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On Neumann’s problem for a domain on a
closed Riemann surface.

By Masatsugu Tsuji

(Received Nov. 4, 1953)

The Neumann’s problem is solved usually by means of integral
equations. Recently L. Myrberg? proved simply the existence of the
solution of the Neumann’s problem for the inside of a unit circle, with-
out use of integral equations. By his method, we shall prove the
existence of the solution of the Neumann’s problem for a domain on
a closed Riemann surface, without use of integral equations.

Let F be a closed Riemann surface spread over the z-plane and D
be its sub-domain, whose boundary I’ consists of a finite number of

analytic Jordan curves or Jordan arcs I'= En_’,‘l’,-, such that, if I";, I"; .,
i=0

meet at a point ¢;, then they make an inner angle a;n (0<a;<2)
at ¢&;.. Let f(¢) be a given function on 7, which is continuous on I,
except at {¢;}, where f(¢) may be discontinuous, but is bounded on I,

such that
IADI=M on 1", (1)

and satisfies the condition :
| foragi=o. @

Then we shall prove
THEOREM. There exists a harmonic function w(z) in D, which is

continuous in 5, such that
(i) luw(2)| <k;M in D,

where ky=Fk\(D) is a constant, which depends on D only.

1) L. Myrberg: Uber die vermischte Randwertaufgabe der harmonischen Funktionen.
Ann. Acad. Sci. Fenn. Series A, 103 (1951).
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when z tends to tel' along the inner normal v of at & and %y— is the
»

derivative of u in the direction v.
(iii) Let D[u] be the Dirichlet integral of u on D, then D[u] can be
expressed by

Dlul=—{ u 2% agl=—| u)fe)lazl,

so that
Dlu]<k, M?,

where k,=kyD) is a constant, which depends on D only.
Proor. We may assume that M=1, so that

ADIST on 17, | AD)IdEI=0 ¢

and we have to prove that |u(z)| < kD), Dlu]<< kD).
Let z=0eD and g(z, 0) be the Green’s function of D with z2=0 as
its pole. We put

o) =f(5) 2850 @)
v

where » is the inner normal, then
[, #2880 ap1=0. ®)
r ov :

Since g(¢&, 0) is harmonic at ¢==¢; on 17, wa&(ag’—g>0 exists at such

v
points. To investigate the behaviour of Lgé;‘& in a neighbourhood
1 4

of ¢;, we map the part U(¢;) of D, contained in |z—¢&;|<p on a half-
disc: |w|<<1, >0 on the w=x-+:iy-plane, such that ¢; becomes w=0
and the part of I’, which lies in |z—¢;|<p becomes —1<w=<1 and
put g(z,0)=G(w), then G(w) is harmonic in |w|<1 and if ¢el” cor-
responds to &,

8L jap = (2CW)) g, (w=g+in).

7=0
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Since
0<a(29))  <p for JgI<e<,
n=0
al & ag(t, 0) <p|
6{ ov dé’
Now -2%‘ = dw{ By Kellogg’s theorem,” we can prove easily that

in a neighbourhood of ¢;,

1- 1

Alz—t;] * s\d’” <Blz—&| ",
4)

....
.4'-‘

Alz—t:| "~ <|w/<Blz—&: ™,

where A>>0, B>>0 are constants, so that writing A, B in stead of
Aa, Ba, we have

1-% 1-9
Alg—el " <880 <y 7, - ®
hence
lcp(c>|<—|§ ¢ e 6)
Since similarly
1-a; 1-
Ale—¢i ‘sag(f’z‘<B|: A
we have
()] ag(f’ 2) o B o @)
so that @(¢) @g% is bounded on I’, hence we put
_ 1 8g(£, 2) |
W= | p6) 2882 ja|, (8)

2) S. Warschawski: Uber einen Satz von O.D. Kellogg. Gottinger Nachr. 1932,
M. Tsuji: The boundary distortion on conformal mapping, (which will appear in this
Journal).
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then by (3), v(0)=0 and »(z) is harmonic in D and, by means of (6),
we can prove easily that :

lim o@=p(t), tF&. o

Let Z=h(z, lO) be the conjugate harmonic function of g(z,0) and we
denote the niveau curve #(z, 0)=const.=« by L, and put

u(@)= | ot) dg(t, 0), (10)

where we integrate on L,, then since 2(0)=0, the integral is finite.
We shall prove that #u(z) is harmonic in D.

Let z be different from double points {a;} of the niveau curves
h=const., then at z,

azu = ,_61 , 62u — Sz 620 dg:—sz 627) dg::—-_@_v_.,
0g* 0g on? 0 gh? 0 0g? 08

’ 2 2. .
so that Ju= g gz; + %zo, hence #(z) is harmonic at z. Since u(2)

is bounded in a neighbourhood of a;, #(z) is harmonic at a;, so that
u(z) is harmonic in D.

We see from (9), that when z—¢==¢; along the inner normal
v of I" at ¢, ‘

% p5) L0 _pp), g an

Hence u(z) is the solution of the Neumann’s problem. Next we
shall prove that #(z) continuous in D.

Since u(z) is continuous at ¢==¢; on I’, we have only to prove that
u#(z) is continuous at ¢;. ' For the sake of brevity, we assume that there
is only one &, on I, where I",, I'; meet at an inner angle ayr (0<ap<<2).
Let U(&) be the part of D, contained in |z—¢&]<p. We map U(&)
conformally on |w|<{1l, ¥y >0 on the w=x+idy-plane, such that ¢,
becomes w=0 and the part of I contained in |z—&|=<p becomes
—1<w<1. Let the half-discs |wi§,%, »>0, and luu_é_%, >0
be mapped on Uy¢,), Ui&,) respectively and I'(&) be the part of I,
which belongs to the boundary of Uy(&,). Then
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v(2)= —LS

2m 1o

where O(1) is bounded for any ze Uy&).
Let ze Uy(&o), z:e U(&,) correspond to w=x+1iy, w;=x;+ iy; respective-

ly, then jw| << %, || <1 and put g(z;, 2)=G(w,, w) and let

() 28D 1ar10), zeU(m),  (12)

w—w +yr(wy, w) . (13)

wL—w

G(w,, w)=log

Since ¥y=0 on —1<w, <1, Y¥(wy, w) is harmonic in |w;}< 1 and we

can prove easily that |y (w; w)|<const.=K on |w1|=—;—, so that

[Yv(w, w)| <K in |uy| < %, where K is independent of w, (lwl_é_%).

Hence if ¢el'y (&), (¢=F¢&,) corresponds to & ( —-% <EZ %), then

0g(¢, 2) _( @ w—w
O lag|= (5 log | 1

+0(1)) dt

wi=§

—( 2y
= (y2+ Py + 0(1)) dt . (14)
_o=1
Since by (6), (4), ¢(é‘)= O(Ig_gol) @ and 'Z"Colzo(lwlwo)’ we have
P(&)=0(|&|*Y), so that

%
L 988,2) | gr)=0 _¥dE - \,oa).
2 j‘1’1(§0)¢(§) ov l gl (S_% I{.lﬁ(yz_*_(x_{.)z))'*‘ ( ) (15)
If [£|=<|x—¢], then
1 <1
[E1P(02 +(x—E)%) — [EIF(5°+ &)

and if |¢|=|x—¢&]|, then

1 - 1
[EIB(2+(x—&2) = |x—¢P(»*+(x—&)P) 7

so that
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P yae = ydt 1
<o yde _o( 1),
g—& &P+ (x—8)) — j-a [E1P(y*+ &) <y’5 )
hence by
w2=0 (1), 2eUl&o) , 0<B8<1, (16)
Yy

Let ¢£e 1’ lies in a small neighbourhood of ¢ and z lie on the same
niveau curve hz=a«a as ¢ and correspond to w=x+iy, then if we in-
tegrate on L,

[, o0 dste,0=0([ & )=0(yn<e,

if z lies in a small neighbourhood of ¢, From this, we see that u(z)
is continuous at &. Hence #(z) is continuous in D. From the proof,

we see that |u(z)|< k(D) in D.
Next we shall prove that D[«] can be expressed by

__( . ou
Dlu]= jru % ). (17)

Let I, be the niveau curve g(z, 0)=const.=p >0 and 4, be the domain,
bounded by I’,, and D,[«] be the Dirichlet integral of # in 4,, then

D,,[u]=—j u 9% gz . (18)
r, ov :

Suppose that as before there is only one &, on I”, where Iy, I’; meet at
an inner angle ayr (0<<qy;<<2) and let &, lie on the niveau curve
h(z,0)=0, and I',(»), I"(») be the part of I’,, I’ respectively, on which
| h(z, 0)| <7, then

- ou _ ou
Dilu]= Srp—rp(n)u ov |dz| S (1 u ov |zl (19)
where
- 0 | 71— ou
lplflt? L‘p—rp(n) “ v Idzl—jr—rcm “ v lat ] (20)

Now since #(z)=0(1),

Sl‘p(n) “ %l dzl=0<§r ) 0(2)] ig%i’_o—) ld2|> =O(§r ) |0(z)| dh(z, 0))

I3 3
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=O(§:dhL|¢(§)|ag—%:z—) ld§|>. (21)

Let 7<<8< % If zel's(n), tel'—I'(8), and z—tel(n), then

__a_g__(_g_’_z_"__)_._)o’ hence
ov
ou - ? 6g(§, Z)
jrp(n) u“a"y_ IdZI—O(j‘_" thT@ | @(&)] T |d§|)+0(77) .

As before, we map U(¢) on |w|<<1, y>0 and let zelI.(») cor-
respond to w=x+1iy, then dh=0(dx), so that by (15),

” 3 d
L‘p(n) u%|d2|=0(§_ndx s~5 |§|B(y‘2v+(i._£,)2)> +O(’7)=

o[ & " 2% )1 0m)=0(*+0wm),(0<8<1). (22)

-8 |£1P )yt (2 — &)
Since 7,8 are arbitrary, we have from [19), (20), (22),
Diul=lim Djlul=— | u %% |az|. (23)
p>0 r ov

Since |u|<ky(D), —gg_'zi f£))<1, we have D[ul< kD), where kD)

is a constant, which depends on D only. Hence our theorem is proved.

Mathematical Institute, Tokyo University.
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