrak{m}$ and denote by $\mathfrak{r}$ the
radical of $\mathfrak{g}$ . Then, being an ideal, in particular $\mathfrak{r}$ is invariant
under $ad(\mathfrak{h})$ in $\mathfrak{g}$ . $\mathfrak{h}$ being semi-simple, $\dim \mathfrak{r}\leqq\dim \mathfrak{g}-\dim \mathfrak{h}=n$ , whence
$\mathfrak{r}$ must be nt or (0). By our assumption $[t\ddagger 1, t\uparrow\tau]=\mathfrak{m},$ $\iota \mathfrak{n}$ cannot be solv-
able. Therefore $\mathfrak{r}=(0)$ and $\mathfrak{g}$ is semi-simple. In our case $\mathfrak{m}$ being

an ideal in $\mathfrak{g}$ , there exists a supplementary ideal $\mathfrak{h}^{\prime}$ such that $\mathfrak{g}$ is
the direct sum of $\mathfrak{m}$ and $\mathfrak{h}^{\prime}$ . Since $\mathfrak{h}^{\prime}$ is invariant under $ad(\mathfrak{h})$ and
$\dim \mathfrak{h}^{\prime}=\dim \mathfrak{h}$ , we must have $\mathfrak{h}^{\prime}=\mathfrak{h}$ by Lemma 3. On the other
hand, from $[\mathfrak{h}, \mathfrak{m}]=\mathfrak{m},$ $\mathfrak{h}$ is not an ideal, which leads to a contradiction.

We have thus proved that either $[\mathfrak{m}, \iota \mathfrak{n}]=(0)$ or $[\mathfrak{m}, \mathfrak{m}]=\mathfrak{h}$ , which
is the statement of Lemma 2.

LEMMA 4. If $[\mathfrak{m}, \iota \mathfrak{n}]=\mathfrak{h}$ and $n\neq 3,$ $n\neq 4$ , then $\mathfrak{g}$ is simple and semi-
simple.

PROOF. Let $\mathfrak{a}$ be an ideal of $\mathfrak{g}$ . Then $\mathfrak{a}$ is invariant under $ad(\mathfrak{h})$ .
On the other hand, $\mathfrak{h}$ and $\mathfrak{m}$ are not ideals because we have $[\mathfrak{h}, \mathfrak{m}]=\mathfrak{m}$

and $[\mathfrak{m}, \iota \mathfrak{n}]=\mathfrak{h}$ . Therefore $\mathfrak{a}$ must be either $\mathfrak{g}$ or (0) by Lemma 3.
Moreover, since $n\geqq 2$ , we have $\dim \mathfrak{g}=n(n+1)/2>1$ , so that the
simple Lie algebra $\mathfrak{g}$ is semi-simple.

REMARK. Since in both cases of Lemma 2 we have $[\mathfrak{m}, \mathfrak{m}]\subset \mathfrak{h}$ , we
can define an involutive automorphism $\sigma$ of $\mathfrak{g}$ :

$X^{\sigma}=-X$ for $X\in \mathfrak{m}$ , $U^{\sigma}=U$ for $U\in \mathfrak{h}$ .

If this is the case the homogeneous space $G/H$ is called to be a
locally symmetric homogeneous space.

2.2. Determination of the Lie algebra $\mathfrak{g}$ . Since the bilinear
form $B$ is positive-definite, on $\mathfrak{m}\times \mathfrak{m}$ we may take a base {X,, ..., $X_{n}$ }
of $\mathfrak{m}$ such that $B(X_{i}, X_{j})=\delta_{ij}(1\leqq i, j\leqq n)$ . Since $ad(\mathfrak{h})=\mathfrak{r}(n)$ in $\mathfrak{m}$ , we
can find a base $\{X_{j;}\}(1\leqq i<j\leqq n)$ of $\mathfrak{h}$ such that

$[X_{ij}, X_{k}]=\delta_{ik}X_{j}-\delta_{jk}X_{i}$ $(1\leqq i<j\leqq n, 1\leqq k\leqq n)$ .
Then we can easily see that for any $i,j,$ $k$,



On n-dimensional homogeneous spaces of Lie groups. 375

$[X_{ij}, X_{kl}]=\delta_{ih}X_{jl}-\delta_{jk}X_{jl}-\delta_{il}X_{jk}+\delta_{jl}X_{ik}$ ,

where for convenience we put $X_{ii}=0$ , and $X_{ij}=-X_{ji}$ for $i>j$ if
necessary. We denote by $B_{\mathfrak{m}}$ and $B_{\mathfrak{b}}$ the restrictions of $B$ to $\mathfrak{m}\times \mathfrak{m}$

and $\mathfrak{h}\times \mathfrak{h}$ respectively. They are clearly invariant under $ad(\mathfrak{h})$ and
positive-definite. If $n\neq 4$ , since $\mathfrak{h}$ is simple, from the beginning we
may assume that $-2(n-2)B_{\mathfrak{h}}$ is identical with the fundamental
bilinear form of $\mathfrak{h}$ itself which is invariant under $ad(\mathfrak{h})$ and negative-
definite. Then it is easily seen that

$B(X_{ij}, X_{kl})=\delta_{ih}\delta_{jl}-\delta_{il}\delta_{jk}$ .

We consider the case $[\mathfrak{m}, \mathfrak{m}]=\mathfrak{h}$ . In this case $\mathfrak{g}$ is simple and
semi-simple by Lemma 4. Let $\phi$ be the fundamental bilinear form
of $\mathfrak{g}$ , then $\phi$ is non-degenerate. Since it is invariant under every
automorphism of $\mathfrak{g}$ , we have in particular $\phi(X, U)=\phi(X^{\sigma}, U^{\sigma})=$

$\phi(-X, U)$ and hence $\phi(X, U)=0$ for any $X\in \mathfrak{m}$ and $U\in \mathfrak{h}$ . Let $\phi_{m}$

and $\phi_{\mathfrak{h}}$ be the restrictions of $\phi$ to $\mathfrak{m}\times \mathfrak{m}$ and $\mathfrak{h}\times \mathfrak{h}$ respectively.
Then they are invariant under $ad(\mathfrak{h})$ and non-degenerate. Further-
more since $\mathfrak{m}$ and $\mathfrak{h}$ are irreducible under $ad(\mathfrak{h})$ we have $aB(X, Y)$

$=\phi_{m}(X, Y)$ and $bB(U, V)=\phi_{\mathfrak{h}}(U, V)$ for $X,$ $Y\in \mathfrak{m},$ $U,$ $V\in \mathfrak{h}$ , where $a$

and $b$ are non-zero real numbers.
LEMMA 5. If we put $X_{i}^{*}=\sqrt{}|c|X_{i}(c=b/a)$ , then

$[X_{i}^{*}, X_{j}^{*}]=sgn(c)X_{ij}$ for all $1\leqq i<j\leqq n$ .
PROOF. Using the fact that $\phi$ is invariant under $ad(\mathfrak{g})$ and

$[X_{i}, X_{j}]\in \mathfrak{h}$ , we have

1
$B([X_{i}, X_{j}], X_{kl})=-$ $\phi([X_{i}, X_{j}], X_{kl})$ (in $\mathfrak{h}$ )

$b$

1
$=$ $\phi(X_{j}, [X_{kl}, X_{i}])$ (in $\mathfrak{g}$ )

$b$

$=$
$a$

$B(X_{j}, \delta_{ik}X_{l}-\delta_{il}X_{k})$ (in $\mathfrak{m}$ )
$b$

1
$=$ $(\delta_{ih}\delta_{jl}-\delta_{il}\delta_{jk})$

$c$
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for any $1\leqq i<j\leqq n$, $1\leqq k<l\leqq n$ . Accordingly we have

$sgn(c)$ , if $i=k,$ $j=l$

$B([X_{i}^{*}, X_{j}^{*}], X_{kl})=sgn(c)(\delta_{ik}\delta_{jl}-\delta_{j_{l}}\delta_{jk})=\backslash 0$ , otherwise.

Therefore we have $[X_{i}^{*}, X_{j}^{*}]=sgn(c)X_{ij}$ .
Since we have considered the structure of the Lie algebra $\mathfrak{g}$ in

the case $n\neq 3,$ $n\neq 4$ , we shall study it in the cases $n=3$ and $n=4$ .
We shall begin with the case $n=4$ . All 4-dimensional homo-

geneous Riemannian spaces have already been studied by S. Ishihara
[1], so that we shall not enter into detail. As is well known,
$\mathfrak{h}\cong \mathfrak{r}(4)$ is the direct sum of the special unitary algebra Bu(2) in 2-
complex-variables by itself. Taking account of this fact it is easily
seen that the space $[\mathfrak{n}\iota, \mathfrak{m}]$ is contained in $\mathfrak{h}$ and therefore the homo-
geneous space $G/H$ is a locally symmetric homogeneous space. K.
Nomizu [4] has proved that if $G/H$ is a locally symmetric homo-
geneous space and $ad(\mathfrak{h})$ in $\mathfrak{m}$ is irreducible then we have either
$[\mathfrak{m}, \mathfrak{m}]=\mathfrak{h}$ or $[\mathfrak{m}, \mathfrak{m}]=(0)$ . We have thus

LEMMA 2‘. If $n=4$ , we have either $[\mathfrak{m}, \mathfrak{m}]=\mathfrak{h}$ or $[\mathfrak{m}, \mathfrak{m}]=(0)$ .
Modifying the proof of Lemma 4, we have immediately
LEMMA $4^{\prime}$ . If $n=4$ and $[\mathfrak{m}, \mathfrak{m}]=\mathfrak{h}$ , then $\mathfrak{g}$ is simple and semi-simple.
Furthermore using the Jacobi identity and performing a simple

calculation we have
LEMMA $5^{\prime}$ . If $n=4$ and $[\mathfrak{m}, \mathfrak{m}]=\mathfrak{h}$ , there exists a non-zero real

number $c$ such that $[X_{i}, X,\cdot]=cX_{ij}$ for $1\leqq i<j\leqq 4$ .
We shall next consider the case $n=3$ . In this case it is easily

seen that $[X_{j}, X_{j}]s$ are as follows:

$[X_{2}, X_{3}]=aX_{1}+bX_{23}$ , $[X_{3}, X_{1}]=aX_{2}+bX_{31}$ , $[X_{1}, X_{2}]=aX_{3}+bX_{12}$ ,

where $a$ and $b$ are real numbers. If we denote by $\mathfrak{m}^{\prime}$ the vector
space spanned by the elements

$X_{1}^{\prime}=2X_{1}-aX_{23}$ , $X_{2}^{\prime}=2X_{2}-aX_{31}$ , $X_{3}^{\prime}=2X_{3}-aX_{12}$ ,

then $\mathfrak{m}^{\prime}$ is invariant under $ad(\mathfrak{h})$ and $[X_{i}^{\prime}, X_{j}^{\prime}]=cX_{ij}$ and $\mathfrak{g}=\mathfrak{m}^{\prime}+\mathfrak{h}$

where we put $c=a^{2}+4b$ . It follows that we may take $\mathfrak{m}^{\prime}$ for $\mathfrak{m}$ .
Then the same situations occur as in the case $n\neq 3$, and the corre-
sponding lemmas hold good.
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Stating the structure of $\mathfrak{g}$ corresponding to the sign of the
number $c$, we have the followings:

(I) The case $c>0$ .
The fundamental bilinear form $\phi$ is definite and $G$ is compact;

therefore $G/H$ is compact. If we put $x_{i}*=X_{0i}=-X_{i0}$ , then $\mathfrak{g}$ has the
following structure:

$[X_{ij}, X_{kl}]=\delta_{ik}X_{jl}-\delta_{jk}X_{il}-\delta_{il}X_{jk}+\delta_{jl}X_{ik}$ $(0\leqq i, j, k, l\leqq n)$ ,

that is, $\mathfrak{g}$ is isomorphic to the Lie algebra $\mathfrak{r}(n+1)$ of the rotation
group $R(n+1)$ .

(II) The case $c<0$ .
The fundamental bilinear form $\phi$ is not definite and $G$ is not

compact; therefore $G/H$ is not compact. If we put $x_{i}*=X_{0i}=-X_{i0}$

then $\mathfrak{g}$ has the following structure:

$[X_{0i}, X_{0j}]=-X_{ij}$ $(1 \leqq i<j\leqq n)$ ,

$[X_{ij}, X_{kl}]=\delta_{ik}X_{jl}-\delta_{jk}X_{il}-\delta_{il}X_{jk}+\delta_{jl}X_{ih}$ $(1\leqq i, j\leqq n, 0\leqq k, l\leqq n)$ ,

that is, $\mathfrak{g}$ is isomorphic to the Lie algebra $\mathfrak{l}(n+1)$ of the Lorentz
group $L(n+1)$ .

(III) The case $[\mathfrak{m}, \mathfrak{m}]=(0)$ .
Obviously $\mathfrak{g}$ is isomorphic to the Lie algebra $\mathfrak{m}(n)$ of the group

$M(n)$ of all proper motions in an n-dimensional Euclidean space.
Gathering all the results obtained in this section, we can state

the following lemma.
LEMMA 6. Let $G$ be a connected Lie group of dimension $r=n(n+1)/2$

and $H$ a compact subgroup of dimension $r-n$ . Denote by $\mathfrak{g}$ and $\mathfrak{h}$ the
Lie algebra of $G$ and $H$ respectively. We assume that $G$ is almost effec-
tive on the homogeneous space $G/H$ as a transformation group. Then
$\mathfrak{g}$ is isomorphic to one of the following Lie algebras:

(I) The Lie algebra $\mathfrak{r}(n+1)$ of the rotation group $R(n+1)$ in an
(n+l)-dimensional vector space,

(II) The Lie algebra $\mathfrak{l}(n+1)$ of the Lorentz group $L(n\ovalbox{\tt\small REJECT}+1)$ in an
$(n+1)$ -dimensional vector space,

(III) The Lie algebra $\mathfrak{m}(n)$ of the group $M(n)$ of motions in an
n-dimensional Euclidean space.

The subalgebra $\mathfrak{h}$ is isomorphic to $\mathfrak{r}(n)$ and there exists an auto-
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morphism of $\mathfrak{g}$ which maps $\mathfrak{h}$ onto the standard subalgebra $\mathfrak{r}(n)$ of $\mathfrak{g}$ .

2.3. On the group $G$. We can now state Theorem $B$ in \S $0$

as follows.
THEOREM 1. The rotation group $R(n+1)$ in an $(n+1)$ -dimensional

vector space for $n\neq 3$ contains no proper closed subgroup whose dimension
is greater than $\dim R(n)$ . If $H$ is a closed subgroup of $R(n+1)$ whose
dimension is equal to $\dim R(n)$ and $n\neq 1,3,7$ , then $H$ is the subgroup
$R(n)$ which leaves fixed one and only one direction.

PROOF. Since the Lie algebra $\mathfrak{r}(n+1)$ of $R(n+1)$ is simple for
$n\neq 3$ , it contains no non-trivial proper ideal. If $H$ is a closed
subgroup of $R(n+1)$ of dimension not less than $\dim R(n)$ , then the
homogeneous space $R(n+1)/H$ is of dimension $m\leqq n$ and $R(n+1)$ is al-
most effective on $R(n+1)/H$ as a transformation group. Since we have
$\dim R(n+1)\geqq m(m+1)/2$ and $\dim H=\dim R(n+1)-m$, we must have
$\dim R(n+1)=m(m+1)/2$ by Lemma 1 and $m=n$ . From Lemma 6 it
follows that $\mathfrak{h}$ is mapped onto a standard subalgebra $\mathfrak{r}(n)$ by an auto-
morphism of $\mathfrak{r}(n+1)$ . If $n\neq 1,3,7$ this is induced by an automor-
phism of $R(n+1)^{2)}$ . Since it is known that the automorphisms of
$R(n+1)$ are conjugations by orthogonal matrices, $H$ is conjugate with
the standard subgroup $R(n)$ in the orthogonal group $O(n+1)$ . This
proves the assertion of the theorem for $n\neq 1,3,7$ .

As for the Lorentz group $L(n+1)$ we have the following
THEOREM 2. Let $G$ be a connected Lie group which is locally iso-

morphic to the Lorentz group $L(n+1),$ $n\geqq 2$ . Then the maximal com-
pact subgroup of $G$ is locally isomorphic to $R(n)$ . In particular, $L(n+1)$

in an $(n+1)$ -dimensional vector space contains no compact subgroup
whose dimension is greater than $\dim R(n)$ . If $H$ is a compact subgroup
of $L(n+1)$ whose dimension is equal to $\dim R(n)$ , then $H$ is the subgroup
$R(n)$ which leaves fixed one and only one direction.

PROOF. Since the Lie algebra $1(n+1)$ of $L(n+1)$ is simple, for
any closed subgroup $H,$ $G$ is almost effective on $G/H$ as a transfor-
mation group. Therefore if $\mathfrak{h}$ is the Lie algebra of a compact subgroup
of dimension $\geqq\dim R(n)$ , the same argument as in Theorem 1 shows
that $\mathfrak{h}$ is isomorphic to $\mathfrak{r}(n)$ . We have thus proved the first part of

2) See the footnote 1).
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Theorem 2. If $G=L(n+1)$ , then its maximal compact subgroup is
locally isomorphic to $R(n)$ . On the other hand by a theorem of Iwa-
sawa [2] maximal compact subgroups are connected and conjugate to
each other; therefore $H$ must be conjugate to the subgroup $R(n)$ which
leaves fixed one and only one direction.

The Lorentz group $L(n+1)$ , however, has non-compact subgroups
whose dimension is $n(n-1)/2+1$ . In fact, we have the following

LEMMA 8. The notation being the same as in $(\Pi)$ of \S 2.2, let $\mathfrak{m}_{1}$ ,
$\mathfrak{m}_{2},$

$\mathfrak{m}_{2}^{\prime}$ , and $\mathfrak{h}_{0}$ be the subspaces of $\mathfrak{l}(n+1)$ spanned by $X_{01}$ ; $X_{0i}-X_{1i}$,
$2\leqq i\leqq n;X_{0i}+X_{1i},$ $2\leqq i\leqq n$ ; and $X_{ij},$ $2\leqq i<j\leqq n$ respectively. Then
the vector space $\mathfrak{g}_{0}=\mathfrak{m}_{1}+\mathfrak{m}_{2}+\mathfrak{h}_{0}$ is a subalgebra of $\mathfrak{l}(n+1)$ having the
following structure:

$[\mathfrak{m}_{1}, \mathfrak{m}_{1}]=(0)$ ; $[\mathfrak{m}_{2}, \mathfrak{m}_{2}]=(0)$ ; $[\mathfrak{h}_{0}, \mathfrak{m}_{1}]=(0)$ ;

$[\mathfrak{m}_{1}, \mathfrak{m}_{2}]=\mathfrak{m}_{2}$ and [X, $Y$] $=k(X)Y$ for all $X\in \mathfrak{m}_{1},$ $Y\in \mathfrak{m}_{2}$ ,

where $k(X)$ is a non-trivial linear function of $\mathfrak{m}_{1}$ ; $\mathfrak{h}_{0}$ is isomorphic to
$\mathfrak{r}(n-1);[\mathfrak{h}_{0}, \mathfrak{m}_{2}]=\mathfrak{m}_{2}$ and $ad(\mathfrak{h}_{0})$ in $r\iota_{2}$ coincides with $\mathfrak{r}(n-1)$ in $\mathfrak{m}_{2}$ .
$\mathfrak{g}_{0}^{\prime}=\mathfrak{m}_{1}+\mathfrak{m}_{2}^{\prime}+\mathfrak{h}_{0}$ is also a subalgebra of $\mathfrak{l}(n+1)$ isomorphic to $\mathfrak{g}_{0}$ .

This is a direct consequence of the structure of $\mathfrak{l}(n+1)$ and
straightforward calculations. This will be used in \S 3.3.

As for the group $M(n)$ of proper motions in an n-dimensional
Euclidean space, we have the following theorem.

THEOREM 3. Let $G$ be a connected Lie group which is locally iso-
morphic to the group $M(n),$ $n\geqq 2$ . Then the maximal compact sub-
groups of $G$ are locally isomorphic to $R(n)$ . In particular, $M(n)$ contains
no compact subgroup of dimension greater than $\dim R(n)$ . If $H$ is a
compact subgroup of $M(n)$ whose dimension is equal to $\dim R(n)$ , then $H$

is conjugate to $R(n)$ in $M(n)$ .
PROOF. It is easy to see that $G$ is not compact. Let $H_{0}$ be a

subgroup of $G$ locally isomorphic to $R(n)$ and $\mathfrak{h}_{0}$ its Lie algebra. If
we denote by $K$ a maximal compact subgroup containing $H$, then the
Lie algebra $f$ of $K$ is invariant under $ad(\mathfrak{h}_{0})$ in $\mathfrak{g}$ . But we have
already shown that such an invariant subspace of $\mathfrak{g}$ must be either
$\mathfrak{g}$ or $\mathfrak{h}_{0}$ . From the fact $f\neq\zeta t$; it follows that $f=\mathfrak{h}_{0}$ and $K=H_{0}$ .

Since maximal compact subgroups are connected and conjugate
to each other, the last part of this theorem is clear.
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2.4. Determination of the homogeneous space $G/H$. We
first consider the invariant Riemannian connection on the homo-
geneous space $G/H$ For the terminology and notation concerning
invariant affine connections we follow K. Nomizu [4]. $G/H$ being a
locally symmetric homogeneous space, we can define on it the canoni-
cal affine connection, which is clearly the unique invariant Riemannian
connection. Then it has the curvature tensor $R(X, Y)\cdot Z=-[[X, Y],$ $Z$]
for all $X,$ $Y,$ $ Z\in \mathfrak{n}\iota$ . Therefore, in case (1) or (II), $[X_{i}^{\star}, X_{j^{\star}}]=sgn(c)X_{ij}$,

we have $-[[X_{i}^{*}, X_{j^{\backslash }}\cdot],$ $X_{k}^{\star}$] $=sgn(c)(\delta_{jk}X_{i}^{*}-\delta_{ik}X_{j^{::}})$ . Since $X_{i}^{*}=\sqrt{}|c|X_{i}$ ,
we obtain the formula

$R(X, Y)\cdot Z=c1(B(Y, Z)X-B(X, Z)Y)$ for any $X,$ $Y,$ $Z\in \mathfrak{m}$ ,

which shows that the Riemannian space $G/H$ is of positive or negative
constant curvature corresponding to $c>0$ or $c<0$ . In case (III),
$[\mathfrak{m}, \mathfrak{m}]=(0)$ , we have $R(X, Y)\cdot Z=0$ for any $X,$ $Y,$ $Z\in \mathfrak{m}$ and the Rie-
mannian space $G/H$ is locally flat.

We shall next consider the topological structure of the space.
If case (I) in Lemma 6 occurs and the space $G/H$ is simply connected,
then, since $G$ and $H$ are locally isomorphic to $R(n+1)$ and $R(n)$ re-
spectively, $G/H$ can be considered as a homogeneous space $\tilde{R}(n+1)/\tilde{R}(n)$

which is an n-dimensional sphere, where $\tilde{R}(n+1)$ and $\tilde{R}(n)$ denote the
simply connected covering groups of $R(n+1)$ and $R(n)$ respectively.
Hence in case (I) the simply connected covering space of $G/H$ is a
sphere. If case (II) or (III) occurs, $H$ is a maximal compact subgroup
of $G$ and therefore the space $G/H$ is homeomorphic to an n-dimen-
sional Euclidean space.

We have thus obtained the following results:
THEOREM 4. Let $G/H$ be an n-dimensional homogeneous space, where

$G$ is a connected Lie group of dimension $r\geqq n(n+1)/2$ and $H$ a compact
subgroup of $G$ of dimension $r-n$ . We assume that $n\geqq 2$ and $G$ is
almost effective on $G/H$ as a transformation group. Then $G/H$ is one
of the following spaces:

(I) A Riemannian space ofpositive constant curvature whose simply
connected covering space is an n-dimensional sphere,

(II) A Riemannian space of negative constant curvature homeomor-
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phic to an n-dimensional Euclidean space,
(III) A locally flat Riemannian space homeomorphic to an n-

dimensional Euclidean space.

3. The case $\dim G<n(n+1)/2$

Under the same situation as in \S 1 we assume $n(n+1)/2>r$
$>n(n-1)/2,$ $n\geqq 3$ and $n\neq 4$ . Then $ad(\mathfrak{h})$ in $\mathfrak{m}$ is a subalgebra of $\mathfrak{r}(n)$ .
Since the representation $\mathfrak{h}\rightarrow ad(\mathfrak{h})$ in $\mathfrak{m}$ is faithful and $n(n-1)/2$

$>\dim H=r-n\geqq(n-1)(n-2)/2$ , we see that $ad(\mathfrak{h})$ in $\mathfrak{m}$ is isomorphic
to $\mathfrak{r}(n-1)$ and of dimension $(n-1)(n-2)/2$ . It follows from Theorem
1 that if $n\neq 8$ there exists one and only one l-dimensional subspace
$\mathfrak{m}_{1}$ of $\mathfrak{m}$ such that $ad(\mathfrak{h})$ induces a trivial representation in it, $[\mathfrak{h},\mathfrak{m}_{1}]=(0)$ .
Furthermore we can find a supplementary subspace $\mathfrak{m}_{2}$ of $\mathfrak{m}$ invariant
under $ad(\mathfrak{h})$ such that $\mathfrak{m}$ is the direct sum of $\mathfrak{m}_{1}$ and $\mathfrak{m}_{2}$ . Then $\dim \mathfrak{m}_{2}$

$=n-1$ and $ad(\mathfrak{h})$ in $\mathfrak{m}_{2}$ is irreducible. Since $\mathfrak{r}(n-1)$
. is simple for

$n\neq 5$ we have the irreducible decomposition $\mathfrak{g}=\mathfrak{m}_{1}+\mathfrak{m}_{2}+\mathfrak{h}$ of $\mathfrak{g}$ by
$ad(\mathfrak{h})$ , where $[\mathfrak{h}, \mathfrak{m}_{1}]=(0),$ $[\mathfrak{h}, \mathfrak{m}_{2}]=\mathfrak{m}_{2}$ . If $n=5,$ $\mathfrak{h}\cong \mathfrak{r}(4)$ is the direct
sum of Su(2) by itself.

3.1. Determination of the spaces $[\mathfrak{m}_{i}, \mathfrak{m}_{j}]$ . In the following
three sections we assume $n\neq 8$ . We consider the subspaces $[\mathfrak{m}_{i}, \mathfrak{m}_{j}]$

spanned by all elements of the form

$[X, Y]$ , $X\in \mathfrak{m}_{i}$ , $Y\in \mathfrak{m}_{j}$ , $i,j=1,2$ .
LEMMA 8. We have either $[\mathfrak{m}_{1}, \mathfrak{m}_{2}]=(0)$ or $[\mathfrak{m}_{1}, \mathfrak{m}_{2}]=\mathfrak{m}_{2}$

PROOF. Let $X=X_{1}+X_{2}+U$, where $X_{1}\in \mathfrak{m}_{1},$ $X_{2}\in \mathfrak{m}_{2}$ and $U\in \mathfrak{h}$ , be
any element of $[\mathfrak{m}_{1}, \mathfrak{m}_{2}]$ . Then for any $V\in \mathfrak{h}$ we have

[V, $X$] $=[V, X_{1}]+[V, X_{2}]+[V, U]=[V, X_{2}]+[V, U]$ ,

where $[V, X_{2}]\in \mathfrak{m}_{2}$ and $[V, U]\in \mathfrak{h}$ . This shows $[\mathfrak{h}, [\mathfrak{m}_{1}, \mathfrak{m}_{2}]]\subset \mathfrak{m}_{2}+\mathfrak{h}$ .
On the other hand, the Jacobi identity shows that

$[\mathfrak{h}, [\mathfrak{m}_{1}, \mathfrak{m}_{2}]]=[[\mathfrak{h}, \mathfrak{m}_{1}],$
$\mathfrak{m}_{2}$] $+[\mathfrak{m}_{1}, [\mathfrak{h}, \mathfrak{m}_{2}]]=[\mathfrak{m}_{1}, \mathfrak{m}_{2}]$ .

Therefore $[\mathfrak{m}_{1}, \mathfrak{m}_{2}]$ is contained in the subspace $\mathfrak{m}_{2}+\mathfrak{h}$ of $\mathfrak{g}$ and is
invariant under $ad(\mathfrak{h})$ . Since $\dim \mathfrak{m}_{1}=1$ and $\dim \mathfrak{m}_{2}=n-1$ , we must
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have $\dim[\iota \mathfrak{n}_{1}, n\iota_{2}]=n-1$ or $0$ . Hence we have either $[\mathfrak{m}_{1}, \mathfrak{m}_{2}]=(0)$ or
$[\mathfrak{m}_{1}, \mathfrak{m}_{2}]=\uparrow 2$ by virtue of Lemma 3.

LEMMA 9. There exists a linear function $k$ on $\mathfrak{m}_{1}$ such that
[X, $Y$] $=k(X)Y$ for any $X\in \mathfrak{m}_{1},$ $Y\in \mathfrak{m}_{2}$ .

PROOF. $ad(\mathfrak{h})$ in $t7t_{2}$ coincides with $\mathfrak{r}(n-1)$ in $\mathfrak{m}_{2}$ and by Lemma
8, $\mathfrak{m}_{1}$ induces the adjoint representation $ad(\mathfrak{m}_{1})$ in $\mathfrak{m}_{2}$ . Since $[\mathfrak{h}, \mathfrak{m}_{1}]=(0)$ ,
the corresponding matrices of $ad(\mathfrak{n}\iota_{1})$ commute with all matrices of
$\mathfrak{r}(n-1)$ . Therefore they are scalar multiples of the unit matrix,
which proves the assertion of Lemma 9.

LEMMA 10. We have either $[\iota \mathfrak{n}_{2}, \iota\iota\iota_{2}]=(0)$ or $[\mathfrak{m}_{2}, \mathfrak{m}_{2}]=\mathfrak{h}$ .
PROOF. Since $ad(\mathfrak{h})$ coincides with $\mathfrak{r}(n-1)$ in $\mathfrak{n}\iota_{2}$ , there are bases

$\{X_{j}\},$ $1\leqq i\leqq n-1$ , of $\mathfrak{n}\iota_{2}$ and $\{X_{ij}\},$ $1\leqq i<j\leqq n-1$ , of $\mathfrak{h}$ such that

$[X_{ij}, X_{k}]=\delta_{ik}X_{j}-\delta_{jk}X_{i}$ , $1\leqq i,$ $j,$ $k\leqq n-1$ .
Then the elements $[X_{i}, X_{j}],$ $1\leqq i,j\leqq n-1$ , span the subspace $[\mathfrak{m}_{2}, \mathfrak{m}_{2}]$

and the following relations hold:

$[X_{ik}, [X_{i}, X_{j}]]=[X_{k}, X_{j}]$ ,
$(1 \leqq i,j, k\leqq n-1, i\neq j, j\neq k, k\neq i)$

$[X_{kj}, [X_{j}, X_{j}]]=-[X_{i}, X_{k}]$ .

These relations show $[\mathfrak{h}, [\mathfrak{n}\iota_{2}, \mathfrak{m}_{2}]]=[\mathfrak{m}_{2}, \mathfrak{m}_{2}]$ .
Then in the same manner as in Lemma 8 we can easily see

that $[\iota_{2}, \mathfrak{m}_{2}]$ is contained in $\mathfrak{m}_{2}+\mathfrak{h}$ . Tberefore Lemma 2 and $2^{\prime}$ prove
the statement of Lemma 10.

REMARK. By Lemma 8 and Lemma 10 the subspace $\mathfrak{g}^{\prime}=\mathfrak{m}_{2}+\mathfrak{h}$

is an ideal of $\mathfrak{g}$ and has the structure stated in Lemma 6.
LEMMA 11. $[\iota \mathfrak{n}_{2}, \mathfrak{m}_{2}]=\mathfrak{h}$ implies $[\mathfrak{m}_{1}, \iota \mathfrak{n}_{2}]=(0)$ .
PROOF. Let $\phi$ be the fundamental bilinear form of $\mathfrak{g}$ . Then

$\mathfrak{g}^{\prime}=\iota \mathfrak{n}_{2}+\mathfrak{h}$ being an ideal of $\mathfrak{g}$ , the restriction of $\phi$ to $\mathfrak{g}^{\prime}\times \mathfrak{g}^{\prime}$ coincides
with the fundamental bilinear form of the Lie algebra $\mathfrak{g}^{\prime}$ itself.
Since $\mathfrak{g}^{\prime}$ is isomorphic to $\mathfrak{r}(n)$ or $\mathfrak{l}(n)$ , for some $Y\in \mathfrak{m}_{2}$ we have
$\phi(Y, Y)\neq 0$ . As $\phi$ is invariant under $ad(\mathfrak{g})$ , in particular for any
$X\in \mathfrak{m}_{2}$ we have $\phi([X, Y], Y)=0,$ $i$ . $e$ . $k(X)\phi(Y, Y)=0$ . Hence we have
$k(X)=0$ for any $X\in \mathfrak{m}_{1}$ , which shows $[\mathfrak{m}_{1}, \mathfrak{m}_{2}]=(0)$ .

Summarizing the results obtained in this section we can state
the following:

LEMMA 12. Let $G$ be a connected Lie group of dimension $r$ and $H$
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a compact subgroup of dimension $r-n$ . If $n(n+1)/2>r>n(n-1)/2$ ,
$n\neq 3,4,8$ , then $G$ is of dimension $n(n-1)/2+1$ . Furthermore, let $\mathfrak{g},$

$\mathfrak{h}$ ,
$\mathfrak{m},$ $\mathfrak{m}_{1},$ $\mathfrak{m}_{2}$ and $\mathfrak{g}^{\prime}$ be as before $(\mathfrak{m}=\mathfrak{m}_{1}+\mathfrak{m}_{2}, \mathfrak{g}^{\prime}=\mathfrak{m}_{2}+\mathfrak{h})$ , then the Lie algebra
$\mathfrak{g}$ has one of the following structures:

(I) $\mathfrak{g}=\mathfrak{m}_{1}+\mathfrak{g}^{\prime}$ ; $[\mathfrak{m}_{1}, \mathfrak{g}^{\prime}]=(0)$ , $[\mathfrak{m}_{2}, \mathfrak{m}_{2}]=(0)$ ,
$i$. $e$. $\mathfrak{g}$ is the direct sum of the l-dimensional ideal $\mathfrak{m}_{1}$ and the ideal $\mathfrak{g}^{\prime}$

isomorphic to $\mathfrak{m}(n-1)$ , where $\mathfrak{m}(n-1)$ is the Lie algebra of $M(n-1)$ .
(II) $\mathfrak{g}=\mathfrak{m}_{1}+\mathfrak{g}^{\prime}$ ; $[\iota \mathfrak{n}_{1}, \mathfrak{g}^{\prime}]=(0)$ , $[\mathfrak{m}_{2}, \mathfrak{m}_{2}]=\mathfrak{h}$ ,

$i$. $e$. $\mathfrak{g}$ is the direct sum of the l-dimensional ideal $\mathfrak{m}_{1}$ and the ideal $Q_{\iota}^{\prime}$

isomorphic to $\mathfrak{r}(n)$ or $\mathfrak{l}(n)$ .
(III) $\mathfrak{g}=\mathfrak{m}_{1}+\mathfrak{m}_{2}+\mathfrak{h}$ : $[\mathfrak{m}_{1}, \iota \mathfrak{n}_{2}]=\mathfrak{m}_{2}$ , $[\mathfrak{m}_{2}, \mathfrak{m}_{2}]=(0)$ ,

$i$. $e$. $\mathfrak{g}$ is the direct sum of the l-dimensional subalgebra $\mathfrak{m}_{1}$ and the
ideal $\mathfrak{g}^{\prime}$ isomorphic to $\mathfrak{m}(n-1)$ .

It is to be noted that in the cases (I) and (II) of this lemma the
homogeneous space $G/H$ is a locally symmetric homogeneous space.

3.2. The homogeneous space $G/H$. We first consider the
invariant Riemannian connection on the homogeneous space $G/H$ In
the cases (I) and (II) in Lemma 12, as we have remarked above,
$G/H$ is a locally symmetric homogeneous space, so that the curvature
tensor has the form $R(X, Y)\cdot Z=-[[X, Y],$ $Z$] for any $X,$ $Y,$ $Z\in \mathfrak{m}$ with
respect to its canonical Riemannian connection. In the case (I), it
is easily seen that the curvature tensor vanishes, $R(X, Y)\cdot Z=0$ for
all $X,$ $Y,$ $Z\in \mathfrak{m}$ , and $G/H$ is a locally flat Riemannian space. In the
case (II), we have the following formulas as in \S 2:

$R(X, Y)\cdot Z=$

$c^{\prime}$ being a non-zero real number corresponding to the Lie algebra
$\mathfrak{g}^{\prime}=\mathfrak{m}_{2}+\mathfrak{h}$ as to $\mathfrak{g}$ in \S 2. Therefore we see that the Riemannian
space $G/H$ is locally the product space of a straight line and an
$(n-1)$-dimensional Riemannian space of non-zero constant curvature.



384 M. OBATA

THEOREM 5. The notation and assumptions being as in Lemma 12,
assume further that the case (I) occurs; then the homogeneous space
$G/H$ is naturally a locally flat Riemannian space and is homeomorphic
either to an $n$,-dimensional Euclidean space or to the product space of
a circle and an $(n-1)$ -dimensional Euclidean space.

PROOF. If we denote by $M_{1}$ and $G^{J}$ the Lie subgroups of $G$

generated by $\mathfrak{n}\iota_{1}$ and $\mathfrak{g}^{\prime}$ respectively, then they are closed, since
$\mathfrak{g}^{\prime}\cong \mathfrak{m}(n-1)$ and $\mathfrak{m}_{1}$ is the centralizer of $\mathfrak{g}^{\prime}$ . We have then $G=M_{1}G^{\prime}$

and $K=M_{1}\cap G^{\prime}$ is contained in the centre of $G^{\prime}$ which is discrete.
Let $V_{1}=M_{1}/H\cap M_{1}$ and $V_{2}=G^{\prime}/H\cap G^{\prime}$ be the orbits of the point $p_{0}=(H)$

in $G/H$ by $M_{1}$ and $G^{\prime}$ respectively, then the invariant Riemannian
metric of $G/H$ is the Pythagorian product of those of $V_{1}$ and $V_{2}$ .
Since $V_{1}\cap V_{2}=K/K\cap H$ is discrete, by a theorem of Walker3) [6] $G/H$

is a fibre bundle with $V_{1}$ as the fibre and $V_{2}^{\prime}$ as the base space, where
$ V^{\prime_{)}}\lrcorner$ is represented as $(G^{\prime}/K)/(H\cap G^{\prime})/((K\cap H))$ . On the other hand,
since $G^{\prime}$ and $G^{\prime}/K$ are connected and locally isomorphic to $M(n-1)$

and $H\cap G^{\prime},$ $H\cap G^{\prime}/K\cap H$ is locally isomorphic to $R(n-1)$ , it follows
that $V_{2}$ and $V_{2}^{\prime}$ are homeomorphic to an $(n-1)$ -dimensional Euclidean
space and we have $V_{2}=V_{2}^{\prime}$ . It follows that $V_{2}$ is contractible to a
point and therefore the bundle $G/H$ over $V_{2}$ is the product bundle,
$i$ . $e$ . $G/H$ is homeomorphic to the product space $V_{1}\times V_{2}$ , where $V_{1}$ is
a straight line or a circle.

Taking account of Theorem 4, if we replace $M(n-1)$ in Theorem
5 by $L(n)$ , we have easily the following

THEOREM 6. The notation and assumptions being as in Lemma 12,
assume further that the case $(\Pi)$ occurs and $\mathfrak{g}^{\prime}=\iota 7t_{2}+\mathfrak{h}$ is isomorphic to
$\mathfrak{l}(n)$ ; then the homogeneous space $G/H$ is naturally the product Rieman-
nian space of a straight line and an $(n-1)$ -dimensional Riemannian
space of negative constant curvature. Furthermore $G/H$ is homeomor-
phic either to an n-dimensional Euclidean space or to the product space
of a straight line and an $(n-1)$ -dimensional Euclidean space.

In case $\mathfrak{g}^{t}=\mathfrak{m}_{2}+\mathfrak{g}$ is isomorphic to $\mathfrak{r}(n)$ , taking Theorem 4 into
consideration we have easily the following

THEOREM 7. The notation and assumptions being as in Lemma 12,
assume further that the case $(\Pi)$ occurs and $\mathfrak{g}^{\prime}=\mathfrak{m}_{2}+\mathfrak{h}$ is isomorphic to
$\mathfrak{r}(n)$ ; then the homogeneous space $G/H$ is naturally the product $Rieman)^{-}$

3) Theorem 1 in [6].
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nian space of a straight line and an $(n-1)$ -dimensional Riemannian
space of positive constant curvature. If moreover $G/H$ is simply con-
nected, it is homeomorphic to the product space of a straight line and
an $(n-1)$ -dimensional sphere.

3.3. Case (III) in Lemma 12. We shall next study the case
(III) in Lemma 12. If the case (III) occurs, then the Lie algebras

$\mathfrak{g}$ and $\mathfrak{h}$ are isomorphic to the Lie algebra $\mathfrak{g}_{0}$ (or $\mathfrak{g}_{0}^{\prime}$ ) and $\mathfrak{h}_{0}$ stated
in Lemma 7 respectively. $\mathfrak{g}_{0}$ and $\mathfrak{h}_{0}$ being subalgebras of $\mathfrak{l}(n+1)$ ,
there exist connected subgroups $G_{0}$ and $H_{0}$ of $L(n+1)$ having $\mathfrak{g}_{0}$ and
$\mathfrak{h}_{0}$ as their Lie algebras respectively. $H_{0}$ is then isomorphic to $R(n-1)$
and by the relation between 1 $(n+1)$ and $\mathfrak{g}_{0}$ there exists the subgroup
$R(n)$ of $L(n+1)$ containing $H_{0}$ naturally. Furthermore as is easily
seen $G_{0}\cap R(n)=H_{0}$ . Then the homogeneous space $G_{0}/H_{0}$ is connected
and contained in the homogeneous space $L(n+1)/R(n)$ . Since $G_{0}$ is
a subgroup of $L(n+1)$ , the canonical invariant Riemannian connection
on $L(n+1)/R(n)$ is also that on $G_{0}/H_{0}$ . The space $L(n+1)/R(n)$ being
a Riemannian space of negative constant curvature with respect to
this connection, so also is $G_{0}/H_{0}$ . Furthermore it is homeomorphic
to an n-dimensional Euclidean space. Since $G$ and $H$ are locally
isomorphic to $G_{0}$ and $H_{0}$ respectively, the invariant Riemannian con-
nection on the homogeneous space $G/H$ is equivalent to that on $G_{0}/H_{0}$ .
Hence $G/H$ is naturally of negative constant curvature.

We shall now study the topological structure of $G/H$ In order
to do this, we first prove the following lemma.

LEMMA 14. If the case (III) occurs in Lemma 12, then the subgroup
$H$ is a maximal compact subgroup of the group $G$.

PROOF. From the relation $\mathfrak{g}=\mathfrak{m}_{1}+\mathfrak{g}^{\prime}$ and the fact that $\mathfrak{g}^{t}=\mathfrak{m}_{2}+\mathfrak{h}$

is isomorphic to $\mathfrak{m}(n-1)$ , it follows that $G$ contains a closed subgroup
$G^{\prime}$ which is locally isomorphic to $M(n-1)$ . As we have seen in
Theorem 3, $G^{\prime}$ is not compact, and therefore $G$ is neither. If we
denote by $K$ a maximal compact subgroup of $G$ containing $H$, then
$\dim G>\dim K\geqq\dim H$ We shall show that $\dim K=\dim H$ Suppose
$\dim K=\dim G-m>\dim H,$ $m<n$ , then $K$ must contain a normal sub-
group of $G$ whose dimension is positive. In fact, if $K$ does not
contain such a subgroup, then Lemma 1 shows that $\dim G=n(n-1)/2$
$+1\leqq m(m+1)/2$ . This implies $m\geqq n$ , contrary to the assumption
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$m<n$ . As we have seen just now, the Lie algebra $f$ of $K$ must
contain some non-trivial ideal. Since the decomposition of $\mathfrak{g},$ $\mathfrak{g}=\mathfrak{m}_{1}$

$+\mathfrak{m}_{2}+\mathfrak{h}$ , is irreducible under $ad(\mathfrak{h})$ in $\mathfrak{g}$ in our case, we can easily
see that the only non-trivial ideals of $\mathfrak{g}$ are $\mathfrak{m}_{1}+\mathfrak{m}_{2},$

$\mathfrak{g}^{\prime}$ and $\mathfrak{m}_{2}$ .
Because of this fact and the inequality $\dim K<\dim G$, we have
$\mathfrak{k}=\mathfrak{m}_{2}+\mathfrak{h}=\mathfrak{g}^{\prime}$ . On the other hand, the connected subgroup $K=G^{\prime}$ of
$G$ having $f$ as its Lie algebra cannot be compact. We have thus
proved that $\dim K=\dim H$ and therefore $K=H$ This shows that $H$

is a maximal compact subgroup and connected.
From Lemma 13 it follows that the homogeneous space $G/H$ is

homeomorphic to an n-dimensional Euclidean space. The result
established above becomes

THEOREM 8. The notation and assumptions being as in Lemma 12,
assume further that the case (III) occurs; then the homogeneous space
$G/H$ is naturally a Riemannian space of negative constant curvature
and is homeomorphic to an n-dimensional Euclidean space.

3.4. The case $n=8$ . The notation and assumptions being as
in the beginning of \S 3, assume further $n=8$ . Then $ad(\mathfrak{h})$ in $\mathfrak{m}$ is a
subalgebra of $\mathfrak{r}(8)$ in $\mathfrak{m}$ and isomorphic to $\mathfrak{r}(7)$ .

If $ad(\mathfrak{h})$ in $\mathfrak{m}$ is reducible, the same argument as in \S 3.1-\S 3.3
applies and Theorem 5, 6 and 7 hold good.

Since $\mathfrak{r}(7)$ actually admits an irreducible representation in an 8-
dimensional vector space, we have to study the case where $ad(\mathfrak{h})$ in
$\mathfrak{m}$ is irreducible. In the rest of this section we assume that this is
the case.

LEMMA 14. If $n=8$ and $ad(\mathfrak{h})$ in $\mathfrak{m}$ is irreducible, we have
$[\mathfrak{m}, \mathfrak{n}\iota]=(0)$ .

PROOF. In the same manner as in Lemma 2 we can easily see
that the space $[\iota \mathfrak{n}, \mathfrak{m}]$ , which is invariant under $ad(\mathfrak{h})$ in $\mathfrak{g}$ , is either
(0) or $\mathfrak{h}$ . We shall prove that the case $[\mathfrak{m}, \mathfrak{m}]=\mathfrak{h}$ cannot occur. If
this were the case, $\mathfrak{g}$ must be simple by the same reason as in
Lemma 4. On the other hand, $\dim \mathfrak{g}=29$ and there is not a 29-
dimensional simple Lie algebra. Thus we have $[\mathfrak{m}, \mathfrak{n}\iota]=(0)$ .

LEMMA 15. $H$ is a maximal compact subgroup of $G$.
PROOF. Since $\mathfrak{m}$ is an abelian ideal of $\mathfrak{g}$ and $H$ is almost effec-

tive on $G/H,$ $G$ is not compact. If we denote by $K$ a maximal com-
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pact subgroup of $G$ containing $H$ and by $f$ its Lie algebra, then $f$

is invariant under $ad(\mathfrak{h})$ in $\mathfrak{g}$ . . Since only invariant subspaces under
$ad(\mathfrak{h})$ are nr, $\mathfrak{h}$ and $\mathfrak{g}$ , and $f\neq \mathfrak{g}$ , it follows that $f=\mathfrak{h}$ and therefore
$K=H$, which proves Lemma 15.

Since $[\iota\iota\iota, \iota \mathfrak{n}]=(0)$ , the canonical invariant Riemannian connection
on $G/H$, which is clearly unique, is locally flat. $H$ being a maximal
compact subgroup of $G,$ $G/H$ is homeomorphic to an n-dimensional
Euclidean space. We have thus obtained the following result:

THEOREM 9. The notalion and assumptions being as in the begin-
ning of \S 3, assume further that $n=8$ and the representation $\mathfrak{h}\rightarrow ad(\mathfrak{h})$ in
$))t$ is irreducible; then the homogeneous space $G/H$ is naturally a locally

flat Riemannian space and is homeomorphic to an n-dimensional Euclidean
space.

Now we denote by $C_{+}^{n},$ $C_{-}^{l}$, and $C\prime l$ an n-dimensional Riemannian
space of positive and negative constant curvature and a locally flat
Riemannian space respectively, and denote by $E^{n}$ and $S^{n}$ an n-dimen-
sional Euclidean space and sphere respectively. Using this notation
we gather in the following statement the main results obtained in
this \S 3.

THEOREM 10. Let $G$ be a connected Lie group of dimension $r$ and
$H$ a compact subgroup of dimension $r-n$ . Assume that $n(n-1)/2<r$
$<n(n+1)/2,$ $n\geqq 3,$ $n\neq 4$ and $G$ is almost effective on the homogeneous
space $G/H$ as a transformation group. Then $G$ is of dimension $n(n-1)/2$

$+1$ and the homogeneous space $G/H$ is one of the followings:

as a Riemannian space as a topological space
$C_{0}^{1}\times C_{+}^{n-1}$ , $E^{1}\times S^{n-1}$ if it is simply connected,

$C_{0}^{1}\times C^{\underline{n}-1}$ , $E^{n}$ or $S^{1}\times E^{n-1}$ ,
$C_{0}^{n}$ , $E^{n}$ or $S^{1}\times E^{n-1}$ ,
$C^{\underline{n}}$ , $E^{n}$ .

The exceptional case $n=4$ should be stated here, but, as was
stated before, it has been studied by S. Ishihara [1], so that we shall
only remark that $\mathfrak{h}$ is isomorphic either to $\mathfrak{r}(3)$ or to en(2) and if $\mathfrak{h}$ is
isomorphic to $\mathfrak{r}(3)$ then all the theorems and lemmas in \S 3 hold
good.
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REMARK. If the case (III) in Lemma 12 occurs, then the homo-
geneous space $G/H$ is a symmetric Rie.mannian space with respect to
its (unique) invariant Riemannian connection, but not a symmetric
homogeneous space because $[\mathfrak{n}\iota, \mathfrak{n}1]-$ )) $\uparrow$ . In this case the largest con-
nected group of isometries of the Riemannian space $G^{\prime}H$ is not $G$,
but the Lorentz group $L(n-\vdash 1)$ .
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