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On the convergence-region of interpolation
polynomials.

By Tetsujiro KAKEHASHI

(Received January 24, 1954)

The convergence of interpolation polynomials to a given function
in the points which satisfy a certain condition has been studied by
Walsh and others. (Cf. Walsh: Interpolations and Approximations;
American Mathematical Society Colloquium Publications, 1935.)

If the sequence of polynomials which interpolate to a given func-
tion in the points is a series, an exact region of the convergence can
be studied in a manner similar to that of the power series, but if the
sequence is not a series, the exact region of the convergence, except
in some particular cases, has not yet been established, as far as I
know.

In the particular case, where the points of interpolation are defined
by the zeros of polynomials $z^{n}-1=0;n=1,2,3,$ $\cdots$ , the exact region of
the convergence of interpolation polynomials has been determined by
Walsh. (The divergence of sequences of polynomials interpolating in
roots of unity; Bulletin of the American Mathematical Society, 1936,
Vol. 42, page 715.)

The purpose of this paper is to generalize the results given in the
above.mentioned paper by Walsh, and to determine the exact region
of the convergence of interpolation polynomials in more generalized
point sets.

1. Let the function $f(z)$ be analytic throughout the interior of the
circle $I_{\rho}$ ; $|z|=\rho>1$ but not analytic on $I_{\rho}$ . Let $\lambda(z)$ be an analytic
function with positive modulus exterior to the unit circle 1‘ : $|z|=1$ .
For $t$ on $I_{R}^{\gamma}(\rho>R>1)$ and for a fixed point $z$ which lies between 1’
and $I_{R}^{7}$ , we.consider the series

$\frac{\lambda(t)-\lambda(z)}{\lambda(t)}\frac{1}{t-z}+\frac{\lambda(}{\lambda(}zt^{\frac{)}{)t}}(1+\frac{z}{t}+\frac{z^{2}}{t^{2}}+\cdots+\frac{z^{n}}{t^{n}})$
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$=\frac{1}{t-z}(1-\frac{\lambda(z)z^{n+1}}{\lambda(t)t^{n+1}})$ ; $n=0,1,2,$ $\cdots$ .

$\lambda(t)$ being an analytic function with positive modulus on $\Gamma_{R}$ , the

series converges to the function $\frac{1}{t-z}$ uniformly for $t$ on $I_{R}^{7}$ as $n$

tends to infinity.
Accordingly, we can define approximating functions of $f(z)$ , which

is analytic throughout the interior of $I_{\rho}(\rho>R>1)$ , by

(1.1) $S_{n}(z;f)=\frac{1}{2\pi i}\int_{T}\frac{\lambda(t)t^{n+1}-\lambda(z)z^{n+1}}{R\lambda(t)t^{n+1}}\frac{f(t)}{t-z}dt$

$=-\frac{1}{2\pi i}\int_{r_{R}^{-}}^{\lambda(}\frac{t)-}{\lambda(t}-\frac{f(t)}{t-z}dt+\sum_{k\infty 0}^{n}\alpha_{k}\lambda(z)z^{k}\lambda(z))$

where

(1.2) $\alpha_{k}=\frac{1}{2\pi i}\int_{\tau_{R}}\frac{f(t)}{\lambda(t)t^{k+1}}dt$ ; $k=0,1,2,$ $\cdots$ .

Then we have

(1.3) $f(z)-S_{n}(z;f)=\frac{1}{2\pi i}\int_{\tau_{R^{-}}}\frac{\lambda(z)z^{n+1}}{\lambda(t)l^{n+1}}-\frac{f(t)}{t-z}dt$ .

The series $S_{n}(z;f)$ is defined for $z$ exterior to $\Gamma$ and even for $z$

exterior to $\Gamma_{\rho}$ , but if $\lambda(z)$ is suitably defined for $z$ on and interior
to $\Gamma$ , we can define $S_{n}(z;f)$ for $z$ on and interior to $1^{\tau}$ . $S_{n}(z;f)$ is a
certain interpoIation formula of $f(z)$ and has properties similar to those
of the power series of $f(z)$ .

THEOREM 1. Let the function $f(z)$ be analytic throughout the in-
terior of the circle $I_{\rho}^{\gamma}$ ; $|z|=\rho>1$ but not analytic on $\Gamma_{\rho}$ . Let $\lambda(z)$ be
an analytic function with positive modulus exterior to the unit circle
$l^{7}$ ; $|z|=1$ .

Then the series $S_{n}(z;f)$ defined by (1.1) converges to $f(z)$ through-
out the interior of the region between $\Gamma$ and $I_{\rho}^{\gamma}$ , uniformly on any
closed region between $\Gamma$ and $I_{\rho}^{\gamma}$ , and diverges at every point exterior
to $\Gamma_{\rho}$ . Moreover, we have
(1.4) $\varlimsup_{n\rightarrow\infty}|f(z)-S_{n}(z;f)|^{1\gamma n}\leqq R^{t}/\rho$

for $z$ on $I_{R^{\prime}}^{7}(1<R^{\prime}<\rho)$ , and for $z$ exterior to $1_{\rho}^{\gamma}$
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(1.5) $\varlimsup_{n\rightarrow\infty}|S_{n}(z;f)|^{1/n}=|z|/\rho$ .

The first part of the theorem can be proved from the last part of
the theorem, that is, from the relations (1.4) and (1.5).

If we choose a circle $I_{R}^{7}$ between $I_{\rho}^{7}$ and $I_{R^{\prime}}^{7}$ , the equation (1.3)
is valid for $z$ on $\Gamma_{R^{\prime}}$ . Thus, for $z$ on $I_{R}^{7},$ ,

$\varlimsup_{n\rightarrow\infty}|f(z)-S_{n}(z;f)|^{1/n}\leqq R^{\prime}/R<1$

follows immediately from (1.3). Allowing $R$ to approach $\rho$ , then yields
the relation (1.4).

Let $\alpha_{k}$ ; $k=0,1,2,$ $\cdots$ be the coefficients defined by (1.2). If we
expand the function $f(z)/\lambda(z)$ into Laurent’s series, we have

$f(z)/\lambda(z)=\sum_{k=0}^{\infty}\alpha_{k}z^{k}+\sum_{k=1}^{\infty}\beta_{k}z^{-k}$ .
Then the equality

(1.6) $\varlimsup_{n\rightarrow\infty}|\alpha_{n}|^{1/n}=1/\rho$

can be verified easily.
For $n$ sufficiently large we have

$|\alpha_{n}|<|\div+e|^{n}$ ,

so the sequence $|\alpha_{k}|/(\div+e)^{k}$ has a finite upper bound $K$, thus

$|\alpha_{k}|\leqq K$ ,

$|S_{n}(z;f)|\leqq K^{\prime}+K|\lambda(z)|\Sigma_{k=0}^{n}(\div+e)^{k}|z|^{k}$

$=K^{\prime}+K|\lambda(z)|\frac{(\frac{1}{\rho}+e)^{n+1}|z|^{n+1}-1}{(\frac{1}{\rho}+e)|z|-1}$ ,

$\varlimsup_{n\rightarrow\infty}|S_{n}(z;f|^{1/n}\leqq(\div+e)|z|$
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for $z$ exterior to $\Gamma_{\rho}$ , where $K^{\prime}$ is the absolute value of $\frac{1}{2_{\pi}i}\int_{r_{R^{\times}}}$

$\times\frac{\lambda(t)-\lambda(z)}{\lambda(t)}\frac{f(t)}{t-z}dt$, which depends on $z$ but not on $R(1<R<\rho)$ .
Allowing $e$ to approach zero, then yields the relation

$\varlimsup_{n\rightarrow\infty}|S_{n}(z;f)|^{1/n}\leqq|z|/\rho$ .

If we now assume the inequality

$\varlimsup_{n\rightarrow\infty}|S_{n}(z;f)|^{1/n}<A<|z|/\rho$ ,

for any fixed $z$ exterior to $I_{\rho}^{7}$ , we shall reach a contradiction. For $n$

sufficiently large we have

$|S_{n-1}(z;f)|<A^{n-1}$ , $|S_{n}(z;f)|<A^{n}$ ,

$|S_{n}(z;f)-S_{n-1}(z;f)|=|\alpha_{n}\lambda(z)z^{n}|<A^{n-1}(A+1)$ ,

$|\alpha_{n}|<A^{n-1}(A+1)/|\lambda(z)z^{n}|$ ,

$\varlimsup_{n\rightarrow\infty}|\alpha_{n}|^{1/n}\leq A/|z|<1/\rho$ ,

which contradicts (1.6). Equation (1.5) has been proved. Thus the
theorem is established.

2. Let a function $f(z)$ be analytic within the circle $I_{\rho}^{T}$ ; $|z|=\rho>1$

but not analytic on $I_{\rho}^{7}$ , and be given a set of points

(2.1) $\left\{\begin{array}{l}z_{1}^{(0)}\\z_{1}^{(1)},z_{2}^{(1)}\\Z_{1}^{(2)},Z_{2}^{(2)},Z_{3^{2)}}^{(}\\Z_{1}^{(n)},Z_{2}^{cn)},Z_{3}^{(n)},\cdots,Z_{n+1}^{(n)}\end{array}\right.$

which does not lie exterior to the unit circle $\Gamma$ . The sequence of
polynomials $P_{n}(z;f)$ of respective degrees $n$ found by interpolation to
$f(z)$ in the points $z_{1}^{(n)},$ $z_{2}^{(n)},$

$\cdots,$
$z_{n+1}^{(n)}$ is defined for $R(1<R<\rho)$ by

(2.2) $P_{n}(z;f)=\frac{1}{2\pi i}\int_{T}\frac{\varphi_{n+1}(t)-\varphi_{n+1}(z)}{R\varphi_{n+I}(t)}\frac{f(t)}{t-z}dt$ ,
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and the relation

(2.3) $f(z)-P_{n}(z;f)=-2_{\pi}^{1}\int_{\tau_{R^{-}}(}^{\varphi(z}\frac{)}{t)}-\frac{f(t)}{t-z}dt$

is valid for $z$ interior to $I_{R}^{\gamma}(\rho>R>1)$ , where

$\varphi_{n+1}(z)=(z-z_{1}^{(n)})(z-z_{2}^{(n)})\cdots(z-z_{n+1}^{(n)})$ .

Let the points (2.1) satisfy the condition that the sequence $\varphi_{n}(z)/z^{n}$

converges to a function $\lambda(z)$ with positive modulus like a geometric
series for $z$ exterior to the unit circle $\Gamma;|z|=1$ . That is, we have,
for any positive number $R_{1}(>1)$ and for a certain positive number
independent of $n$ and $z$ , the relation

(2.4) $|\frac{\varphi_{n}(z)}{z^{n}}-\lambda(z)<M\alpha^{n}$

uniformly for $z$ on and exterior to $\Gamma_{R_{1}}$ , where $M$ is a positive number
independent of $n$ and $z$ . This condition can be replaced by the ex-
istence of the function $\lambda(z)$ which satisfies

(2.5) $\varlimsup_{n\rightarrow\infty}|\varphi_{n}(z)-\lambda(z)z^{n}|<|z|$ for $|z|>1$ .

It is clear that the condition (2.4) or (2.5) yields the relation

(2.6) $\lim_{n\rightarrow\infty}|\varphi_{n}(z)|^{1/n}=|z|$

for $z$ exterior to the unit circle $\Gamma$ , and uniformly for $|z|\geqq R>1$ , and
the relation

(2.7) $\varlimsup_{n\rightarrow\infty}|\varphi_{n}(z)|^{1/n}\leqq 1$ for $|z|\leqq 1$

can be verified by the principle of maximum from (2.6).
THEOREM 2. Let $f(z)$ be the function which satisfies the condition

in the theorem 1, and $\varphi_{n}(z)$ be the sequence of polynomials of respective
degrees $n$ such as the sequence $\varphi_{n}(z)/z^{n}$ converges to a function $\lambda(z)$

with positive modulus in such a way that (2.5) or (2.6) holds for $z$

extenor to the unit circle $\Gamma$ . Let $P_{n}(z;f)$ be the unique polynomial of
degree $n$ which interpolates to $f(z)$ in all the zeros of $\varphi_{n+1}(z)$ . Then
the sequence of polynomials $P_{n}(z;f)$ converges to $f(z)$ throughout the
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region $|z|<\rho$ , and uniformly on any closed set interior to $\Gamma_{\rho}$ . The
sequence $P_{n}(z;f)$ diverges at every point exterior to $I_{\rho}^{7}$ .

Moreover, we have
(2.8) $\varlimsup_{n\sim\star\infty}|f(z)-P_{n}(z;f)|^{1/n}\leqq R_{1}/\rho$

for $z$ on $I_{R_{1}}(1<R_{1}<\rho)$ ,

(2.9) $\varlimsup_{n\rightarrow\infty}|f(z)-P_{n}(z;f)|^{1/n}\leqq 1/\rho$ for $|z|\leqq 1$ ,

and

(2.10) $\varlimsup_{n\rightarrow\infty}|P_{n}(z;f)|^{1/n}=|z|/\rho$

for $z$ exterior to $\Gamma_{\rho}$ .
The first part of the theorem follows immediately from the last

part of the theorem, that is, from the relations (2.8), (2.9) and (2.10).
The inequalities (2.8) and (2.9) can be verified respectively from the
relations

$\varlimsup_{n\rightarrow\infty}|f(z)-P_{n}(z;f)|^{1/n}\leqq R_{1}/R$ $(1<R_{1}<R<\rho)$

and
$\varlimsup_{n\rightarrow\infty}|f(z)-P_{n}(z;f)|^{1/n}\leqq 1/R$ for $|z|\leqq 1$

which can be estimated directly from the equation (2.3) by (2.6) and
(2.7).

In our p.roof of the equation (2.10), it is convenient to have the
following lemma by Walsh. (Cf. The divergence of sequences of poly.
nomials interpolating in roots of unity; Bulletin of the American
Mathematical Society, 1936, Vol. 42, page 715.)

LEMMA. The relations

(2.11) $\varlimsup_{n\rightarrow\infty}|A_{n}|^{1_{J^{\prime}}n}=a$ , $\varlimsup_{n\rightarrow\infty}|A_{n}+B_{n}|=b<a$

imply

(2.12) $\lim_{n\rightarrow\infty}|B_{n}|^{1/n}=\lim_{n\rightarrow\infty}|A_{n}|^{1/n}=a$ .

We are now to prove the theorem. Subtraction of (2.2) from (1.1)
side by side yields the relation

(2.13) $S_{n}(z;f)-P_{n}(z;f)=\frac{1}{2\pi i}\int_{T_{R}}[\frac{\varphi_{n+1}(z)}{\varphi_{n+1}(t)}$
–

$\lambda(z)z_{n^{n_{+^{+}1^{1}}}}\lambda(t)t]\frac{f(t)}{t-z}dt$ .
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It is seen that the left.hand side of (2.13) represents a function of $z$

which is analytic for all finite values of $z$ exterior to the unit cirle $\Gamma$ ,
so the equation (2.13) is valid for all finite values of $z$, even for $z$ in-
terior to $\Gamma$ , if $\lambda(z)$ is suitably defined there.

Substitution of $e_{n+1}(z)=\varphi_{n+1}(z)-\lambda(z)z^{n+1}$ for (2.13) yields

$S_{n}(z;f)-P_{n}(z;f)=-2_{\pi}^{1}\overline{i}\int_{\tau^{n+1}e_{n+1}}^{e_{n+1}(t)\lambda(z)z}\frac{e_{n+1}(z)\lambda(t)t^{n+1}-}{R\lambda(t)t^{n_{+1}}[\lambda(t)t}+(t)]^{n+1}\frac{f(t)}{t-z}dt$ ,

and applying (2.4) to this equation, we have for any finite value of $z$

exterior to $1_{\rho}$

$\varlimsup_{n\rightarrow\infty}|S_{n}(z;f)-P_{n}(z;f)|^{1/n}\leqq\alpha|z|/R$
$(\alpha<1)$ .

$R$ can be allowed to approach $\rho$ , whence we have the relation

(2.14) $\lim_{n\rightarrow\infty}|S_{n}(z;f)-P_{n}(z;f)|^{1_{J}n}\leqq\alpha|z|/\rho<|z|/\rho$

for $z$ exterior to $\Gamma_{\rho}$ .
Accordingly, from (1.5), (2.14) and the lemma we can verify the

relation

$\lim_{n\rightarrow\infty}|P_{n}(z;f)|^{1/n}=|z|/\rho$

for $z$ exterior to the circle $I_{\rho}^{\gamma}$ . Thus the sequence can not be bounded
when $|z|>\rho$ , hence can not converge. The theorem is thus established.

3. In this paragraph, we consider some examples of polynomials
which satisfy the condition in the previous paragraph.

It is clear that the sequence of polynomials

(3.1) $\varphi_{n}(z)=z^{n}-1$ ; $n=1,2,$ $\cdots$

satisfies the condition in theorem 2 for $z$ exterior to the unit circle $I^{\tau}$ ,
and $\lambda(z)$ can be determined so that we have $\lambda(z)\equiv 1$ . The sequence
of polynomials

(3.2) $\varphi_{n}(z)=1+z+z^{2}+\cdots+z^{n}$ ; $n=1,2,$ $\cdots$

also satisfies the same condition and $\lambda(z)$ is given by $z/z-1$ .
Next we consider an important example. Let $D(z)$ be a function

analytic and non.zero for $z$ interior to the unit circle $\Gamma;|z|=1$ . Let
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$D_{n}(z)$ be the partial sums of power series of $D(z)$ about $z=0$ , that is,

(3.3) $D_{n}(z)=a_{0}+a_{1}z+a_{2}z^{2}+\cdots+a_{n}z^{n}$ ; $n=1,2,$ $\cdots$ .
Then we can verify the relation

(3.4) $\lim_{n\rightarrow\infty}|D(z)-D_{n}(z)|^{1/n}\leqq|z|<1$

for $z$ interior to $\Gamma$ .
Let $D_{n}^{*}(z)$ be the reciprocal polynomial of $D_{n}(z)$ , that is

(3.5) $D_{n}^{*}(z)=z^{n}\overline{D}_{n}(z^{-1})=\overline{a}_{0}z^{n}+\overline{a}_{1}z^{n-1}+\cdots+\overline{a}_{n}$ .
Then we have from (3.4) the relation

$\varlimsup_{n\rightarrow\infty}|D_{n}^{\star}(z)-\overline{D}(z^{-1})z^{n}|\leqq 1<|z|$

for $z$ exterior to $\Gamma$ . Thus we can verify that the sequence of poly-
nomials $Dn(z)$ satisfies the condition of theorem 2.

The following example is also important. Let $W(\theta)$ be the positive
weight function which setisfies the relation

(3.6) $W(\theta)=\{T_{m}(\theta)\}^{-1}>0$ ; $ 0\leqq\theta\leqq 2\pi$ ,

where $T_{m}(\theta)$ is a positive trigonometric polynomial of degree $m$ . Then
we know that there exists a unique polynomial $h_{m}(z)$ of degree $m$

which satisfies the conditions

(3.7) $T_{m}(\theta)=|h_{m}(e^{i\theta})|^{2}>0$

and
(3.8) $h_{m}(0)>0$ , $|h_{m}(z)|>0$ for $|z|\leqq 1$ .
(This result has been obtained by Fej\’er. Cf. Szeg\"o: Orthogonal Poly.
nomials, American Mathematical Society Colloquium Publications.)

Then, it is known that the polynomials

(3.9) $\psi_{n}(z;m)=\overline{h}_{m}(z^{-1})z^{n}$ ; $n=m,$ $m+1,$ $\cdots\cdots$

form the ortho.normal set of polynomials associated with the weight
function $W(\theta)$ . Indeed, for $\rho(z)$ an arbitrary polynomial of degree less
than $n$ , we have
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$\frac{1}{2\pi}\int_{0^{tt}}^{2}W(\theta)\psi_{n}(z;m)\overline{\rho}(z)d\theta=$ $2\pi 1_{-\int_{1}\{h_{m}(z)\overline{h}_{m}(z^{-1})\}^{-1}z^{n}\overline{h}_{m}(z^{-1})\overline{\rho}(z^{-1})\frac{dz}{iz}}z\approx 1$

$=-\frac{1}{\pi i}2\int_{1z^{1-}}\frac{z^{n+1}\overline{\rho}(z^{-1})}{1h_{m}(z)}dz=0$ : $z=e^{i\theta}$

according to Cauchy’s theorem, and

$\frac{1}{2\pi}\int_{0^{tf}}^{2}W(\theta)|\psi_{n}(z;m)|^{2}d\theta=-2^{1_{\pi}}-\int_{0}^{2\kappa}|h_{m}(z)|^{-2}|z^{n}\overline{h}_{m}(z^{-1})|^{2}d\theta=1$ .

Accordingly, it is clear that the sequence of polynomials $\psi_{n}(z;m)$

defined by (3.9) satisfies the condition in theorem 2.
More generally, let $F(z)$ be a function analytic and positive on the

unit circle $\Gamma$ and $W(\theta)$ be the weight function defined by

$W(\theta)=F(e^{i0})>0$ .
Let $\phi_{n}(z)$ be the set of ortho-normal polynomials associated with the
weight function $W(\theta)$ . Then we can prove that the sequence of poly-
nomials $\phi_{n}(z)$ satisfies the same condition. This problem we shall
consider in paragraph 5.

4. In this paragraph, we consider a generalization of the results
obtained in paragraph 2.

Let $D$ be a closed limited point set whose complement $K$ with
respect to the extended plane is connected and regular in the sense
that $K$ possesses a Green’s function with pole at infinity. Let $w=\phi(z)$

map $K$ onto the region $|w|>1$ so that the points at infinity correspond
to each other. Let $C_{R}(R>1)$ be the level curve determined by
$|w|=R>1$ .

Given a function $f(z)$ analytic throughout the interior of the level
curve $C_{\rho}(\rho>1)$ , but not analytic on $C_{\rho}$ , and given a set of points (2.1)
which lie on $D$ , the sequence of polynomials $P_{n}(z;f)$ of respective
degrees $n$ found by interpolation to $f(z)$ in the points $z_{1}^{(n)},$ $z_{2}^{(n)},$

$\cdots,$
$z_{n+1}^{(n)}$

is defined, for any positive number $R$ less than $\rho$ but greater than
unity, by

(4.1) $P_{n}(z;f)=-2^{1}\pi i-\int_{C}\frac{\varphi_{n+1}(t)-\varphi_{n+1}(z)}{R\varphi_{\hslash+1}(l)}-t^{-}-z^{-dt}f(\underline{t})$ .
And the relation
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(4.2) $f(z)-P_{n}(z;f)=\frac{1}{2\pi i}\int_{C_{R}}\frac{\varphi_{n+1}(z)}{\varphi_{n+1}(t)}\frac{f(t)}{t-z}dt$

is valid for $z$ interior to $C_{R}(\rho>R>1)$ , where

$\varphi_{n+1}(z)=(z-z_{1}^{(n)})(z-z_{2}^{(n)})\cdots(z-z_{n+1}^{(n)})$ .
Let the set of points (2.1) satisfy the condition that the sequence

of function $\varphi_{n}(z)/\Delta^{n}w^{n}$ converges to an analytic function $\lambda(w)=\lambda[\phi(z)]$

with positive modulus like a geometric series for $z$ exterior to $D$ , where
$\Delta$ is the capacity of $D$. That is, we have, for a certain positive number
$\alpha(<1)$ independent of $n$ and $z$ , the relation

(4.3) $|\varphi_{n}(z)[\Delta w]^{-n}-\lambda(w)|<M\alpha^{n}$ : $w=\phi(z)$

uniformly for $z$ on any closed region interior to $K$, where $M$ is a
positive number independent of $n$ and $z$. This condition can be replaced
by the existence of the function $\lambda(w)$ which satisfies

(4.4) $\varlimsup_{n\rightarrow\infty}|\varphi_{n}(z)-\lambda(w)[\Delta w]^{n}|^{1/n}<\Delta|w|$ for $|w|>1$ .

It is clear that the relation (4.3) or (4.4) yields

(4.5) $\lim_{n\rightarrow\sim}|\varphi_{n}(z)|^{1/n}=\Delta|\phi(z)|$

uniformly on any closed limited points set interior to $K$.
Now we can define the sequence of approximating functions $S_{n}(z;f)$

similarly to those in paragraph 1, that is, for any positive number $R$

between 1 and $\rho$ ,

(4.6) $S_{n}(z;f)=\frac{1}{2\pi i}\int_{C_{R}}\{1-\frac{\lambda(z)[\phi(z)]^{n+1}}{\lambda(t)[\phi(t)]^{n+1}}\}\frac{f(t)}{t-z}dt$ .

And for $z$ between $C:|w|=1$ and $C_{R}$ , we have

(4.7) $f(z)-S_{n}(z;f)=\frac{1}{2\pi j}\int_{C_{R}}\frac{\lambda(z)[\phi(z)]^{n+1}}{\lambda(t)[\phi(t)]^{n+1}}\frac{f(t)}{t-z}dt$ .

The properties of $S_{n}(z;f)$ analogous to those of theorem 1 can be
verified in a manner similar to that. of theorem 1. Thus the following
theorem can be verified as the generalization of theorem 2.

THEOREM 3. Let $D$ be a closed limited point set whose comple.
ment $K$ with respect to the extended plane is connected and regular in
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the sense that $K$ possesses a Green’s function with pole at infinity.
Let $w=\phi(z)$ map $K$ onto the region $|w|>1$ so that the points at in-
finity correspond to each other.

Let the function $f(z)$ be analytic throughout the interior of the level
curve $C_{\rho}$ : $|\phi(z)|=\rho>1$ but not analytic on $C_{\rho}$ , and let a set of poly $\cdot$

nomials $\varphi_{n}(z)$ of respective degrees $n$ satisfy the condition (4.3) or (4.4).
Then the sequence of polynomials $P_{n}(z;f)$ of respect $ive$ degress $n$

which interpolates to $f(z)$ in all the zeros of $\varphi_{n+1}(z)$ converges to $f(z)$

throughout the region $|w|<\rho$ , uniformly on any closed set interior to
$C_{\rho}$, and diverges at every point exterior to $C_{\rho}$. Moreover, we have

(4.8) $\lim_{n\rightarrow\infty}|f(z)-P_{n}(z;f)|^{1/n}\leqq R_{1}/\rho$

for $z$ on $C_{R_{1}}$ : $|w|=R_{1}(1<R_{1}<\rho)$ ,

(4.9) $\varlimsup_{n\rightarrow\sim}|f(z)-P_{n}(z;f)|^{L/n}\leqq 1/\rho$ for $|\phi(z)|\leqq 1$

and

(4.10) $\varlimsup_{n\rightarrow\infty}|P_{n}(z;f)|^{1/n}=|rv|/\rho$

for $z$ exterior to $C_{\rho}$ .
Examples considered in paragraph 3 can be applied to this gene-

ralized case. The following example is to be noticed.
The polynomials $\varphi_{n}(z)$ of respective degrees $n$ found by the ortho-

gonalization of the set 1, $z,$
$z^{2},$ $\cdots$ on the line segment $-1\leqq z\leqq 1$ with

respect to the weight function $(1-z^{2})^{-1/2}$ are known as Tchebycheff’s
polynomials. In this case, by the transformation

$z=\frac{1}{2}(w+w^{-1})$ ,

the exterior of the real interval [–1, 1] is transformed onto the exterior
of the unit circle I’ : $|w|=1$ so that the points at infinity correspond
to each other. And the polynomials are given by

$\varphi_{n}(z)=2^{-n}(w^{n}+w^{-n})$ ,

which satisfy the condition of theorem 3.
Accordingly. the sequence of polynomials $P_{n}(z;f)$ of respective

degrees $n$ found by interpolation to $f(z)$ , which is analytic throughout



On the convergence-region of interpolation polynomials 43

the interior of $C_{\rho}$ but not analytic on $C_{p}$ , in all the zeros of Tcheby.
cheff’s polynomials converge to $f(z)$ for $z$ interior to $C_{\rho}$ , uniformly on
any closed point set interior to $C_{\rho}$ and diverges at every point exterior
to $C_{p}$ . In this case, the exact region of the convergence of $P_{n}(z;f)$ is
determined by the interior of the ellipse with foci at $\pm 1$ and with

semi.axes $\frac{1}{2}(\rho+\rho^{-1})$ and $\frac{1}{2}(\rho-\rho^{-1})$ . That is equivalent to the

region on which the Fourier-expansion of $f(z)$ by Tchebycheff’s poly-
nomials converges.

More generally, we can prove that the set of orthogonal polynomials
$\varphi_{n}(z)$ associated with the positive weight function

$P(z)=F(z)(1-z^{2})^{-1/2}$ : $-1<z<1$ ,

where the function $F(z)$ is analytic and positive on [-1, 11, satisfies
the condition (4.4) or (4.5). In this case, the mapping function $w=\phi(z)$

is also given by $z=\frac{1}{2}(w+w^{-1})$ and the capacity $\Delta$ of [–1, 1] is 1/2.

Accordingly, the exact region of the ccnvergence of $P_{n}(z;f)$ found
by interpolation to $f(z)$ in all the zeros of $\varphi_{n+1}(z)$ is identical to that
of the convergence of Fourier-expansion by the set of $\varphi_{n}(z)$ .

We shall study such a problem in paragraph 6.
5. In this paragraph, we consider asymptotic properties of the set of

polynomials which are ortho.normal with respect to a certain positive
weight function defined on the unit circle $\Gamma$ : $z=e^{i\theta}$.

Let $\phi n(z)$ be the set of ortho-normal polynomials associated with a
weight function, on the unit circle $z=e^{i\theta}$ , which satisfies a certain
condition. Then the asymptotic behavior of $\phi_{n}(z)$ has been studied by
Szego and been found to be as follows;

(5.1) $\lim_{n\rightarrow\infty}\phi_{n}(z)/z^{n}=\lambda(z)$ uniformly for $|z|\geqq R>1$ ,

where $\lambda(z)$ is an analytic function with positive modulus exterior to
the unit circle $I^{7}$ . (Cf. Szego : Orthogonal polynomials, American
Mathematical Society Colloquium Publications.)

The corresponding result for polynomials ortho.normal with respect
to a weight function on the real segment [–1, 1] is

(5.2) $\lim_{n\rightarrow\infty}\phi_{n}(z)/w^{n}=\lambda(w)$ uniformly for $|w|\geqq R>1$ ,
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where $z$ is in complex plane cut along the segment [–1, 1] and

$z_{2}^{1}=--(w+w^{-1})$ .

If we add a certain condition to such a weight function, for the
corresponding set of ortho.normal polynomials $\phi_{n}(z)$ , the sequence of
functions $\phi_{n}(z)/z^{n}$ or $\phi_{n}(z)/w^{n}$ will converge to $\lambda(z)$ or $\lambda(w)$ like a
geometric series for $z$ exterior to the unit circle $|z|=1$ or $|w|=1$ ; that
is, we shall have the following asymptotic relation

$\lim_{n\rightarrow\infty}|\phi_{n}(z)-\lambda(z)z^{\prime t}|^{1/n}<|z|$ for $|z|>1$ ,

or
$\varlimsup_{n\rightarrow\infty}|\phi_{\hslash}(z)-\lambda(w)w^{n}|^{1_{/}n}<|w|$ for $|w|>1$ ,

corresponding to (5.1) and (5.2), respectively.
Such a property is applied to the study of the divergence problem

of polynomials which interpolate to an analytic function in all the
zeros of $\phi_{n}(z)$ . (Cf. paragraphs 3 and 4.)

THEOREM 4. Let $F(z)$ be a function analytic and non-zero through-
out the interior of the region between the czrcles $I_{R}^{1}$ ; $|z|=R>1$ and
$1_{R^{-1}}^{\gamma}$ ; $|z|=R^{-1}<1$ ; but which has singularities or zeros on $I_{R}^{7}$ or $l_{R^{-1}}^{\gamma}$ ,
and which is real and positive on the unit circle $I^{7}$ ; $|z|=1$ . Let $\phi_{n}(z)$

be the set of ortho.normal polynomials associated with the weight
function

$W(\theta)=F(e^{i\theta})>0$ : $ 0\leqq\theta\leqq 2\pi$

Then we have the asymptotic relations

(5.3) $\varlimsup_{n\rightarrow\infty}|\phi_{n}(z)-\overline{h}(z^{-1})z^{n}|^{1/n}\leqq|z|/R$ for $|z|\geqq 1$ ,

and

(5.4) $\lim_{n\rightarrow\infty}|\phi_{n}(z)|^{1^{\gamma n}}=$
$\left\{\begin{array}{l}|z| for R^{-1}<|z|<1,\\R^{-1} for |z|=<R^{-1},\end{array}\right.$

where $h(z)$ is the function analytic and non-zero throughout the interior
of the circle $I_{R}^{7}$ , and uniquely determined under the conditions

(5.5) $\left\{\begin{array}{l}|h(e^{i0})|^{2}=\{F(e^{i0})\}^{-1}=\{W(\theta)\}^{-l}>0,\\h(0)>0.\end{array}\right.$
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In our proof of this theorem, it is convenient to have several
lemmas.

LEMMA 1. Let $F(z)$ be a function analytic and non-zero through-
out the interior of the region between the circles $\Gamma_{R}$ and $\Gamma_{R^{-1}}$ , and
which is positive on the unit circle $l^{7}$ . Then the function $h(z)$ , analytic
and non-zero throughout the interior of the circle $I_{R}^{\gamma}(R>1)$ is uniquely
determined under the conditions (5.5).

Let $S_{n}(z)$ be the partial sums $S_{n}(z)=\sum_{k=-n}^{n}a_{k}z^{k}$ of Laurent’s series

$-\log\{F(z)\}=\sum_{-\infty}^{\infty}a_{k}z^{k}$, where $\log\{F(z)\}$ is analytic for $R^{-1}<|z|<R$

and real on the unit circle $z=e^{i\theta}$. Let $R_{n}(e^{i\theta})$ be the real parts of
$S_{n}(e^{i\theta})$ , that is,

(5.6) $R_{n}(e^{i\theta})=\alpha_{0}+\sum_{k\Leftrightarrow 1}^{n}(\alpha_{k}\cos k\theta+\beta_{k}\sin k\theta)$ ,

where

$|\alpha_{0}=\frac{1}{2\pi i}\int_{|z|=1}\frac{-\log\{F(t)\}}{t}dt=\frac{-1}{2\pi}\int_{0}^{2n}\log\{F(e^{i\theta})\}d\theta$

,

(5.7)

$(\alpha_{k}=\frac{1}{2}(a_{k}+a_{-k})\beta^{k}=\frac{1}{2i}(a^{k}-a^{-k})$

,

because of the relation $a_{-k}=\overline{a}_{k}$ which can be verified by the reality of
$\log\{F(e^{i\theta})\}$ .

Then we can verify the relation

$\varlimsup_{n\rightarrow\infty}\{|\alpha_{k}|+|\beta_{k}|\}^{1fn}=R^{-1}<1$

from the following property of Laurent’s series of $-\log\{F(z)\}$

$\max\{\varlimsup_{n\rightarrow\infty}|a_{n}|^{1/n}, \varlimsup_{n\rightarrow\infty}|a_{-n}|^{1/n}\}=R^{-1}$ .

Accordingly, for any positive number $r$ less than $R$ , we can define the
harmonic function $R(re^{i\theta})$ by

$R(re^{\iota\theta})=\alpha_{0}+\sum_{k=1}^{\infty}r^{k}(\alpha_{k}\cos k\theta+\beta_{k}\sin k\theta)$ ; $0\leqq r<R$ ,
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which converges for $r<R$ and uniformly for $r\leqq R_{1}<R$ , and satisfies
$R(e^{i\theta})=-\log\{F(e^{i\theta})\}$ , $R(0)=\alpha_{0}$ .

Now $R(z)=R(re^{i\theta})$ is completed to an analytic function

$\varphi(z)=\alpha_{0}+_{k\approx^{\urcorner}}\geq_{1}^{\infty_{\lrcorner}}(\alpha_{k}-i\beta_{k})z^{k}$ ,

and

$h(z)=\exp\{\frac{1}{2}\varphi(z)\}$

has been determined under the conditions
$|h(e^{i\theta})|^{2}=\{F(e^{i\theta})\}^{-1}>0$ ,

$h(0)=\exp\alpha_{0}>0$ .
Thus the lemma is established.

Let $h_{m}(z)$ be partial sums of the power series of $h(z)$ , that is
(5.8) $h_{m}(z)=h(0)+h^{\prime}(0)z+h^{t/}(0)z^{2}/2!+\cdots+h^{(m)}(0)z^{m}/m!$ ;

$ m=0,1,2,\cdots$ ,

which are non-zero on and interior to the unit circle $\Gamma$ for $m$ suffici $\cdot$

ently large. Let $W_{m}(\theta)$ be the weight functions defined by the trigono.
metric polynomials

(5.9) $\{W_{m}(\theta)\}^{-I}=|h_{m}(e^{i0})|^{2}>0$

of respective degrees $m$ sufficiently large. Then it is clear that the
polynomials

(5.10) $\psi_{n}(z;m)=\overline{h}_{m}(z^{-I})z^{n}$ ; $n=m,$ $ m+1,\cdots$

form the ortho.normal set of polynomials associated with the weight
function $W_{m}(\theta)$ . (Cf. paragraph 3.)

Now we shall have the following lemma.
LEMMA 2. Let $h(z)$ be a function analytic and non $\cdot$ zero within

$r_{\wedge,\backslash }the$ circle $\Gamma_{R}(R>1)$ , which has a singularity or zero on $\Gamma_{R}$ . Let
$W(\theta)$ and $W_{n}(\theta)$ be the positive weight functions defined respectively by

$W(\theta)=|h(e^{i\theta})|^{-2}>0$ ,

and
$W_{\iota}(\theta)=|h_{n}(e^{i\theta})|^{-z}>0$ for $n$ sufficiently large,
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where $h_{n}(z)$ are partial sums of the power series of $h(z)$ for $n$ suffici-
ently large. Then we have

(5.11) $\varlimsup_{n\rightarrow\infty}|W(\theta)-W_{n}(\theta)|^{1/n}=\varlimsup_{n\rightarrow\infty}||h(e^{i\theta})|^{-2}-|h_{n}(e^{i\theta})|^{-2}|^{1/n}\leqq R^{-1}$ .
This lemma can be proved easily by the following property of the

power series of $h(z)$

(5.12) $\varlimsup_{n\rightarrow\infty}|h(e^{i\theta})-h_{n}(e^{i\theta})|^{1/n}\leqq R^{-1}$ ,

which can be verified in a manner similar to that in paragraph 1, and
the boundedness of $h(z)$ and $h_{n}(z)$ on $\Gamma$ .

LEMMA 3. Let $\psi_{v}(z;n);\nu^{=}0,1,2,\cdots$ be the set of ortho-normal
polynomials associated with the weight function

$W_{n}(\theta)=|h_{n}(e^{i\theta})|^{-2}$

defined in lemma 2. Let $K_{n}(\zeta, z)$ and $L_{n}(z)$ represent respectively

(5.13) $K_{n}(\zeta, z)=\sum_{v\subset 0}^{h-1}\overline{\psi_{\nu}(\zeta,n)}\psi_{\nu}(z, n)$ for $\zeta$ on $\Gamma$ ,

and

(5.14) $L_{n}(z)=\int_{0}^{2_{l}\iota}|K_{n}(\zeta, z)|$ dt : $\zeta=e^{it}$ .

Then we have

(5.15) $\varlimsup_{n\rightarrow\infty}\{L_{n}(z)\}^{1/n}=$

The kernel polynomials $K_{n}(\zeta, z)$ can be calculated by a method
similar to the proof of the Christoffel-Darboux formula as follows

$K_{n}(\zeta, z)=\frac{\overline{\psi_{n}^{*}(\zeta;n)}\psi_{n}^{*}(z;n)-\psi_{n}(\zeta;n)\psi_{n}(z;n)}{1-\overline{\zeta}z}$

(5.16)

$=\frac{\overline h_{n}(\zeta)h_{n}(z)-\overline{h_{n}^{*}(\zeta)}h_{n}(z)}{1-\overline{\zeta}z}$ ,

where *represents the reciprocal polynomial, that is,
$\rho^{\epsilon}(z)=z^{n}\rho(z^{-I})=\overline{a}_{n}+\overline{a}_{n-1}z+\cdots+\overline{a}_{\partial}z^{n}$ .
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The last identity of (5.16) follows by the relation (5.10).
$h_{n}(z)$ being partial sums of the power series of $h(z)$ , we can prove

that $h_{n}(z)$ and $h_{n}^{*}(z)$ satisfy respectively the asymptotic relations

(5.17) $\varlimsup_{n\rightarrow\infty}|h_{n}(z)|^{1/n}=\left\{\begin{array}{llll} & & & |z|/Rfor |z|-\underline{>_{-}}R>1,\\ & & & 1 for |z|<R,\end{array}\right.$

and

(5.18) $\varlimsup_{n\rightarrow\infty}|h_{n}^{*}(z)|^{1^{\gamma}n}=\left\{\begin{array}{llll} & & & |z| for |z|>R^{-1},\\ & & & R^{-l} for |z|\leqq R^{-1}\end{array}\right.$

These equations can be verified by a method similar to the proof of
theorem 1.

For $z$ which does not lie on the unit circle 1’, the modulus of
denominator $|1-\zeta z|$ of (5.16) being positive, the validity ’of (5.15) can
be verified by (5.17) and (5.18).

For $z$ on $I^{7}$ , we can prove that

(5.19) $\int_{0}^{2r}|\frac{h_{n}^{-}(\zeta)h_{n}(z)-h_{n}^{+}\overline{(\zeta})h_{n}^{*}(z)}{1-\zeta z}|dt=O(\log n)$ ; $\zeta=e^{it}$ .

Indeed, the numerater is a polynomial of degree $n$ in $z$, which vanishes
for $ z=\zeta$ . Therefore, we see that the integrand is $O(n)$ by the theorem
of Bernstein. Thus the contribution of the arc $|\zeta-z|\leqq n^{-1}$ is $O(1)$ ,
while the complementary arc $|\zeta-z|>n^{-I}$ supplies

$O(1)\int_{|\xi-z|>n^{-\iota|1-}}^{dt_{\zeta z|}}=O(\log n)$ .

Accordingly, the relation (5.15) is valid for this case. The lemma 3 is
thus established.

LEMMA 4. Let $\kappa_{n}$ and $\kappa_{\acute{n}}$ be the highest coefficients respectively
of $\phi_{n}(z)$ and $\psi_{n}(z;n)$ which are defined respectively in theorem 4 and
lemma 3. Then we have

(5.20) $\kappa_{\acute{n}}=h_{n}(0)=h(0)>0$

and

(5.21) $\varlimsup_{\rightarrow\infty}|\kappa_{n}-\kappa_{n^{\prime}}|^{1/n}=\varlimsup_{n\rightarrow\infty}|\kappa_{n}-h(0)|^{1^{\gamma}n}\leqq R^{-1}$ .
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The identity (5.20) can be verified by (5.10) and (5.8).
Let $\rho(z)=z^{n}+\cdots$ be an arbitrary polynomial of degree $n$ with the

highest term $z^{n}$ . We know that the minimum value of

$\frac{1}{2\pi}\int_{0}^{2n}W(\theta)|\rho(z)|^{2}d\theta$ : $z=e^{i\theta}$

is $\kappa_{n}^{-2}$, attained for $\rho(z)=\kappa_{n}^{-1}\phi_{n}(z)$ .
If $\rho(z)$ is any one of such polynomials, $z\rho(z)$ is a polynomial with

the highest term $z^{n+1}$ , and $|z\rho(z)|=|\rho(z)|$ for $z=e^{\oint\theta}$. Thus we can verify
that

$\kappa_{n}^{-2}\leqq\kappa_{n+1}^{-2}$ or $\kappa_{n}\leqq\kappa_{n+1}$

Consequently, $\lim_{n\$-\infty}=\geqq 0$ exists. Szego has proved

$\lim_{n\rightarrow\infty}\kappa_{n}^{-2}=\{h(0)\}^{-2}>0$

or
$\lim_{n\rightarrow\infty}\kappa_{n}=h(0)>0$

under the weaker condition of $W(\theta)$ . (Cf. Orthogonal polynomials, page
293.)

Moreover, we have

$\{h(0)\}^{-2}\leqq\kappa_{n^{-2}}\leqq\frac{1}{2\pi}\int_{0}^{2_{i}\iota}W(\theta)|\{h(0)\}^{-1}h_{n}^{\star}(z)|^{2}d\theta$

$=\{h(0)\}^{-2}\frac{1}{2\pi}\int_{0}^{2ae}|h_{n}(z)\{h(z)\}^{-1}|^{2}d\theta$

or
$h(0)\geqq\kappa_{n}\geqq h(0)[\frac{1}{2\pi}\int_{0}^{2\kappa}|h_{n}(z)\{h(z)\}^{-1}|^{2}d\theta]^{-1/2}$ : $z=e^{i\theta}$ .

Now the relation (5.21) follows by

$\varlimsup_{n\rightarrow\infty}[\frac{1}{2\pi}\int_{0}^{2ae}|h_{n}(z)\{h(z)\}^{-1}|^{2}d\theta-1]^{1/fl}\leqq R^{-1}$ : $z=e^{i\theta}$ ,

which can be verified by (5.12). Thus lamma 4 is established.
We are now to prove the theorem. We shall express the poly-

nomial $\phi_{n}(z)$, associated with $W(\theta)$ , in terms of polynomials $\psi_{\nu}(z;n)$
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corresponding to $W_{n}(\theta)$ :

$\phi_{n}(z)=\sum^{n}\alpha_{v}\psi_{v}(z;n)+\frac{1}{2\pi}\int_{0}^{2\iota}W_{n}(\theta)\phi_{n}(\zeta)K_{n}(\zeta, z)d\theta$

$=\kappa_{n}\{h(0)\}^{-1}\overline{h}_{n}(z^{-1})z^{n}+\frac{1}{2\pi}\int_{0}^{2\sim}\{W_{n}(\theta)-W(\theta)\}\phi_{n}(\zeta)K_{n}(\zeta, z)d\theta$

$+\frac{1}{2\pi}\int_{0}^{2\kappa}W(\theta)\phi_{n}(\zeta)K_{n}(\zeta, z)d\theta$ : $\zeta=e^{it}$ .

The last term vanishes because of the orthogonality of $\phi_{n}(z)$ with
$\psi_{\nu}(\zeta;n)(\nu<n)$ . Thus we have

(5.22) $\phi_{n}(z)=\kappa_{n}\{h(0)\}^{-1}h_{n}^{*}(z)+\frac{1}{2\pi}\int_{0}^{2\kappa}\{W_{n}(\theta)-W(\theta)\}\phi_{n}(\zeta)K_{n}(\zeta, z)d\theta$ ;

$\zeta=e^{i\ell}$ .
Next we shall try to estimate $M_{n}=\max_{|z^{1=}1}|\phi_{n}(z)|$ . Using the lemmas

2, 4 and the relation (5.19), we find from (5.22) for $r(R>r>1)$ ,
$M_{n}\leqq O(1)+M_{n}O(r^{-n}\log n)$ so that $M_{n}=O(1)$ .

Now the relation (5.3) follows from

$\phi_{n}(z)-\overline{h}(z^{-1})z^{n}=[\kappa_{n}\{h(0)\}^{-1}-1]\overline{h}_{n}(z^{-1})z^{n}+\{\overline{h}_{n}(z^{-1})-\overline{h}(z^{-1})\}z^{n}$

$+\frac{1}{2\pi}\int_{0}^{2c}\{W_{n}(\theta)-W(\theta)\}\phi_{n}(\zeta)K_{n}(\zeta, z)d\theta$

by the use of (5.11), (5.12), (5.18) and (5.21). The relation (5.4) also
follows from (5.22). Thus the theorem can be established by lemma 1.

The following theorem can be verified easily by theorems 2 and 3.
THEOREM 5. Let $f(z)$ be a function analytic throughout the interior

of the circle $\Gamma_{\rho}$ ; $|z|=\rho>1$ , but not analytic on $I_{\rho}^{7}$ . Let $F(z)$ be
a function analytic and positive on the unit circle $I^{\gamma}$ , and $\phi_{n}(z)$ :
$n=0,1,2,$ $\cdots$ be the set of ortho-normal polynomials associated with the
positive weight function $W(\theta)=F(e^{i\theta})$ on $\Gamma$ . Then the sequence of
polynomials $P_{n}(z;f)$ which interpolate to $f(z)$ in all the zeros of $\phi_{n}(z)$

converges to $f(z)$ throughout the region $|z|<\rho$ and uniformly on any
closed set interior to that region. The sequence $P_{n}(z;f)$ diverges at
every point exterior to $I_{\rho}^{\gamma}$.
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Moreover, we have

(5.23) $\varlimsup_{n\rightarrow\infty}|f(z)-P_{n}(z;f)|^{1/n}\leqq R/\rho$

for $z$ on $\Gamma_{R}(1<R<\rho)$ ,

(5.24) $\varlimsup_{n\rightarrow\infty}|f(z)-P_{n}(z;f)|^{1/n}\leqq 1/\rho$ for $|z|\leqq 1$ ,

and

(5.25) $\lim_{n\rightarrow\infty}|P_{n}(z;f)|^{1/n}=|z|/\rho$

for $z$ exterior to $\Gamma_{\rho}$ .
6. In this paragraph, we consider the set of ortho-normal poly-

nomials on the real segment [–1, 1] which have an asymptotic relation
corresponding to that of paragraph 5.

Let $\phi_{n}(w)$ be the set of ortho-normal polynomials associated with
a weight function $W(\theta)=F(e^{i\theta})$ , on the unit circle $w=e^{i\theta}$ , which satisfies
the condition of theorem 4. Let $P_{n}(z)$ be the set of ortho-normal
polynomials associated with the weight function

(6.1) $P(x)=W(\theta)|\sin\theta|^{-I}=F(e^{i\theta})_{1}/\overline{1-x^{2}}$; $-1<x<1$ ,

where

$z=\frac{1}{2}(w+w^{-1})$ , $ x=\frac{1}{2}(e^{i\theta}+e^{-i\theta})=\cos\theta$ .

Then the following relation is known

(6.2) $P_{n}(z)=(2\pi)^{-I/2}\{1+\frac{\phi_{2n}(0)}{\kappa_{2n}}\}^{-1/2}\{w^{-n}\phi_{2n}(w)+w^{n}\phi_{2n}(w^{-1})\}$ ,

where $\kappa_{n}$ represents the highest coefficient of $\phi_{n}(w)$ respectively for
each $n$ . (Cf. Orthogonal Polynomials, page 287.)

Conversely, we considered a function $G(z)$ which is analytic and
non-zero throughout the interior of the ellipse $C_{R}(R>1)$ with foci at
$\pm 1$ and with semi.axes $\frac{1}{2}(R+R^{-1}),$ $\frac{1}{2}(R-R^{-1})$ , but not analytic

nor non-zero on $C_{R}$ , and positive on the real segment [–1, 11. Such a
function can be expanded by Tchebycheff polynomials as follows:
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(6.3) $G(z)=\sum_{k-0}^{\infty}a_{k}(w^{k}+w^{-k})\equiv F\lambda w)$ ,

and the coefficients $a_{k}$ satisfy

$\varlimsup_{n\rightarrow\infty}|a_{n}|^{1/n}=R^{-1}$ .
It is clear that the function $F(w)$ defined by (6.3) is analytic and

non.zero throughout the interior of the region between the circles
$|w|=R$ and $|w|=R^{-1}$ but not analytic nor non.zero on $\Gamma_{R}$ or $I_{R^{-1}}^{\gamma}$ .

Now the following theorem is ready to be proved.
THEOREM 6. Let $G(z)$ be the function which is analytic and non-

zero within the ellipse $C_{R}(R>1)$ with foci at $\pm 1$ and with semi-axes
$\frac{1}{2}(R+R^{-1}),$ $\frac{1}{2}(R-R^{-1})$ , but not analytic nor non-zero on $C_{R}$ , and

positive on the real segment [-1, 1]. Let $P_{n}(z)$ be the set of ortho-
normal polynomials associated with positive weight function

$P(x)=G(x)/\sqrt{1-x^{2}}>0$ ; $-1<x<1$ .

Then we have the asymptotic relation

(6.4) $\varlimsup_{n\rightarrow\infty}|P_{n}(z)-(2\pi)^{-1/2}h(w^{-1})w^{n}|^{1/n}\leqq|w|^{-1}$ for $1\leqq|w|<R$ ,

;IIES $|w|/R^{2}$ for $|w|\leqq R$ ,

where $h(w)$ is the function analytic and non-zero throughout the
interior of the circle $l_{R}^{7}$ ; $|w|=R$, and uniquely determined under the
conditions

(6.5)

where the relation between $F(w)$ and $G(z)$ is given by (6.3).
Such a function $h(w)$ can be determined from $F(w)$ by a method

similar to the case of $h(z)$ in theorem 4.
Next we can verify the identity

(6.6) $\varlimsup_{n\rightarrow\infty}|\{1+\frac{\phi_{2n}(0)}{\kappa_{2n}}\}^{-1/2}-1|^{1/n}=R^{-2}$
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by the relation (5.4) in theorem 4 and (5.20) in lemma 4. The relations

(6.7) $\varlimsup_{n\rightarrow\infty}|w^{-n}\phi_{2n}(w)-w^{n}h(w^{-1})|^{1/n}\leqq|w|/R^{2}$ for $|w|>1$ ,

and

(6.8) $\varlimsup_{n\rightarrow\infty}|\phi_{2n}(w^{-1})|^{1/n}=$
$\left\{\begin{array}{lllll} & & & & |w|^{-1} for R>|w|>1,\\ & & & & |w|/R^{2} for |w|\geqq R\end{array}\right.$

can be verified by the result of theorem 4.
Consequently, the asymptotic relation (6.4) of $P_{n}(z)$ can be obtained

from (6.2), (6.6), (6.7) and (6.8). Thus the theorem has been established.
Now the following theorem which corresponds to theorem 5 can

be proved by theorem 6 and one of the examples of theorem 3.
THEOREM 7. Let $G(z)$ be a function analytic and positive on the

real segment [–1, 1], and $P_{n}(z)$ be the set of ortho.normal polynomials
associated with the positive weight function

$P(x)=G(x)/\sqrt{1-x^{2}}$ ; $-1<x<1$ .
Let $f(z)$ be a function analytic throughout the interior of the ellipse

$C_{\rho}(\rho>1)$ with foct at $\pm 1$ and with semi-axes $\frac{1}{2}(\rho+\rho^{-1})$ and

$\frac{1^{\backslash }}{2}(\rho-\rho^{-1})$ , but not analytic on $C_{\rho}$ .
Then the sequence of polynomials $P_{n}(z;f)$ which interpolate to $f(z)$

respectively in all the zeros of $P_{n+1}(z)$ converges to $f(z)$ throughout the
interior of $C_{\rho}$ , umformly on any closed set interior to $C_{\rho}$ , but diverges
at every point exterior to $C_{\rho}$ .

Moreover, we have

(6.9) $\varlimsup_{n\rightarrow\infty}|f(z)-P_{n}(z;f)|^{1/n}\leqq R/\rho$

for $z$ on $C_{R}(1<R<\rho)$ ,

(6.10) $\varlimsup_{n\rightarrow\infty}|f(z)-P_{n}(z;f)|^{1/n}\leqq 1/\rho$

for $z$ on the real segment [-1, 11, and

(6.11) $\varlimsup_{n\rightarrow\sim}|P_{n}(z;f)|^{1/n}=R^{\prime}/\rho$
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for $z$ on $C_{R^{\prime}}(R^{\prime}>\rho)$ .
By this theorem we can understand that the exact region of

convergence of the sequence $P_{n}(z;f)$ which interpolates to $f(z)$ in all
the zeros of $P_{n\vdash 1}(z)$ defined in the theorem is equivalent to that of the
Fourier expansion of $f(z)$ by $P_{n}(z)$ . But if the set of orthogonal poly-
nomials $P_{n}(z)$ is given by the association with a weight function which
satisfies a certain condition (cf. the equation (5.1) or (5.2)) weaker
than that of theorem 5 or 7, the exact region of uniform convergence
of interpolation polynomials is known, but the divergence at all points
exterior to that region can not be determined.

This problem is quite similar to the sequence of interpolation
polynomials in all the zeros of polynomials $\varphi_{n}(z)$ which satisfy only
the condition

$\lim_{n\rightarrow\infty}\varphi_{n}(z)/z^{n}=\lambda(z)$ for $|z|>1$ ,

or
$\lim_{n\rightarrow\infty}\varphi_{\hslash}(z)/\Delta^{n}w^{n}=\lambda(w)$ for $|w|>1$ .

But if the singularities of a function on $I_{\rho}^{\gamma}$ or $C_{\rho}$ are not compli-
cated, as when the singularities are all poles, the divergence of in-
terpolation polynomials at all points exterior to $1_{\rho}^{\gamma}$ or $C_{\rho}$ can be
verified. Accordingly, the research of singularities on $I_{\rho}^{7}$ or $C_{\rho}$ may
probably bring a finer result.

7. In this paragraph, we consider the divergence of polynomials
found by interpolation to $f(z)$ , which is analytic throughout the interior
of the circle $l_{\rho}^{7}$ ; $|z|=\rho>1$ and on $\Gamma_{\rho}$ has only a finite number of poles,
in all the zeros of polynomials $\varphi_{n+1}(z)$ which satisfy a condition more
general than that in previous paragraphs.

THEOREM 8. Let $\varphi_{n}(z)$ be the sequence of polynomials of respective
degrees $n$ with highest terms $z^{n}$ , which satisty the condition

(7.1) $\lim_{n\rightarrow\infty}\varphi_{n}(z)/z^{n}=\lambda(z)$

for $z$ exterior to the unit circle $\Gamma;|z|=1$ and uniformly for $|z|\geqq R>1$ ,
where $\lambda(z)$ is a function analytic and non-zero exterior to $I^{7}$ . Let $f(z)$

be a function analytic throughout the interior of the circle $\Gamma_{\rho}$ ; $|z|=\rho>1$

but on $I_{\rho}^{7}$ having a finite number of poles.
Then the sequence of polynomials $P_{n}(z;f)$ of respective degrees $n$
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found by interpolation to $f(z)$ in all the zeros of $\varphi_{n+1}(z)$ diverges at
every point exterior to $I_{\rho}^{7}$ . Moreover, we have

(7.2) $\varlimsup_{n\rightarrow\infty}|\rho^{n}P_{n}(z;f)/n^{p-1}z^{n}|>0$ ; for $|z|>\rho$ ,

where $p$ is the maximum order of poles of $f(z)$ on $I_{\rho}^{7}$ .
In the proof of this theorem, we shall prove the following lemma.
LEMMA. Let $A_{n}^{(k)}$ : $k=1,2,$ $\cdots,$ $ m;n=1,2,\cdots$ be a given set of com-

plex numbers which satisfy

(7.3) $\lim_{n\rightarrow\infty}A_{n}^{(h)}=A^{(k)}$ ; $k=1,2,$ $\cdots,$ $m$ ,

where $A^{(k)}$ are complex numbers not all equal to’ zeros. Let $\theta_{k}$ ; $k=1$ ,
2, $\cdots,$ $m$ be mutually distinct angles between $0$ and $2\pi(0\leqq\theta_{k}<2\pi)$ .
Then we have

(7.4) $\varlimsup_{n\rightarrow\infty}|\sum_{k=1}^{m}A_{n}^{(k)}e^{-in\theta_{k}}|>0$ .

If we assume the equation

$\lim_{n\rightarrow\infty}\{\sum_{k=1}^{m}A_{n^{k)}}^{(}e^{-in\theta_{h}}\}=0$ ,

we have, for $A^{(I)}$ which can be assumed to be not zero,

(7.5) $\lim_{n\rightarrow\infty}\{A^{(1)}+\sum_{k\rightarrow 2}^{m}A^{(k)}e^{-in(\theta_{k}-\theta_{1})}\}=0$

by the relation (7.3). While the arithmetic means

$\frac{1}{n}\sum_{\nu=0}^{n-1}\{A^{(1)}+\sum_{k=2}^{m}A^{(k)}e^{-iv(\theta}k^{-\theta_{1})}\}=A^{(1)}+\frac{1}{n}\sum_{k=2}^{m}\frac{1-e^{-in(\theta_{k}-\theta_{1})}}{1-e^{-i(\theta_{k}-\theta_{1})}}$

converge clearly to $A_{1}\neq 0$ for the reason that all denominators of the
last terms are non-vanishing. This contradicts (8.5). Thus the lemma
has been proved.

Let $R$ be an arbitrary positive number less than $\rho$ but greater than
unity. The sequence of polynomials $P_{n}(z;f)$ which interpolate to $f(z)$

in all the zeros of $\varphi_{n+1}(z)$ (we can assume that $\varphi_{n}(z)$ are non.vanishing
exterior to $I^{7}$ for $n$ sufficiently large) can be represented by
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(7.6) $P_{n}(z;f)=2_{\pi^{-}}^{1}i\int_{\tau_{R\varphi\}}(t)}^{\underline{\varphi_{n+1(t)_{n1}(z)_{-}}}}-\varphi_{tl+1}f(t)t-zdt$ .

Let $S_{n}(z;f)$ be the sequence of functions defined by

(7.7) $S_{n}(z;f)=2\pi\overline{i}1\int_{T_{R}\lambda(t)t^{\lambda(z\underline{)z^{n+1}}}}^{\lambda(\underline{t)t}^{n+1}-}----\frac{f(t)}{t-}n+1z^{- dt}$

for $|z|>1$ . Then we have

(7.8) $S_{n}(z;f)-P_{n}(z;f)=2_{\pi}^{1}i\int_{I_{R}}\{\frac{\varphi_{\hslash+1}(z)}{\varphi_{n+1}(t)}-\lambda(z)z_{n+1}^{n+1}\lambda(t)t\}\frac{f(t}{t-}z^{-dt})$

for $z$ exterior to the unit circle $I^{7}$.
Let $f(z)$ be the function which has on $I_{\rho}^{7}m$ poles of respective

orders $p_{k}$ at $z_{k}=\rho e^{i0_{k}}$ ; $k=1,2,$ $\cdots,$ $m$ . For any $z$ exterior to $I_{\rho}^{\gamma}$ , we
can choose a positive number $R$ greater than $\rho$ but less than $|z|$ , such
that the function $f(z)$ is analytic on and within $1_{R^{\prime}}^{\gamma}$ except on $\Gamma_{\rho}$ , by
the condition of the theorem. For such a point $z$ exterior to $I_{\rho}^{v}$ , let
$F_{k}(t, z)$ be the function defined by

(7.9) $F_{h}(l, z)=\frac{f(t)(t-z_{k})^{p_{k}}}{t-z}$ ; $k=1,2,$ $\cdots,$ $m$ ,

which is analytic at $t=z^{k}$.
Then the equation (7.8) yields

(7.10) $S_{n}(z;f)-P_{n}(z;f)=2^{\frac{1}{\pi i}}\int_{\Gamma_{R}},\{\frac{\varphi_{\hslash+1}(z)}{\varphi_{n+1}(t)}-\frac{\lambda(z)z^{n+1}}{\lambda(t)t^{n+1}}\}tf_{\frac{(t)}{-z}dt}$

$-\sum_{k=1}^{m}[\frac{d^{p_{k^{-1}}}}{dt^{p_{k^{-1}}}}\{(\frac{\varphi_{n+1}(z)}{\varphi_{n+1}(t)}-\frac{\lambda(z)z^{n+1}}{\lambda(t)t^{n+1}})F_{k}(t, z)\}J_{-z_{k}}$

for $|z|\geqq R^{\prime}>\rho;|z_{k}|=\rho$ . Furthermore, for $z$ exterior to $\Gamma_{\rho}$ , we have

(7.11) $\lim_{n\rightarrow\infty}[\frac{d^{p_{k^{-1}}}}{dt^{p_{k^{-1}}}}\{(\frac{\varphi_{n+1}(z)}{\varphi_{n\backslash - 1}(t)}-\frac{\lambda(z)z^{n+1}}{\lambda(t)t^{n+1}})F_{k}(t, z)\}]_{\ell=z_{k}}n^{p_{k^{-1}}}\rho^{n}|z|^{-n}=0$

by the relation

$[\frac{d^{p_{k^{-1}}}}{dt^{p_{k^{-1}}}}\{(\frac{\varphi_{n+1}(z)}{\varphi_{n+1}(t)}-\frac{\lambda(z)z^{n+1}}{\lambda(t)t^{n+1}})F_{k}(t, z)\}]_{l-z}k$
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$=(-1)^{p_{k^{-1}}}(n+1)(n+2)\cdots(n+p_{k}-1)$

$[\frac{z^{n+1}}{t^{n+p_{k}-1}}\{(\frac{t^{n+1}\varphi_{n+1}(z)}{z^{n+1}\varphi_{n+1}(t)}-\frac{\lambda(Z)}{\lambda(t)})F_{k}(t, z)\}]_{l=z_{k}}+O(n^{p_{k^{-2|\frac{z}{\rho}|^{n})}}}$

for $t$ on $I_{\rho}^{7}$ , and by the condition (7.1). Accordingly, for any positive
numbers $e_{1}$ and $e_{2}$ , we have for $n$ sufficiently large, from (7.10) and
(7.11)

$|S_{n}(z;f)-P_{n}(z;f)|<e_{1}\frac{|z|^{n+1}}{R^{n+1}}+e_{2}n^{p-1}\frac{|z|^{n+1}}{\rho^{n+1}}$

for $|z|\geqq R^{\prime}>\rho$ , where $p$ is the maximum of $p_{k}$ . Thus we hav.$e$

(7.12) $\lim_{n\rightarrow\infty}\frac{\rho^{n}}{n^{p-1}z^{n}}\{S_{n}(z;f)-P_{n}(z;f)\}=0$ for $|z|>R^{\prime}>\rho$ ,

while

(7.13) $S_{n}(z;f)=\frac{1}{2\pi i}\int_{\tau_{R^{\prime}}^{-}t-Z}^{f(t)}-dt-\sum_{k-1}^{m}\frac{1}{(p_{k}-1)!}[\frac{d^{p_{k^{-1}}}}{dt^{p_{k^{-1}}}}F_{k}(t, z)]_{t-z_{k}}$

$-\frac{1}{2\pi i}\int_{\tau_{R}}\frac{\lambda(z)z^{n+1}}{\prime\lambda(t)t^{n+1}}\frac{f(t)}{t-z}dt+\lambda(z)z^{n+1}\sum_{k-1}^{m}n^{p_{k^{-1}}}\rho^{-n}B_{n}^{(k)}e^{-in\theta_{k}}$ ,

where

$B_{n}^{(k)}=\frac{1}{(p_{k}-1)!}[\frac{d^{p_{k^{\infty 1}}}}{dl^{p_{k^{-1}}}}\left\{\begin{array}{l}F_{k}(\underline{t,}z)-\\\lambda(t)l^{n+1}\end{array}\right\}]_{t=z_{k}}/n^{p_{k^{-1}Z_{k}^{n}}}$

$=\frac{(-1)^{p_{k^{-1}}}}{(p_{k}-1)!}\frac{(n+1)(n+2)\cdots(n+p_{k}-1)}{n^{p_{k^{-1}}}}\frac{F(z_{k},z)\rho^{p_{k}}}{\lambda(z_{k})z_{k}^{p_{k}}}+O(\frac{1}{n})$

which converge respectively to

$B^{(k)}=(-1)^{p_{k^{-1}}}(p_{k}-1)!\frac{F(z_{k},z)}{\lambda(Z_{k})}e^{-ip_{k^{\theta}k}}\neq 0$

as $n$ tends to infinity.
Let $p$ be the maximum value of $p_{k}$ . Now the relation (7.13) yields

by the lemma

(7.14) $\varlimsup_{n\rightarrow\infty}|-\frac{\rho^{n}S}{n}\frac{(z}{-1}z^{;\underline{f)}}|>0$ for $|z|>R^{\prime}>\rho$ .

Thus we can verify by (7.12) and (7.14) the following relation:
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(7.15) $\varlimsup_{n\rightarrow\infty}\left|\begin{array}{l}\rho^{n}P_{n}(z.\cdot f)\\n^{p- 1}z^{n}\end{array}\right|>0$

for $z$ exterior to $J_{\rho}^{7}$ . Hence the sequence $P_{n}(z;f)$ can not converge for
$z$ exterior to $1_{\rho}^{v}$ . Thus the theorem has been established.

The generalization of this theorem to a more generalized point
set can be verified by the method of paragraph 3.

THEOREM 9. Let $D$ be a closed limited point set with the capacrty
$\Delta$ whose complement $K$ with respect to the extended plane is connected
and regular. Let $w=\phi(z)$ map $K$ onto the region $|w|>1$ so that the
points $al$ infinity correspond to each othe’. Let $\varphi_{\iota}(z)$ be the polynomials
of respective degrees $n$ such that the sequence of functions $\varphi_{n}(z)/\Delta^{n}w^{n}$

converges to a function $\lambda(w)$ analytic and non-zero on $K$ and uniformly
on any closed set inte’ $ior$ to $K$ as $n$ tends to infinity. Let $f(z)$ be a
funclion analytic throughout the interior of the level curve $C_{\rho}$ : $|\phi(z)|$

$=\rho>1$ and having a finite number of poles on $C_{\rho}$ as the function of $w$ .
Then the sequence of polynomials $P_{\iota}(z;f)$ of respective degrees $n$

found by interpolation to $f(z)$ in all the zeros of $\varphi_{\hslash+1}(z)$ diverges at
every point exterior to $C_{\rho}$ . Moreover, we have
(7.16) $\lim_{n\rightarrow\infty}|\rho^{n}P_{n}(z;f)/n^{p-1}[\phi(z)]^{n}|>0$

for $|w|=|\phi(z)|>\rho$, where $p$ is the maximum ordcr of poles of $f(z)$

on $C_{\rho}$ .
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