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1. Introduction.

Consider a population of size 2N consisting of N females and N
males. We observe a single inherited character which consists of m
multiple alleles at one diploid locus denoted by

A;‘ (i=1, ,m)

and of which the inheritance is subject to Mendelian law.

There are m(m+ 1)/2 possible genotypes A A (a,b=1, -, m;a=<0b)
among which m types A;4, (b=1, ---, m) are homozygous and m(m—1)/2
types A,As(a,b=1, ---, m; a<b) are heterozygous. Let the distributions
of these m(m+1)/2 genotypes A,A;(a<b) in females and in males be
designated by

F,, and M, (@, b=1, ---,m;a<0b)

or, as the aggregates, by
& =(Fu, - Fum, Fr, -, Fm—l,m)
and
M=(My, -, My, My, -, Mm—],m)
respectively, so that
S Fap= > May=N.

The order of genes in a genotype being immaterial, both genotypes
A,A, and A;A, are regarded as identical each other even when the
suffices @ and & are distinct. Accordingly, we put F,,=F;, and M,
=My,.

We now introduce a set of stochastic variables

(5:—_—‘(011, Ty Cmm, CIZ: Tty Cm—l,m)
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extending over non-negative integers and satisfying a single equation

> Cab =N.
asb

We designate by
r(Q)=w(C|F; M)

the probability that a distribution in the next generation after a pan-
mixia is given by €, each mating being supposed to produce one child
so that, as stated above, }:.‘bCasz.

as

In order to preserve the size of the whole population in the next
generation, it would be rather preferable to suppose that each mating
produces two children, one female and one male. In the present purpose,
however, one may think to confine oneself to a distribution in either
sex in the next generation, by supposing that the fertility of every
mating is equal.

The main purpose of the present paper is to establish an explicit
expression for a probability-generating function @ defined by

OB =0GI%; M= T w(C|F: M1 12,
3 designating a set of indeterminate variables:

3=(2115 ***5 Zinm>s 2125 ***» Bm-1,m);

the summation extends over the whole range of G.

By the way, it is noted that a variable involved in €, for instance
Cu-1.m» Similarly a variable involved in § and in 9%, and consequently
a variable involved in 3, for instance 2z, ,,, may be omitted, since we
have supposed that total numbers of individuals are fixed in children,
in females, and in males. The omission of z,-;,, corresponds, of
course, to put z,,-;,=1. The range of summation in the last expression
is then replaced by the sets of m(m+1)/2—1 non-negative integers C,s
(a,b=1, ---,m;a=<b; (a, b)=F(m—1, m)) satisfying

E Cab— Cm—l.mgN-
asb

However, We shall retain, for the sake of formal symmetry, the de-
pendent quantities concerning a genotype A,.-14, in our expressions,
since they will give rise to few complications.
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We now state a further supplementary remark. Though our
original problem concerns m different genes, it is reducible to a problem
with a lower m, according to circumstances, for instance, when there
concern routine statistics such as means, variances, covariances, etc.
on the stochastic variables under consideration. In fact, if we consider
a homozygous type A;A;, the distinction among the genes except A;
becomes a matter of indifference. Consequently, if we put

E_S_F‘l.b :Fiw! Z_Fab =cho)
b¥i a,alg\:bt

S M;,=M,,, SM=M,,,
b¥i a.‘fsﬂr‘bi

Z Cib =Ciun Z Cab =Cwm)
b¥i a'abg:li

then the mean and variance of the random variable C;; in the distribu-
tions in the next generation coincide really with those which result
from considering only two genes, i.e. the gene A; itself and an imagi-
nary gene A, introduced in a manner stated just above. On the other
hand, if we consider a heterozygous type A;A;, the distinction among
the genes except A; and A; becomes a matter of indifference. Con-
sequently, if we put

E Fib—_—Fian Z‘Fjb:Fjw, ZFab:me’ etc.,
b1, § b¥i, j a.g§31

the mean and variance of the random variable C;; coincide just with
those which result from considering only three genes, i.e. the genes
A; and A; themselves and an imaginary gene A,. Quite similarly,
in order to determine the covariance between any two genotypes, it
suffices to study a problem in which there concern at most four genes.

In spite of such being the case, and moreover though the arguments
for any m can be performed, in principle, quite similarly to those for
such lower m, for instance m=2, 3 or 4, we shall treat in the follow-
ing lines the original problem itself for the sake of completeness.

In a series of previous papers’, we have dealt with analogous

1) Y. Komatu, Probability-theoretic investigations on inheritance. I-XVI. Proc. Japan
Acad. 27-29 (1951-1953); Y. Komatu and H. Nishimiya, Probabilistic investigations on in-
heritance in consanguineous families. Bull. Tokyo Inst. Tech. (1954), 1-222 etc., of which
preliminary announcements are found in Y. Komatu and H. Nishimiya, Probabilities on
inheritance in consanguineous families. Proc. Japan Acad. 30 (1954), 42 52, 148-155,
236-247 etc.
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problems far extensively but with few preciseness. We have considered
there a population of infinite size and studied merely the means of
several distributions. The results of the present paper will give gen-
eralizations of some of the previous results.

2. Probability-generating function.

We now observe m distinct genes A; (=1, ---,m). We first con-
sider a partition of /N males into m(m+1)/2 classes according to the
same number of genotypes A,A4;(a,b=1,---,m; a<b) of females to be
married. Namely, let each of M, (a, b=1, ---, m; a<<b) individuals in
male-population be divided into m(m+1)/2 classes, here empty classes
being admissible, in such a manner

Mas= 2 Xavea, (a, b,c,d=1, m)
ch = beabcd déb; ng )
as.

Let the matings take place such that, for every pair of ¢ and d with
¢, d=1,--,m;c<d, Xspcq (@, b=1, ---, m; a<b) males of genotypes A,A4;
are combined, as a whole, with F.; females of genotype A.,A4,.

All the possible permutations of N males consisting of M, (a, b
=1, ---,m; @a<.b) individuals of genotypes A,A,, respectively, then
amount to

N! /EbMab !

while the permutations of F.; males to be married with females of
genotype A A;, these males consisting of x,5.,(a,b=1, -, m; a<b)
individuals of genotypes A,A4;, respectively, amount to

ch!/[—[xabcd!'
asb

On the other hand, it is supposed that any mating A,4;%xA.A,
produces each of four possible genotypes A,A4., A.A4, AsA, and A A,
equally likely, that is, with probability 1/4. When some of genes are
coincident and hence two or four of the genotypes to be produced are
identical, the probability is then, of course, interpreted as the cor-
responding sum, namely, as 1/2 or 1, respectively. To state more
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precisely, if we denote by 7,7, # and % the suffices indicating the genes
different each other, then the matings

A;A; x A;A;, A;A; x A; A, A;AixArAr, A;A;x ALAg,
A;A;xAjA;, A;A;jx AjAr, A;Aj;x A A

produce a child of type A;A;; A;A;; A;Ay; A;Ay; AjAr; A;AL AjAs
with probabilities

1, 1/2, 0, 0, 1/4, 1/4, 0;
0, 0, 0, 0, 1/4, 0, 0;
0, 0, 0, 0, 1/2, 1/4, 0;
0, 0, 0, 1/2, 0, 0, 1/4;
0, 1/2, 1, 1/2, 0, 1/4, 1/4;
0, 0, 0, 0, 0, 0, 1/4;
0, 0, 0, 0, 0, 1/4, 1/4,
respectively. ‘

Consequently, the generating function is given by

06)= V(O [[25fe= ezt " Sy Feal
6 =g 04

N! T csd || Xapea
asd
(ac) (be)
. 2 '[‘[ zxaacc, l’I xabcc! B zacm xa‘ggc _z_bg_ xabi:c
. ac " (ac) | 4(bc) 2 2
ac a<bic Xgpec: Xabec:

(ac) (ad)
_ Xagea! (za(tﬁ,)xaa%d < Zad >"a’fud

@e<d Xyl Xageq \ 2 2
(aa) (ab) bb)
-T1 xab‘ab! . < qu_ﬁ) * ahab ( 2 p__) % abab ( 2bb )x(abab
a<b xGD VxS xdis! \ 4 2 4
R __,Avfixabcd, !,77 o
(ac) (ad) (be) (bad)
a<b;c<d xa%ccd! xabcd! xabcd! xabcd!

(a,b)*(c,d)
(bc) x(bd)

(ar) (ad
% (ﬁgg_)xa?cd ( 2ad >xa‘;chi (ﬁ&) xabcd < 2bd ) abcd’
4 4 4 4
where we make an agreement

_ e )
2fg=2Ref, XHE)= X503
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In the last expression, we further put

fzxabcd—xabcd (a,b,¢,d=1, -, m;a<b; c<d),

in which the summation runs over possible types ArA. of a child
originated from a mating A,A4,xA,A;. In case where a mating
A Ay x A A, can produce only one type of children, namely, when 4,4,
and A.A; both are homozygous, i.e. a=5 and c=d, the quantity x5}
is interpreted to be equal t0 x,5.4, i. €. %% =X440... Among the quanti-
ties here concerned there exist further several relations expressing thelr
dependency. They may be set out as follows:

(fg) Cfg (f,gzl,,M;fgg),

asb; c=d abcd
%xabcd:‘Mabs %xabcszcd (d, b, c, d=1a ey MM a:gb; Céd).
c< a

Taking these relations of dependence into accout, the last summa-
tion in the above expression for @(3) extends over all the possible sets
of non-negative integers {x3%)}, the second summation over all the
possible partitions represented by the sets 1={%,54}, and the first
summation over all the sets of non-negative integers € ={Cr.} with
total sum V.

We first perform, by making use of multinomial identities, the
summation with respect to suffices fg involved in {5} and {Cr.},
whence follows a relation

: LInf,, F.,!
— _asb__%0° A L
2=y FL- L Hatea!

asb

. f[ P | _z_Mﬂbc_)x"b“ CT1 < Zgct z@r_>xaacd
albic 2 a;c<d 2

- T (Zee +22@bﬁbbﬁ)"“"“ - (iacff Zaat2pct 2pa )"“”“"
a<é 4 <bic<d 4 ’

a<lo;
(a,b)x(c.d)

which may be written in a more brief form

¢(5)_ _g!_f_!bﬂ___ Z‘ r[ ' _ ) ( zac+zad13bc+zbd )xabcd.

N! c=d f[ xabcd' asb; c<d
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We now introduce, with parameters

t=(t4) (a, b=1, ---,m; a<b),
a function defined by

oG 1)=pG|tIT; M)

1 M,! Zget 2aq+ 2pc+ 2y \Fea
= — _ |} -5 2 . t _Zac ad bﬁ bd .
N! 1l tMab 1l Eb ab 4

Then, by remembering the relations

>) xabcd‘:ch: >) xabcd=Maby
asb csd

the multinomial theorem implies that our generating function @) is
given by the constant term, i.e. the coefficient of theterm gtab" in the
a

Laurent expansion around the origin of the last quantity @(3|t) regarded

as a rational function of m(m+1)/2 variables t=(t,) (a,b=1, -, m;
a<b).

We further introduce, for a later purpose, with parameters

sg=(sab) (d, b=l, ) m;ang)’
a function defined by

O(18; t)=0(3]8; t|F; M)

— ;17 Fa 'Mali .( = Savtsa zac+;zad+zbc+zbd)N.

N asb shabiMab ashesd 4

Then, by taking into account the relation

Ech:-N’
c=d

the multinomial theorem again implies that our generating function
@(3) is given also by the constant term in the Laurent expansion
around the origin of the last quantity @(318;1t) regarded as a rational
SJunction of m(m+1) variables 3=(sy;) and t=(t3) (a, b=1, ---, m; a < b).

By separating the factors involved in the last two functions ac-
cording to ones concerning homozygous and heterozygous types, they.
are brought into the following forms:



Distributions of Genotypes after a Panmixia 273

Mii! rI lj'

tMii i thj

1
OGlt)= N gl

Lizi+ > (tbbzib+tib _._z_.t.!_f'"ﬁL).{_ STt _Ziat 2ip \"ii
b+i 2 a,bxi 2

H(
-T1 (t-,- 2iitzi; +tjj-ﬁ:’._+?"i'ﬁ +t;; 2;i+22; 5+ 245
<j 3 2 2 ]

+ z ( tos Z2is+ 24 15 Z2ii+ 2i;+ 2ip4-2 78
bxi,j 2 4

by 2jjt2i3t2i5+2;5 >+ St ZiatZip+250a+ 24 >FU

4 ab%1s 4
and
o(318; 1)

_ 1 Fyul M| v Figl M;;! . N

ONR ;?utMt: ,FE ;Uu tM',j <;‘7{‘ivizﬁ+ %(”ivj‘*‘%jvi)zij) ’
where we put, for the sake of brevity,

wi=s+ > b, vi=t;+ > Lo (1=1, -, m).
% 2 bxi 2

It would be noticed, in passing, that the generating function @(3)

itself is expressible, for instance, by means of a contour integral in a
form _

1 dsqpdt
— . 3- _Goab%lab
@(5) (27”/ _ 1 )m(m+1) j‘ j ¢(5| t) ]—1 abtab ’

where the multiple integration is taken along the unit circumferences

|Sapl=1, |2261=1 (@, 0=1, -, m;a=<b)

in the positive sense on respective complex planes. However, this
integral representation will not be availed in the following lines.

3. Means of stochastic variables.

By virtue of its own meaning, there must hold an identity
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o(e) =1,

1 m(m+1)/2
e:(19 "ty 1 )-

It is a matter of course that our expression derived above conforms
to this requirement. In fact, since we have

where we put

. — 1 Fa 'Ma
ol =g T1-Falisl - (S Site)

N !2 a=b asb a=b

we get, by picking up the constant terms in the Laurent expansion,

1 N! N!
= T Fa) My - — 2 =1,
PO= T et Ml e T

Now, an analytical expression for the generating function having
been established in an explicit manner, the mean of every stochastic
variable C,; can be readily calculated.

First, for a homozygous type A;A;, we get

_Q_Q._, . -_— ]- R Fab Mab . N-1 .
02;; (elg, t)— N al;lb Fathab N (agbsab a%btab) u;V;.

Consequently, by separating the constant term in the Laurent expansion
around the origin of the last quantity regarded as a function of vari-

ables sgp, ts (@, =1, ---,m;a<b), we obtain for the mean of C;; an
expression

Cu=Cui(®:; M)=33 C.w (C1F; W)= gf (€|F; M)

b (re T Yoy e

Next, for a heterozygous type A;A;, we get

0P 204\ — Fop! My! ( )N-l . .
az,j (elss, f) = W—E‘g Fathab N %sab a%btab (utvi+ ujvl)’

whence follows, similarly as above, for the mean of C;; an expression
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Ci=Ci%; fm):% Ci;v(CIF; M)= -;Q (e|F; M)
& i

- b (e om0

N bxi bxj

(F,j+z )(M,,+z S 1),

b¥j bxi

Thus, by introducing the quantities defined by

o= L (Fur Eo) poo= L (0 5200 ) =1, m),

b¥¢

the expressions for the mean just obtained can be brought into brief
forms

Ci=NpPp™, Ciy=NpFpM+pFp™) (G, 5=1, -, m; i<j).

The last result is quite plausible. In fact, the relative frequencies
of the genes A; (:=1, ---, m) in female-population and in mdle-population
are equal to P> and p™, respectively. As shown in a previous
paper?, the random matings between these two populations produce
probabilistically a distribution in the next generation with frequencies

of A,A,; just given by (~3a1,.

4. Variances and covariances.

In order to express the variances, covariances, or, more generally,
the quantities concerning the moments of stochastic variables in clearer
forms, it will be convenient to introduce an abbreviated notation
defined by

Al — =
(A= D —AA=D = (A=t 0=0,1, -, A)

which represents the number of permutations of z things taken from
A different things and is often designated by 4P, If we concern

2) Cf. the first paper cited inD). Especially, 1. Distribution of genes. Proc. Japan
Acad. 27 (1951), 371-377; cf. also III. Further discussions on cross breeding. Ibid. 459-483.
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merely variances and covariances, it will suffice to introduce the nota-
tion only for =2, i.e. [A?]=A(A—1). However, it will become useful
when there concern the moments of higher orders. More generally,
for a given polynomial of any number of arguments

‘Q(Al:"' ) Zanl Mgy I] A”K

k=]

we put
(24, AdT = S an,.m, LA

Now, it is readily shown by induction that there holds for any
derivative of arbitrary order a representation

11 o0, ) oo

. 1 Fu,' M, 2" i ) \N- ,§ ij
T NP 2= "_;ab;ﬁM:Z [N‘ 7 J(Z Sabztab) ’

. [’] (uivi)"“‘];[ (00 5+ uyv;)"7 ,

whence follows

(2, aom L [er].

1=J 1=

Here the relevant variables in the bracket-notation [ 1 for the second

factor ave m(m+1) variables F;; and M;; (i,7=1, ---,m;i<j); asshown
above, we have

2
= (v gy 5ot 30)

2
(B 3 o )M+ zﬂz@) G,5=1, -, m; i<j).

By means of the last relation, any moments of arbitrary order can
be readily computed. As an illustrative example, we shall here deal
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with the variances and covariances.
First, the variance of C,; is given by

var (Cop)= var (Cos| ; M) = 33 (Cap— Casy¥ (€)

=3 ([C2T+Cap)(€)—C2,

- gf (©)+Cas—C2 (a,6=1, -, m; a<b).
Since the value of Cab has been already determined, it is only necessary
to substitute the value of a pure derivative of the second order which
follows readily from a general formula established above.
Next, the covariance between C,; and C,; is given by

00V (Cap, Cea)= OV (Cap, Cea|F3 M) = 33 (Cap— Cas)(Cea—Coa)¥(€)

= 3 CasCea?(€)— CarCoa= J“’ - (©) = CasCha

abazcd
(@, b,¢c,d=1,---,m;a<b;c<d; Asp= Aca)-

Since the values of E‘ab and Z‘M have been already determined, it is only
necessary to substitute the value of a mixed derivative of the second
order which also follows readily from a general formula established
above.

Now, for the sake of completeness, we shall set out below the
values of variance as well as covariance of the stochastic variables,
after classified according to homozygous and heterozygous types, in
more concrete forms.

In general, if the relevant variables in the bracket-notation are
Xop (@, 0=1, ---,m,a<b; X,;=X}), then we get

(o 3550 Y] (o 33 20~ 3350

bi bxi . 2
(e 33 5 ) 33 5]
=(xr g3 A )(xor 3 ) = e
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Hence, introducing, as before, notations defined by

(= %—(F,-ﬂ > I;"’ ) and pM= 7{[(%3"‘ Z%’),

bx¢ b4

we obtain for the values of variance the following expressions:

e 1 ez NOF+ Fii \( prpome_ NOM+ M,
var (Cyi)= NN—T) (Np 5 ><Np 5 )

+ NP P — NA(6p™

N 7{,—‘—1 ( ppw(1— _21-1’42—_135& _ 717 ) - ;,p:-;_’?_ ( _IEA‘[_ —pi7)

A (e (B o) o)

Cr= VYl NepEe_ NODHFi N appone . NPP+M;;
var(Ci)= joiy {(ve ; ) (a2 L )

+ < N2pF?— NBY )2+ Fii )( N2pM2_ Np:g);'_{‘!u_)

+ 2 Npp— f;—)( Neppoppo— )}
+ NP+ B BM) — NA BP0 + Py
e oA 1)
pppo(1= PP ,;ﬁ)__;,( o )
et )

— (o —p£M>2)+p§F’p§F>(%’~ — 25

+ p:,F):a(%L _ pg_lvm))
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+ Tll\*/:((Af\,/‘_ +p:F)>(AA]J\‘;JL _|_p(]_M>>+ %%{Z‘?\;L

e (T o) (P o))} G,

Similarly, we obtain for the values of covariance the following
expressions:

cov (C;;, Cir) = N Z\}—— 0 {(sz‘F)z NPSF; +F, ii,)(szgprM)”" A{F*)
" ( N2pEpE % >< N2pMz_ Nng)Z'*‘ M;‘_)}
— sz(F)p(M)( p:_F)p(M)_I_, p‘F)p(M))
NIX {ﬁF)p;M)(pfF)p(M)_'_ PEPIDY 4 <2p<M)( I];V;L +p:_F)>
rpw L) B (op( My p$M>)+ po Min )
o) o (o) ) e
cov (Ci;, Cu) = —NZNi:l) <N2p B — 4 ><sz MO _ J‘Zik )

_N2p§F)p§M)p(kF)p2M)
— {p‘F’j)‘F’p MpM)_ %(p:_M)p%M)Fik pEpE Msk )

N— N
1 Fu My .
16N N N } (k==1),
.. . __1___ 2H(F) H5(F) __ FQL 24H(MD /(M) __ k;Mi
cov (Cur, Cu)= gy \ NI — L ) (eppoppo— e )

__NZp(F)p(M)(p(F) (M)+ sz)p;'M))

= _N? [ampaw g@pam . pampny_ P8P (ram Fia o _Fir
AP B0+ 0B — P (o L piyo Lt )
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_ P <p$eF) M, +pth)ﬂ)+ L( Fin My, + Lir Fir Mzh)}

4 N N 6N\ N N N N
(h, k=Ei; ha= k),
1 NpE + F, M.
cov (C;j, Cig)= NIN=1) {(szP e A )(NZP(M)p(M) 4Jk)
F NpM + M,
(N"p(F)p(F) ;k >(sz§M>2~ p 5 )

+ (sz,:,F)sz)_ _l;{’f _>(N2p$M)p§M)_ %ﬁ'-’)

+ (sz,‘-F’ng’ ‘lj;_)(sz:M P> #)}

— NH PP+ pFp M) pF P + p I piM)

2

N . . .
— N—l {<p;l<)p;M)+p(jl‘)pEM))(p:_I‘)p;eM)_i_ p(F)p;M))

_ P:iM) (ZP‘M’( F; +pgp)) 4 M LN”L>_ __Pﬂ (21)‘1“’( M;; +p(M))
o ) e )
p(F)

(mp)l‘%{_ + Aj/lvjk >+ 161N <2< FI‘\'f Hﬂ)) %k

1 R F; M;
Ccov (C‘,'j: Chk)z N(N_ 1) {(sz??)p;zb)'— Th)(szfil\DpseM)_— o 4Jk

+ (sz;mp%m _ _gi,k_' (sz(jM HM) A{;’L)
+ ( N2PEpE — Fin )( N2pMpM l‘g"*_)

(vorn— B Yo )
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Nz( p(F)p(M),*_ p F)p(M))(p )p(M)+ pZF)p(M))

— NNﬁ - {(p(F)p(M)_l_ p(F)p:M))(p(F) (kM)+ p(F)p(M))

+ 5055

)+p(M)<p(M) FI‘Vh + D _%>

1 Fih Mjk F,-k Mjh th Mik ij Mh
t oy (NN PN N TR N TN N

(iFJ; h=EEk; b, k=1, 7).
It would be noted, in passing, that there holds an identical relation
of dependence, i.e.
0= 31 ( 33 (Car—Coip) 2 #(€)= S var (Cp) +2 3] cov (Casy Cea);
4 asb a<b asb; csd

the last summation extends over all the possible pairs (ab, cd).

Asymptotic behaviors of variance and covariance as N increases
can be readily deduced from the expressions just established. In fact,
since there hold always F,,/N<1 and M,,/N<1, we obtain

_ _E;f (_?\}L _ ng’Z)— pﬁ;?? (:"% —-p‘,-M’2>}+O(1), etc.

On the other hand, if the original distributions ¥ and 9 show, in
particular, the same equilibrium state, i.e. when there hold

beszb:Np%: Fab=Mab=N2papb (a) b=1) Ty m;a<b)s

the expressions may be reduced to fairly simple forms. Namely, we
then get

= - N e py(1— 3D
var (Cy)= N pH1-p)(1- 212,
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var (C;;)= TV]—Y-_Z-l—p,-pj(z—p;—pj 3—p,-—p,—2p,-pj> (2=7);

2N
= . NP, _ 1+pi ;
cov (Cu, C)=— NV pion(1- 1P ) (k=Fi),
cov (Cy;, Cue)= }-N"f | Ptk (k==i),
_ 1 N N
cov (Cyi, Cpp)= o N—1 DiDnDr (h, k==1; h=Fk),
. . - -—__N_Z_* o o —_ . — ‘1+2«pi y y o y 7
cov (Ciy, Ca) =~ pipstw(1-20i= 1 7201 (ikds ki),
cov (C; j, Crg)= —NN—I- Dib Db G==7; b, ki, j; h=Ek).

Thus, in this particular case, cov (C;;, Ci), cov(C;;, Cy) and
cov (C;;, Ce) are really of order O(1), i.e. bounded regardless of the
values of N_>1, while the remaining cov’s as well as the var’s are, in
general, unbounded with order O(N).

Department of Mathematics,
Tokyo Institute of Technology.
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