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The number of solutions of some equations
in a finite field.
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1. Introduction. The writer $[11, [3]$ has determined the num-
ber of solutions of certain types of equations in a finite field. For
example, making use of the well-known formulas for the number of
solutions of $ Q(\xi_{1}, \xi_{r})=\alpha$ , where $Q$ denotes a quadratic form with
coefficients in $GF(q),$ $q$ odd, such equations as
(1.1) $Q(\xi_{1}, \cdots, \xi_{r})=\eta_{1^{1}}^{e}\cdots\eta_{s}^{e_{s}}$

and

(1.2) $Q(\xi_{1}, \cdots, \xi_{2r})=f(\eta_{1}, \cdots, \eta_{s})$ ,

where $f(\eta)$ donotes a polynomial that never vanishes, are readily handled.
R. G. Pohrer [6] has found the number of solutions for a great many
equations of this and other kinds.1)

In the present note we consider a few additional types. In general,
when a quadratic form $Q(\xi_{1}, \cdots, \xi_{r})$ occurs in an equation, the case $r$

odd is more difficult; this is illustrated for example by (1.2). However
for an equation of the type

(1.3) $Q(\xi_{1}, \cdots, \xi_{2r+1})=g(\eta_{1}, \cdots, \eta_{s})$ ,

it may be possible to find explicit formulas for the number of solutions
when the polynomial $g(\eta)$ satisfies certain conditions. A particularly
simple case is

(1.4) $g(\eta)=\prod_{i=1}^{s}(\eta_{i}^{l}+\beta_{i}\eta_{i}+\gamma_{i})$ ;

1) To find the number of solutions of such simultaneous equations in a finite field is
also of interest in connection with the algebraic geometry, as was pointed out by A. Weil:
Bull. Amer. Math. Soc. 55 (1949) pp. 497-508.
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thus if $q$ is odd and $\beta_{i}^{2}-2\gamma_{i}\neq 0$ for $i=1,$ $\cdots,$ $s$ then the number of
solutions of (1.3) is given by

(1.5) $q^{2r+s}+(-1)^{s}q^{r}\psi((-1)^{r}\delta)$ ,

where $\delta$ is the discriminant of $Q(\xi)$ . In the second place if

(1.6) $g(\eta)=\prod_{i=1}^{s}(\eta_{i}^{3}+\eta_{i})$ ,

we may apply known results on Jacobsthal sums [5] to determine the
number of solutions of (1.3). We find that the number is equal to

(1.7) $q^{2r+s}+q^{r}\psi((-1)^{r}\delta)J^{s}$ ,

where $J=\sum_{\xi}\psi(\xi(\xi^{2}+1))$ is evaluated by (2.7), (2.8) and (2.9) below.
A somewhat different example is furnished by

(1.8) $g(\eta)=\Gamma^{s}Ii-1(\eta_{i}^{p}-\eta;+\alpha_{i})$ $(q=pn)$ .

For the number of solutions of this equation see Theorem 8. In par-
ticular if $n$ is odd and at least one $\alpha;=0$ the number of solutions of
(1.8) is simply $q^{2r+s}$ .

In the next place we consider the equation

(1.9) $\alpha_{1}(\eta_{1}^{P}-\eta_{1})+\cdots+\alpha_{r}(\eta_{r}^{p}-\eta_{r})=\alpha$ ,

and this in turn leads to such equations as

(1.10) $ Q(\xi)=\alpha_{1}(\eta_{1}^{p}-\eta_{1})+\cdots+\alpha_{r}(\eta_{r}^{p}-\eta_{r})+\alpha$ .

For the results concerning (1.10) and (1.11) see Theorems 9 and 10
below.

Finally (\S 6) we discuss the equation

(1.11) $\xi^{f}=\eta^{p}-\eta+\alpha$ $(f|q-1)$ .
2. Some preliminaries. Let $q=pnp>2$ , and put

(2.1) $Q(\xi)=Q(\xi_{1}, \cdots, \xi_{t})=\sum_{i.j-1}^{t}\alpha_{ij}\xi_{i}\xi_{j}(\alpha_{ij}\in GF(q))$ ;

let $\delta=|\alpha_{ij}|$ , the discriminant of $Q$. We assume $\delta\neq 0$. Now for
$t=2r+1$ , it is known that the number of solutions of $ Q(\xi)=\alpha$ , where
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$\alpha\in GF(q)$ is given by

(2.2) $N_{Q}(\alpha)=q^{2r}+q^{r}\psi((-1)^{r}\alpha\delta)$ ,

where $\psi(\alpha)=0,$ $+1,$ $-1$ according as $\alpha$ is $0$, a square or a nonsquare
of $GF(q)$ . For $t=2r$ the number of solutions is

(2.3) $N_{Q}(\alpha)=q^{2r-1}+q^{r-1}\psi((-1)^{r}\delta)k(\alpha)$ ,

where $k(\alpha)=q-1$ or $-1$ according as $\alpha=0$ or $\alpha\neq 0$ .
We shall also require some results for the Jacobsthal sums [2, \S 6]

(2.4) $J(f)=_{\epsilon}\sum_{\epsilon GF(q)}\psi(f(\xi))$ ,

where $f(\alpha)$ is a polynomial in $\alpha$ . In particular

(2.5) $J_{2}=\sum_{\epsilon}\psi(\xi^{2}-\delta)=k(\delta)$ ,

where $k(\delta)$ has the same meaning as in (2.3). Secondly for

(2.6) $J_{3}=J(\beta)=\sum_{\xi}\psi(\xi(\xi^{2}+\beta))$

we have $J(\alpha^{2}\beta)=\psi(\alpha)J(\beta)$ . Now

(2.7) $J(\beta)=0$ $(q\equiv 3(mod 4))$ ,

while for $q\equiv 1(mod 4)$ we have the following result. Let $\gamma$ be a $num$ .
ber of $GF(q)$ such that $\psi(\gamma)=-1$ . Put $tt=\frac{1}{2}J(1),$ $v=\frac{1}{2}J(\gamma)$ ; then

(2.8) $u^{2}+v^{2}=q$ , $u\equiv-1(mod 4)$ .

Moreover

(2.9) $ 2u=J(1)\equiv-(\frac{1}{2}\frac{1}{4}(p-1)\int$ $(mod p)$ ;

it is clear that $u$ is uniquely determined by (2.8) and (2.9).

Another useful formula is

(2.10) $\sum_{\epsilon}\psi((\xi-\beta_{1})\cdots(\xi-\beta_{4}))=\psi(\frac{\beta_{1}-\beta_{3}}{\beta_{1}-\beta_{4}})\sum_{\epsilon}\psi(\xi(\xi+1)(\xi+\rho))$ ,
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where

(2.11) $\rho=(\beta_{1}\beta_{2}, \beta_{3}\beta_{4})=\frac{\beta_{t}-\beta_{3}}{\beta_{1}-\beta_{4}}/\frac{\beta_{2}-\beta_{3}}{\beta_{2}-\beta_{4}}$ ,

the cross ratio of $\beta_{1},$ $\beta_{2},$ $\beta_{3},$ $\beta_{4}$ . In particular if $\rho=-1$ , then (2.10)
becomes

(2.12) $\sum_{\xi}\psi((\xi-\beta_{1})\cdots(\xi-\beta_{4}))=\psi(\frac{\beta_{1}-\beta_{3}}{\beta_{1}-\beta_{4}})\sum_{\xi}\psi(\xi(\xi^{2}-1))$

$=(-1)\neq(q-1)\psi(\frac{\beta_{1}-\beta_{3}}{\beta_{1}-\beta_{4}})J(1)$

provided $q\equiv 1(mod 4)$ ; if $q\equiv 3(mod 4)$ , it follows from (2.7) that the
sum in the left member of (2.12) vanishes. For additional results on
Jacobsthal sums see [7], [8].

In connection with (1.8) and (1.10) we allow a more general setting
and consider the equation

(2.13) $\xi^{q}-\xi=\alpha$ $(\alpha\in GF(q^{m}))$ .
It is familiar that (2.13) is solvable in the $GF(q^{m})$ if and only if

(2.14) $\alpha+\alpha^{q}+\cdots+\alpha^{q^{m-1}}=0$ .
To apply the condition (2.14) below we define

(2.15) $E(\alpha)=\exp\{2_{\pi}it(\alpha)/p\}$ ,

where

(2.16) $t(\alpha)=\sum_{i=0}^{mn-1}\alpha^{p^{i}}$ .

Then we have

(2.17) $\sum_{\beta\epsilon CF(q}E_{)}(\beta\alpha)=\left\{\begin{array}{l}q (\sigma(\alpha)=0)\\0 (\sigma(\alpha)\neq 0),\end{array}\right.$

where $\sigma(\alpha)$ denotes the left member of (2.14). Thus (2.17) furnishes
another criterion for the solvability of (2.13).

We shall also make use of some properties of the Gauss sum

(2.18) $G(\alpha)=\sum_{\epsilon\epsilon GF(qm)}\psi(\xi)E(\alpha\xi)$
,
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where now $\psi(\xi)=0,$ $+1$ or $-1$ according as $\xi=0$ , a square or non $\cdot$

square of $GF(q^{m})$ . We have

(2.19) $G(\alpha)=\psi(\alpha)G(1)$

and
(2.20) $G^{2}(1)=\psi(-1)q^{m}$ .

For Iater use we also remark that if $E_{1}(\alpha)$ denotes the function
(2.15) in the case $m=1$ , then we have

(2.21) $E(\alpha)=E_{1}(\sigma(\alpha))$ ,

where again $\sigma(\alpha)$ stands for the left member of (2.14). It will also
be convenient to define $G_{1}(\alpha)$ as the sum (2.18) in the case $m=1$ . The
following formula holds [4]

(2.22) $G(1)=(-1)^{m-1}G_{1}(1)$ .
3. Right members with quadratic and cubic factors. Making

use of (2.2) it is evident that the number of solutions of (1.3) is given by

$N=\ldots.\sum\{q^{\angle r}o+q^{r}\psi((-1)^{r}\delta g(\eta_{1}, \cdots, \eta_{s})\}\eta 1\cdot\eta\epsilon GF(q)$

(3.1)
$=q^{2r+s}+q^{r}\psi((-1)^{r}\delta)_{\eta 1}\sum_{-\eta_{S}}.\psi(g(\eta_{1}, \cdots, \eta_{s}))$ .

It is therefore necessary to evaluate

(3.2) $S_{g}=_{\eta 1}\sum\psi(g(\eta_{1}\eta_{S} -, \eta_{s}))$ .

Now if, changing the notation slightly,

$g(\eta_{1}, \cdots, \eta_{s}, \zeta_{1}, \cdots, \zeta_{t})=g_{1}(\eta_{1}, \cdots, \eta_{s})g_{2}(\zeta_{1}, \cdots, \zeta_{t})$ ,

where $g_{1},$ $g_{2}$ are polynomials with coefficients in $GF(q)$ , then (3.2) yields

(3.3)
$S_{g}=\sum\psi(g_{1}(\eta_{1}, \cdots, \eta_{s})\sum.\psi(g_{2}(\zeta_{1}, \cdots, \zeta_{t}))=S_{g_{1}}S_{g_{2}}\eta_{1}\ldots..\eta_{S}\zeta_{1}\ldots.\zeta_{l}$

In particular assume

(3.4) $g(\eta_{1}, \cdots, \eta_{s})=\Gamma^{s}I(a_{i}\eta_{i}^{2}+b_{i}\eta_{i}+c_{i})k=1$ $(a_{i}\neq 0)$ ;

then (3.3) implies
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(3.5) $S_{g}=\prod_{k-1}^{s}\psi(a_{i}(\eta_{i}^{2}-\delta_{i}))$ $(\delta_{i}=b_{i}^{2}-4a_{i}c_{i})$ .
Using (2.5) this becomes

(3.6) $S_{g}=\psi(a_{1}\cdots a_{s})k(\delta_{1})\cdots k(\delta_{s})$ .
Substituting from (3.6) in (3.1) and (3.2) we get

THEOREM 1. The number of solutions $\xi_{i},$
$\eta$; of

(3.7) $Q(\xi_{1}, \cdots, \xi_{2r+1})=\prod_{i-1}^{s}(\alpha_{j}\eta_{i}^{2}+\beta_{i}\eta_{i}+\gamma;)$ $(\alpha;\neq 0)$ ,

is determined by

(3.8) $N=q^{2r+s}+q^{f}\psi((-1)^{r}\delta\alpha_{1}\cdots\alpha_{s})k(\delta_{1})\cdots k(\delta_{s})$ ,

where $\delta\neq 0$ is the discriminant of $Q(\xi)$ and $\delta_{i}=\beta_{i}^{2}-4\alpha;\gamma_{i}$ ; the function
$k(\alpha)$ has the same meaning as in (2.3).

If one of the $\alpha_{i}=0$ the situation is simpler. Indeed it is easily
seen that (3.1) implies the following (compare [3, Theorem 11])

THEOREM 2. The number of solutions of
(3.9) $Q(\xi_{1}, \cdots, \xi_{2r+1})=\eta f(\zeta_{1}, \cdots, \zeta_{s})$ ,

where $f(\zeta)$ is an arbitrary polynomial, is equal to $q^{2r+s+1}$ .
While we are here primarily interested in quadratic forms with

an odd number of indeterminates, it may be noted that (2.3) implies
THEOREM 3. The number of solutions of

(3.10) $Q(\xi_{1}, \cdots, \xi_{2},)=\prod_{i-1}^{s}(\alpha_{i}\eta^{2}+\beta+)$ $(\alpha_{i}\neq 0)$

is given by

(3.11) $q^{2r+s-1}+q^{r-1}\psi((-1)^{r}\delta)((q-1)q^{s}-qA)$ ,

where

(3.12) $A=\Gamma^{s}Ii-1(q-1-\psi(\delta_{i}))$ $(\delta_{i}=\beta_{i}^{2}-4\alpha_{i}\gamma_{i})$ .
To prove (3.11) it is only necessary to observe that (3.12) deter-

mines the number of times the right member of (3.10) does not vanish.
Turning next to the equation

(3.13) $Q(\xi_{1}, \cdots, \xi_{2r+1})=\prod_{i\infty 1}^{s}(\eta_{i^{+\beta_{i}\eta_{i})}}^{3}$
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we get at once by means of (3.1) the following result.
THEOREM 4. The number of solutions of (3.13) is furnished by

(3.14) $q^{2r+s}+q^{r}\psi((-1)^{r}\delta)\prod_{i-1}^{s}J(\beta_{i})$ ,

where
(3.15) $J(\beta)=\sum_{\xi}\psi(\xi(\xi^{2}+\beta))$ .

The value of $J(\beta)$ is determined by (2.7), (2.8) and (2.9).
In particular for $q\equiv 3(mod 4),$ $(2.7)$ yields
THEOREM 5. If $q\equiv 3(mod 4)$ , the number of solutions of

(3.16) $Q(\xi_{1}, \cdots, \xi_{2r+1})=(\eta^{3}+\beta\eta)f(\zeta_{I}, \cdots, \zeta_{s})$ ,

where $f(\zeta)$ is an arbitrary polynomial, is equal to

(3.17) $q^{2r+s+1}$ .
Making use of the transformation formulas (2.10) and (2.12) we

get
THEOREM 6. The number of solutions of

(3.18) $Q(\xi_{1}, \cdots, \xi_{2r+1})=\prod_{i=1}^{l}\prod_{j\Leftarrow 1}^{4}(\eta;-\beta_{ij})$ ,

where for each $i$ the $\beta_{ij}$ are distinct, is equal to

(3.19) $q^{2r+s}+q^{r}\psi((-1)^{\gamma}\delta)\prod_{i=1}^{s}\psi(\frac{\beta_{i1}-\beta_{i3}}{\beta_{i1}-\beta_{i4}})K(\rho_{i})$ ,

where $\rho$; is the cross ratio of $\beta_{i1},$ $\beta_{i2},$ $\beta_{i3},$ $\beta_{i4}$ and

(3.20) $K(\rho)=\sum_{\xi}\psi(\xi(\xi+1)(\xi+\rho))$ .

In parlicular $lf$ all $\rho_{i}=-1$ , then (3.19) becomes

(3.21) $q^{2r+s}+q^{r}(-1)^{s(q-1)/4}\psi((-1)^{s}\delta)J^{s}(1)\prod_{i=1}^{s}\psi(\frac{\beta_{i1}-\beta_{i3}}{\beta_{i1}-\beta_{i4}})$ .

for $q\equiv 1(mod 4)$ , while for $q\equiv 3(mod 4)$ the number of solutions of
(3.18) is $q^{2r+s}$ .

It is clear how to obtain the number of solutions of the equation

(3.22) $Q(\xi_{1}, \cdots, \xi_{2r+1})=g(\eta_{1}, \cdots, \eta_{s})$
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where $g(\eta)$ is a product of quadratics and of cubics and quartics of
the type treated above. We shall not take the space to state such
results explicitly. It may be remarked that the number of solutions of

(3.23) $Q(\xi_{1}, --, \xi_{2r+1})=\eta+\frac{\alpha}{\eta}$
$(\eta\neq 0)$

is evidently

$q^{2r+1}+q^{r}\psi((-1)^{r}\delta)\sum_{\eta\neq 0}\psi(\eta+\frac{\alpha}{\eta})$ .
Since

$\sum_{\eta\neq 0}\psi(\eta+\frac{\alpha}{\eta})=\sum_{\eta}\psi(\eta(\eta^{2}+\alpha))=J(\alpha)$ ,

we see that the number of solutions of (3.23) is

(3.24) $q^{2r+1}+q^{r}\psi((-1)^{r}\delta)J(\alpha)$ .
In the same way the number of solutions of

(3.25) $Q(\xi_{1}, \cdots, \xi_{2r+1})=\prod_{i=1}^{s}(\eta;+\frac{\alpha_{i}}{\eta_{i}})$ $(\eta;\neq 0)$

is readily expressed in terms of $J(\alpha_{i})$ . Thus the range of (3.22) can
be extended. Also by making use of some of the results of [7] and
[8], other equations of the type (3.22) can be treated.

The following problem involving sums may be mentioned. The
number of solutions of

(3.26) $ Q(\xi_{1}, \cdots, \xi_{2r+1})=\eta^{3}+\alpha\eta+\zeta^{3}+\alpha\zeta$

is evidently equal to

(3.27) $q^{2r+2}+q^{r}\psi((-1)^{r}\delta)S$ ,

where

$S=\sum_{\eta.\zeta}\psi(\eta^{3}+\alpha\eta+\zeta^{3}+\alpha\zeta)=\sum_{r.\zeta}\psi(\tau(\tau^{2}-3\tau\zeta+3\zeta^{2}+\alpha))$ .

For $p\neq 3$ we put

$S=\sum_{\tau}\psi(\tau)S_{\tau}$ , $S_{\tau}=\sum_{\zeta}\psi(\tau^{2}-3_{T}\zeta+3\zeta^{2}+\alpha)$ .

The sum $S_{\tau}$ is easily evaluated by means of (2.5). We find that
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(3.28) $S_{\tau}=\psi(3)k(\tau^{2}+4\alpha)$ .
Thus if $\psi(-4\alpha)=-1$ or $0$ we get

(3.29) $S=-\psi(3)\sum_{\tau}\psi(\tau)=0$ ,

while if $-4\alpha=\beta^{2}$ then
(3.30) $S=q(\psi(\beta)+\psi(-\beta))\psi(3)=q\psi(3\beta)(1+\psi(-1))$ .
This proves

THEOREM 7. $(p\neq 3)$ . The number of solutions of (3.26) is furnished
by (3.27) together with (3.29) and (3.30).

The equation (3.26) can be generalized in the obvious way by
alllowing products in the right member.

4. Number of solutions of (1.8). In order to find the numb\‘er
of solutions of (1.8) we first consider the sum

(4.1)
$T=T(\alpha)=\sum_{\eta\epsilon GF(qm}\psi_{)}(\eta^{q}-\eta+\alpha)$

$(\alpha eGF(q^{m}))$ ,

where now $\psi(\alpha)=0,$ $+1$ or $-1$ according as $\alpha$ is $0$, a square or non.
square of $GF(q^{m})$ .

Making use of (2.15) and (2.17) we get

(4.2) $qT=\sum_{\xi eGF(qm}\psi_{)}(\xi+\alpha)\sum_{\beta\epsilon GF(q)}E(\beta\xi)$ .
Replacing $\xi+\alpha$ by $\eta,$ $(4.2)$ becomes
(4.3) $qT=\sum_{\beta\epsilon GF(q)}E(-\beta\alpha)\sum\psi_{)}(\eta)E(\beta\eta)\eta\epsilon Fc(qm$

Now using (2.18) and (2.19) we see that

(4.4) $qT=\sum_{\beta\epsilon GF(q)}E(-\beta\alpha)G(\beta)=G(1)\sum_{\epsilon\beta GF(q)}\psi(\beta)E(-\beta\alpha)$ .

For $m$ even every number of $GF(q)$ is a square of $GF(q^{m})$ ; thus again
using (2.17), (4.4) implies

(4.5) $T=q^{-1}G(1)\sum_{\beta\neq 0}E(-\beta\alpha)=q^{-1}G(1)k(\sigma(\alpha))$ ($m$ even).

On the other hand when $m$ is odd, it follows from (2.21) that

$\sum_{\beta\epsilon GF(q}\psi_{)}(\beta)E(-\beta\alpha)=\sum_{\beta\epsilon GF(q)}\psi(\beta)E_{1}(-\beta s(\alpha))=G_{1}(-\sigma(\alpha))$ ,

where $G_{1}(-\sigma(\alpha))$ is the Gauss sum for $GF(q)$ . Thus (4.4) yields $\uparrow$
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(4.6) $qT=G(1)G_{1}(-a(a))=\psi(a(\alpha))G(1)G_{1}(-1)$ .
Hence by (2.22) and (2.20), (4.6) becomes

(4.7) $\tau=\psi(\sigma$ ($m$ odd).

Thus by means of (4.5) and (4.7) the sum (4.1) is evaluated in all
cases (including $\alpha=0$).

Turning now to the equation

(4.8) $Q(\xi_{1}, \cdots, \xi_{2r+1})=\Gamma^{s}I(\eta_{i}^{q}-q_{i}+\alpha_{i})i-1$

it is clear that the number of solutions of (4.8) is equal to

(4.9) $q^{m(2r+s)}+q^{mr}\psi((-1)^{r}\delta)\Gamma^{s}IT(\alpha_{i})i\Leftarrow 1$

where $T(\alpha)$ is defined by (4.1). Now if $m$ is even it is evident that
(4.5) implies

(4.10) $\prod_{i-1}^{s}T(\alpha_{i})=q^{-s}G^{s}(1)\prod_{i-1}^{5}k(\sigma(\alpha_{i}))$ .
For $m$ odd, (4.7) yields

(4.11) $\prod_{i\Leftrightarrow 1}^{s}T(\alpha_{i})=\psi\{(-1)^{*s(m-1)}\prod_{i\approx 1}^{s}\sigma(\alpha_{i})\}q^{i^{s(m-1)}}$ .

Combining (4.9), (4.10), (4.11) we get
THEOREM 8. The number of solutions $\xi_{i},$ $\eta_{i}G\in F(q^{m})$ of the equa-

tions (4.8) is equal to

(4.12) $q^{m(2r+s)}+q^{mr-s}c^{s}(1)\psi((-1)^{r}\delta)\prod_{i-1}^{s}k\sigma(\alpha_{i})$

for $m$ even, and to

(4.13) $q^{m(2r+s)}+q^{ml}\psi\{(-1)^{l}\delta\prod_{i=1}^{s}\sigma(\alpha_{i})\}$ $(l=r+\frac{1}{2}s(m-1))$

for $m$ odd.
5. Number of solutions of (1.9) and (1.10). We consider

now the equation

(5.1) $\alpha_{1}(\eta_{1}^{q}-\eta_{1})+\cdots+\alpha_{s}(\eta_{s}^{q}-\eta_{s})=\alpha$ $(m, r\geq 2)$ ,

where $\alpha,$ $\alpha_{i},$ $\eta_{i}\in GF(q^{m})$ . The case in which the $\alpha_{i}$ are proportional to
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numbers of $GF(q)$ is of little interest and will be excluded. Now
when $\eta^{q}-\eta=\alpha$ is solvable for $\eta$ it has exactly $q$ solutions; hence by
(2.17) the number of solutions of (5.1) is equal to

(5.2)
$q^{s}\sum q^{-s}\ldots.,\sum_{\beta_{1}\alpha_{1}\zeta_{1}+\cdots+\alpha_{s}\zeta_{s}-\alpha\beta_{S}\epsilon GF(q)}E(\beta_{1}\zeta_{1}+\cdots+\beta_{s}\zeta_{s})$

,

where the outer sum in (5.2) is over $\zeta_{i}eGF(q^{m})$ . We may assume
$\alpha_{r}\neq 0$ ; then we have

(5.3) $\alpha_{1}\zeta_{1}+\cdots+a_{s}\zeta_{S}=\alpha\sum E(\beta_{1}\zeta_{1}+ \cdot.. +\beta_{s}\zeta_{s})=\zeta_{1}.\sum\zeta_{s-1}E\{\sum_{i=1}^{s-1}(\beta_{i}-\alpha_{s}^{-\cdot 1}\beta_{s}\alpha_{i})\zeta_{i}+\alpha_{s}^{-1}\beta_{s}\alpha\}$ .

But in view of the hypothesis that the $\alpha_{i}$ are not proportional to
numbers of $GF(q)$ it is clear from (2.17) that the right member of (5.3)
vanishes unless $\beta_{1}=\ldots=\beta_{s}=0$ , in which case the sum reduces to
$q^{m(r-1)}$. Hence (5.2) becomes

(5.4) $q^{m(s-1)}$ .
This proves the following

THEOREM 9. If the numbers $\alpha_{1},$ $\cdots,$
$\alpha_{s}\in GF(q^{m})$ are not proportional

to numbers of $GF(q)$ , then the number of solutions $\eta;\in GF(q^{m})$ of the
equation (5.1) is furnished by (5.4) for all $\alpha eGF(q^{m})$ .

We remark that this result does not hold when $r=1$ . The equa-
tion $\eta^{q}-\eta=\alpha$ is solvable only when (2.14) holds, in which case there
are precisely $q$ solutions. It is also necessary that $m>1$ in (5.1);
when $m=1$ it is evident that the equation is solvable only for $\alpha=0$,
in which case there are exactly $q^{s}$ solutions.

Turning next to the equation

(5.5) $ Q(\xi_{1}, \cdots, \xi_{2r+1})=\sum_{i\approx 1}^{s}\alpha_{i}(\eta_{i}^{q}-\eta_{i})+\alpha$ $(s\geq 2)$ ,

where $Q$ is of discriminant $\delta\neq 0$ , we can determine the number of
solutions repidly by means of the last theorem, provided the $\alpha_{i}$ satisfy
the hypothesis of the theorem. For if $\beta$ denotes the right member of
(5.5) we consider the equation

(5.6) $ Q(\xi_{1}, \cdots, \xi_{2r+1})=\beta$ .
By (2.2), (5.6) has
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(5.7) $q^{\angle rm}’+q^{rm}\psi((-1)^{r}\beta\delta)$

solutions for fixed $\beta$. But by Theorem 9, for each $\beta$ there are $q^{m(s-1)}$

sets $\eta_{1}$. $\cdots,$ $\eta_{s}$ . Consequently it follows from (5.7) that the total number
of solutions of (5.5) is given by

(5.8) $q^{m(2r+s-1)}+q^{m(r+s\leftarrow 1)}\psi((-1)^{r}\beta\delta)$ .
We may state

THEOREM 10. If the hypothesis of Theorem 9 is satisfied and
$Q(\xi)$ is of discriminant $\delta\neq 0$ then the number of solutions $\xi_{i},$ $\eta_{i}\in GF(q^{m})$

of (5.5) is furnished by (5.8).
The hypothesis $s\geq 2$ is indeed necessary; the case $s=1$ is covered

by Theorem 8.
It may be noted that the number of solutions of

(5.9) $ Q(\xi_{1}, \cdots, \xi_{2r})=\sum_{i-1}^{s}\alpha_{i}(\eta_{i}^{q}-\eta_{i})+\alpha$ $(s\geq 2)$ ,

subject to the hypothesis of Theorem 10, is given by

(5.10) $q^{m(2r-s- 2)}$ .
The proof of (5.10) is an immediate consequence of (2.3) and Theorem
9. Similarly it is easily seen that the number of solutions of

(5.11) $Q(\xi_{1}, \cdots, \xi_{?r})=\prod_{i-1}^{s}(\eta_{i}^{q}-\eta;+\alpha_{i})$

is equal to

(5.12) $\left\{\begin{array}{llll} & & & q^{ms}\{q^{mt2r-1)}-q^{m(\gamma- 1)}\psi((-1)^{r}\delta\} (t(\alpha_{i})\neq 0,i=1,\cdots,s)\\ & & & q^{m(s- l)+l}\{q^{m(2r- 1)}+q^{m(r- 1)}(q^{m}-1)\psi((-1)^{r}\delta) (otherwise),\end{array}\right.$

where in the latter case $t(\alpha_{i})=0$ for precisely $l$ values of $i$. This
result may be compared with (4.12).

6. The equation (1.11). Let $f|q^{m}-1$ and consider the equation

(6.1) $\xi^{f}=\eta^{q}-\eta+\alpha$ .
We let $\chi(\alpha)$ denote a character of the multiplicative group of $GF(q^{m})$

such that $\chi^{f}=\chi_{0}$, the principal character. Then as is familiar

(6.2) $\sum_{x}\chi(\alpha)=\left\{\begin{array}{llll} & & & f (\alpha=\beta^{f})\\ & & & 0 (otherwise),\end{array}\right.$
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where the summation is over all $\chi$ such that $\chi^{f}=\chi_{0}$ and $\alpha,$ $\beta$ denote
non.zero numbers of $GF(q^{m})$ . We shall also require

(6.3) $\tau=\tau(\chi)=\sum\chi(\alpha)E(\alpha)\alpha eGF(qm)$

where $E(\alpha)$ is defined by (2.15). It is well known that

(6.4) $|\tau(\chi)|=q^{*m}$ $(x\neq x_{0})$ , $\tau(\chi_{0})=-1$ .
Moreover if $f|q^{m}-1$ and $m\equiv 1(mod f)$ and

(6.5) $\tau_{1}(\chi)=_{\alpha^{\angle}\epsilon GF(q}\nabla_{\lrcorner}\chi_{)}(\alpha)E_{1}(\alpha)$ ,

where $E_{1}(a)$ has the same meaning as in (2.21), then we have [4]

(6.6) $\tau(\chi)=(-1)^{m-1}(\tau_{1}(\chi))^{m}$ .
Using (6.2) it is evident that the number of solutions of (6.1) with

$\xi\neq 0$ is

(6.7) $N=\sum_{X\eta\epsilon}\Sigma\chi(\eta^{q}-\eta+\alpha);GF(qm_{J}$

therefore, by (2.17), (6.7) becomes

(6.8) $N=\sum_{x\zeta\epsilon G}\sum_{F(q^{m})}\sum\chi(\zeta+\alpha)E(\beta\zeta)=\sum_{x\beta\epsilon GF(q)}\sum_{\beta}E(-\beta\alpha)\sum_{\zeta}\chi(\zeta)E(\beta\zeta)$ .

For $\beta=0$ we get

$\sum_{x}\sum_{\zeta}\chi(\zeta)=\sum_{\zeta}\chi_{0}(\zeta)+\sum_{X\neq\chi_{0}}\sum_{\zeta}\chi(\zeta)=q^{m}-1$
;

thus substitution in (6.8) yields

(6.9) $N=q^{m}-1+\sum_{x}\sum_{\beta}\overline{\chi}(\beta)E(-\beta\alpha)\sum_{\zeta}\chi(\zeta)E(\zeta)$ .

If $f|m$ , then $\beta=\gamma^{f},$ $\gamma eGF(q^{m})$ and therefore $\overline{\chi}(\beta)=1$ ; thus (6.9)

becomes
$N=q^{m}-1+\sum_{\beta\neq 0}E(-\beta\alpha)\sum_{x}\tau(\chi)$ .

Using (2.17) and (6.2) this becomes

(6.10) $N=q^{m}-1+k(\sigma(\alpha))\sum_{\xi\neq 0}E(\xi^{f})$ $(f|m)$ ,
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where $\sigma(\alpha)=\alpha+\alpha^{q}+\cdots+\alpha^{q^{m-1}}$ and $k(\xi)$ has the same meaning as in
(2.3).

In the next place we note that (6.9) can be written in the form

(6.11) $N=q^{m}-1+\sum_{x}\sum_{\beta}\overline{\chi}(\beta)E_{1}(-\beta\sigma(\alpha))_{\tau}(\chi)$ ,

where we have used (2.21). Thus in particular we get

(6.12) $N=q^{m}-1+\sum_{x}\sum_{\beta}\overline{\chi}(\beta)_{\tau}(\chi)$
$(\sigma(\alpha)=0)$ .

Now let us suppose that $f|q-1$ , so that $\beta\in GF(q),$ $\chi(\beta)$ is a multipli-
cative character of $GF(q)$ that satisfies $\chi^{f}=\chi_{0}$. Then (6.12) reduces to

(6.13) $N=q^{m}-q$ $(\sigma(\alpha)=0)$ .
When $\sigma(\alpha)\neq 0,$ $(6.11)$ becomes

(6.14) $N=q^{m}-1+\sum_{x}\chi(-\sigma(\alpha))_{T_{1}}(\overline{\chi})_{T}(\chi)$
$(\sigma(\alpha)\neq 0)$ ,

where $\tau_{1}(\overline{\chi})$ is defined by (6.5). If we make the additional assumption
that $m\equiv 1(mod f)$ then (6.6) applies and we get

(6.15) $N=q^{m}+(-1)^{m-1}q\sum_{x\neq x_{0}}\chi(-\sigma(\alpha))(\tau_{1}(\chi))^{m^{-}1}$
$(\sigma(\alpha)\neq 0)$ .

In particular (6.15) implies

(6.16) $|N-q^{m}|\leq(f-1)q^{k^{(m+1)}}$ .
We may state

THEOREM 11. The number of solutions of (6.1) with $\xi\neq 0$ satisfies
(6.9). If $f|m$ then (6.10) holds. If $f|q-1$ and $\sigma(\alpha)=0$ then (6.13)
holds. If $\sigma(\alpha)\neq 0$ and $q\equiv m\equiv 1(mod f)$ then (6.15) and (6.16) hold.
There are $q$ additional solutions with $\xi=0$ only when $\sigma(\alpha)=0$.

Duke University
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