On Neumann's problem for a domain on a closed Riemann surface.

By Masatsugu Tsuji

(Received Nov. 4, 1953)

The Neumann's problem is solved usually by means of integral equations. Recently L. Myrberg¹¹ proved simply the existence of the solution of the Neumann's problem for the inside of a unit circle, without use of integral equations. By his method, we shall prove the existence of the solution of the Neumann's problem for a domain on a closed Riemann surface, without use of integral equations.

Let F be a closed Riemann surface spread over the z-plane and D be its sub-domain, whose boundary Γ consists of a finite number of analytic Jordan curves or Jordan arcs $\Gamma = \sum_{i=0}^{n} \Gamma_{i}$, such that, if Γ_{i} , Γ_{i+1} meet at a point ζ_{i} , then they make an inner angle $\alpha_{i}\pi$ ($0 < \alpha_{i} < 2$) at ζ_{i} . Let $f(\zeta)$ be a given function on Γ , which is continuous on Γ , except at $\{\zeta_{i}\}$, where $f(\zeta)$ may be discontinuous, but is bounded on Γ , such that

$$|f(\zeta)| \leq M$$
 on Γ , (1)

and satisfies the condition:

$$\int_{\Gamma} f(\zeta) |d\zeta| = 0.$$
 (2)

Then we shall prove

THEOREM. There exists a harmonic function u(z) in D, which is continuous in \overline{D} , such that

(i)
$$|u(z)| \leq k_1 M \quad in \quad \overline{D}$$
,

where $k_1 = k_1(D)$ is a constant, which depends on D only.

¹⁾ L. Myrberg: Über die vermischte Randwertaufgabe der harmonischen Funktionen. Ann. Acad. Sci. Fenn. Series A, 103 (1951).

(ii)
$$\frac{\partial u}{\partial v} \to f(\zeta)$$
, $\zeta = \zeta_i$,

when z tends to $\zeta \in I'$ along the inner normal ν of at ζ and $\frac{\partial u}{\partial \nu}$ is the derivative of u in the direction ν .

(iii) Let D[u] be the Dirichlet integral of u on D, then D[u] can be expressed by

$$D[u] = -\int_{\Gamma} u \frac{\partial u}{\partial \nu} |d\zeta| = -\int_{\Gamma} u(\zeta) f(\zeta) |d\zeta|,$$

so that

$$D[u] \leq k_2 M^2$$
,

where $k_2=k_2(D)$ is a constant, which depends on D only.

PROOF. We may assume that M=1, so that

$$|f(\zeta)| \leq 1$$
 on Γ , $\int_{\Gamma} f(\zeta) |d\zeta| = 0$ (1)

and we have to prove that $|u(z)| \leq k_1(D)$, $D[u] \leq k_2(D)$.

Let $z=0 \in D$ and g(z, 0) be the Green's function of D with z=0 as its pole. We put

$$\varphi(\zeta) = f(\zeta) / \frac{\partial g(\zeta, 0)}{\partial \nu}$$
, (2)

where ν is the inner normal, then

$$\int_{\Gamma} \varphi(\zeta) \frac{\partial g(\zeta,0)}{\partial \nu} |d\zeta| = 0.$$
 (3)

Since $g(\zeta,0)$ is harmonic at $\zeta = \zeta_i$ on Γ , $\frac{\partial g(\zeta,0)}{\partial \nu} > 0$ exists at such points. To investigate the behaviour of $\frac{\partial g(\zeta,0)}{\partial \nu}$ in a neighbourhood of ζ_i , we map the part $U(\zeta_i)$ of D, contained in $|z-\zeta_i| < \rho$ on a half-disc: |w| < 1, y > 0 on the w = x + iy-plane, such that ζ_i becomes w = 0 and the part of Γ , which lies in $|z-\zeta_i| \le \rho$ becomes $-1 \le w \le 1$ and put g(z,0) = G(w), then G(w) is harmonic in |w| < 1 and if $\zeta \in \Gamma$ corresponds to ξ ,

$$\frac{\partial g(\zeta,0)}{\partial \nu} |d\zeta| = \left(\frac{\partial G(w)}{\partial \eta}\right)_{n=0} d\xi, \qquad (w = \xi + i\eta).$$

124 M. Tsuji

Since

$$0 < a \le \left(\frac{\partial G(w)}{\partial \eta}\right)_{\eta=0} \le b \quad \text{for} \quad |\xi| \le \delta < 1,$$

$$a \left|\frac{\partial \xi}{\partial \zeta}\right| \le \frac{\partial g(\zeta, 0)}{\partial \nu} \le b \left|\frac{d\xi}{d\zeta}\right|.$$

Now $\left| \frac{d\xi}{d\zeta} \right| = \left| \frac{dw}{dz} \right|$. By Kellogg's theorem,²⁾ we can prove easily that in a neighbourhood of ζ_i ,

$$A|z-\zeta_{i}|^{\frac{1-\alpha_{i}}{\alpha_{i}}} \leq \left|\frac{dw}{dz}\right| \leq B|z-\zeta_{i}|^{\frac{1-\alpha_{i}}{\alpha_{i}}},$$

$$A|z-\zeta_{i}|^{\frac{1}{\alpha_{i}}} \leq |w| \leq B|z-\zeta_{i}|^{\frac{1}{\alpha_{i}}},$$

$$(4)$$

where A>0, B>0 are constants, so that writing A, B in stead of Aa, Ba, we have

$$A|\zeta-\zeta_{i}|^{\frac{1-\alpha_{i}}{\alpha_{i}}} \leq \frac{\partial g(\zeta,0)}{\partial \nu} \leq B|\zeta-\zeta_{i}|^{\frac{1-\alpha_{i}}{\alpha_{i}}}, \tag{5}$$

hence

$$|\varphi(\zeta)| \leq \frac{1}{A} |\zeta - \zeta_i|^{\frac{\alpha_{i-1}}{\alpha_t}}. \tag{6}$$

Since similarly

$$A_1|\zeta-\zeta_i|^{\frac{1-lpha_i}{lpha_i}} \leq \frac{\partial g(\zeta,z)}{\partial
u} \leq B_1|\zeta-\zeta_i|^{\frac{1-lpha_i}{lpha_i}},$$

we have

$$|\varphi(\zeta)| \frac{\partial g(\zeta,z)}{\partial \nu} \leq \frac{B_1}{A},$$
 (7)

so that $\varphi(\zeta) \frac{\partial g(\zeta, z)}{\partial \nu}$ is bounded on Γ , hence we put

$$v(z) = \frac{1}{2\pi} \int_{\Gamma} \varphi(\zeta) \frac{\partial g(\zeta, z)}{\partial \nu} |d\zeta|, \qquad (8)$$

²⁾ S. Warschawski: Über einen Satz von O. D. Kellogg. Göttinger Nachr. 1932. M. Tsuji: The boundary distortion on conformal mapping, (which will appear in this Journal).

then by (3), v(0)=0 and v(z) is harmonic in D and, by means of (6), we can prove easily that

$$\lim_{z \to \zeta} v(z) = \varphi(\zeta), \qquad \zeta \neq \zeta_i. \tag{9}$$

Let h=h(z,0) be the conjugate harmonic function of g(z,0) and we denote the niveau curve $h(z,0)=\text{const.}=\alpha$ by L_{α} and put

$$u(z) = \int_0^z v(t) \, dg(t, 0) \,, \tag{10}$$

where we integrate on L_{α} , then since v(0)=0, the integral is finite. We shall prove that u(z) is harmonic in D.

Let z be different from double points $\{a_i\}$ of the niveau curves h=const., then at z,

$$\frac{\partial^2 u}{\partial g^2} = \frac{\partial v}{\partial g}, \qquad \frac{\partial^2 u}{\partial h^2} = \int_0^z \frac{\partial^2 v}{\partial h^2} dg = -\int_0^z \frac{\partial^2 v}{\partial g^2} dg = -\frac{\partial v}{\partial g},$$

so that $\Delta u = \frac{\partial^2 u}{\partial g^2} + \frac{\partial^2 u}{\partial h^2} = 0$, hence u(z) is harmonic at z. Since u(z) is bounded in a neighbourhood of a_i , u(z) is harmonic at a_i , so that u(z) is harmonic in D.

We see from (9), (10), that when $z \rightarrow \zeta + \zeta_i$ along the inner normal ν of Γ at ζ ,

$$\frac{\partial u}{\partial v} \to \varphi(\zeta) \frac{\partial g(\zeta, 0)}{\partial v} = f(\zeta) , \qquad \zeta = \zeta_i . \tag{11}$$

Hence u(z) is the solution of the Neumann's problem. Next we shall prove that u(z) continuous in \overline{D} .

Since u(z) is continuous at $\zeta = \zeta_i$ on Γ , we have only to prove that u(z) is continuous at ζ_i . For the sake of brevity, we assume that there is only one ζ_0 on Γ , where Γ_0 , Γ_1 meet at an inner angle $\alpha_0 \pi$ $(0 < \alpha_0 < 2)$. Let $U(\zeta_0)$ be the part of D, contained in $|z-\zeta_0| < \rho$. We map $U(\zeta_0)$ conformally on |w| < 1, y > 0 on the w = x + iy-plane, such that ζ_0 becomes w = 0 and the part of Γ contained in $|z-\zeta_0| \le \rho$ becomes $-1 \le w \le 1$. Let the half-discs $|w| \le \frac{1}{4}$, y > 0, and $|w| \le \frac{1}{2}$, y > 0 be mapped on $U_0(\zeta_0)$, $U_1(\zeta_0)$ respectively and $\Gamma_1(\zeta_0)$ be the part of Γ , which belongs to the boundary of $U_1(\zeta_0)$. Then

$$v(z) = \frac{1}{2\pi} \int_{\Gamma_1(\zeta_0)} \varphi(\zeta) \frac{\partial g(\zeta, z)}{\partial \nu} |d\zeta| + O(1), \quad z \in U_0(\zeta_0), \quad (12)$$

where O(1) is bounded for any $z \in U_0(\zeta_0)$.

Let $z \in U_0(\zeta_0)$, $z_1 \in U(\zeta_0)$ correspond to w = x + iy, $w_1 = x_1 + iy_1$ respectively, then $|w| \leq \frac{1}{4}$, $|w_1| < 1$ and put $g(z_1, z) = G(w_1, w)$ and let

$$G(w_1, w) = \log \left| \frac{w_1 - \overline{w}}{w_1 - w} \right| + \psi(w_1, w). \tag{13}$$

Since $\psi=0$ on $-1 \leq w_1 \leq 1$, $\psi(w_1,w)$ is harmonic in $|w_1| < 1$ and we can prove easily that $|\psi(w_1,w)| \leq \text{const.} = K$ on $|w_1| = \frac{1}{2}$, so that $|\psi(w_1,w)| \leq K$ in $|w_1| \leq \frac{1}{2}$, where K is independent of w, $(|w| \leq \frac{1}{4})$. Hence if $\zeta \in \Gamma_1(\zeta_0)$, $(\zeta \neq \zeta_0)$ corresponds to ξ $\left(-\frac{1}{2} \leq \xi \leq \frac{1}{2}\right)$, then

$$\frac{\partial g(\zeta, z)}{\partial \nu} |d\zeta| = \left(\frac{\partial}{\partial y_1} \log \left| \frac{w_1 - \overline{w}}{w_1 - w} \right|_{w_1 = \xi} + O(1)\right) d\xi$$

$$= \left(\frac{2y}{y^2 + (x - \xi)^2} + O(1)\right) d\xi. \tag{14}$$

Since by (6), (4), $\varphi(\zeta) = O(|\zeta - \zeta_0|)^{\frac{\alpha_0 - 1}{\alpha_0}}$ and $|z - \zeta_0| = O(|w|^{\alpha_0})$, we have $\varphi(\zeta) = O(|\xi|^{\alpha_0 - 1})$, so that

$$\frac{1}{2\pi} \int_{\Gamma_{1}(\zeta_{0})} \varphi(\zeta) \frac{\partial g(\zeta, z)}{\partial \nu} |d\zeta| = O\left(\int_{-\frac{1}{2}}^{\frac{1}{2}} \frac{y d\xi}{|\xi|^{\beta} (y^{2} + (x - \xi)^{2})}\right) + O(1).$$

$$0 < \beta = |1 - \alpha_{0}| < 1.$$
(15)

If $|\xi| \leq |x-\xi|$, then

$$\frac{1}{|\xi|^{\beta}(v^2+(x-\xi)^2)} \le \frac{1}{|\xi|^{\beta}(v^2+\xi^2)}$$

and if $|\xi| \ge |x - \xi|$, then

$$\frac{1}{|\xi|^{\beta}(y^2+(x-\xi)^2)} \leq \frac{1}{|x-\xi|^{\beta}(y^2+(x-\xi)^2)}$$
,

so that

$$\int_{-\frac{1}{2}}^{\frac{1}{2}} \frac{y \, d\xi}{|\xi|^{\beta} (y^2 + (x - \xi)^2)} \leq 2 \int_{-\infty}^{\infty} \frac{y \, d\xi}{|\xi|^{\beta} (y^2 + \xi^2)} = O\left(\frac{1}{y^{\beta}}\right),$$

hence by (12)

$$v(z) = O\left(\frac{1}{y^{\beta}}\right)$$
, $z \in U_0(\zeta_0)$, $0 < \beta < 1$. (16)

Let $\zeta \in I'$ lies in a small neighbourhood of ζ_0 and z lie on the same niveau curve $h=\alpha$ as ζ and correspond to w=x+iy, then if we integrate on L_{α} ,

$$\left|\int_{\zeta}^{z} v(t) dg(t,0)\right| = O\left(\int_{0}^{y} \frac{dy}{y^{\beta}}\right) = O(y^{1-\beta}) < \varepsilon,$$

if z lies in a small neighbourhood of ζ_0 . From this, we see that u(z) is continuous at ζ_0 . Hence u(z) is continuous in \overline{D} . From the proof, we see that $|u(z)| \leq k_1(D)$ in \overline{D} .

Next we shall prove that D[u] can be expressed by

$$D[u] = -\int_{\Gamma} u \frac{\partial u}{\partial \nu} |d\zeta|. \tag{17}$$

Let Γ_{ρ} be the niveau curve $g(z, 0) = \text{const.} = \rho > 0$ and Δ_{ρ} be the domain, bounded by Γ_{ρ} , and $D_{\rho}[u]$ be the Dirichlet integral of u in Δ_{ρ} , then

$$D_{\rho}[u] = -\int_{\Gamma_{\rho}} u \, \frac{\partial u}{\partial \nu} \, |dz| \,. \tag{18}$$

Suppose that as before there is only one ζ_0 on Γ , where Γ_0 , Γ_1 meet at an inner angle $\alpha_0\pi$ (0< α_0 <2) and let ζ_0 lie on the niveau curve h(z,0)=0, and $\Gamma_\rho(\eta)$, $\Gamma(\eta)$ be the part of Γ_ρ , Γ respectively, on which $|h(z,0)| \leq \eta$, then

$$D_{\rho}[u] = -\int_{\Gamma_{\rho} - \Gamma_{\rho}(\eta)} u \frac{\partial u}{\partial \nu} |dz| - \int_{\Gamma_{\rho}(\eta)} u \frac{\partial u}{\partial \nu} |dz|, \qquad (19)$$

where

$$\lim_{\rho \to 0} \int_{\Gamma_{\rho} - \Gamma_{\rho}(\eta)} u \, \frac{\partial u}{\partial \nu} \, |dz| = \int_{\Gamma - \Gamma(\eta)} u \, \frac{\partial u}{\partial \nu} \, |d\zeta| \,. \tag{20}$$

Now since u(z) = O(1),

$$\int_{\Gamma_0(\eta)} u \frac{\partial u}{\partial \nu} |dz| = O\left(\int_{\Gamma_0(\eta)} |v(z)| \frac{\partial g(z,0)}{\partial \nu} |dz|\right) = O\left(\int_{\Gamma_0(\eta)} |v(z)| dh(z,0)\right)$$

$$=O\left(\int_{-\eta}^{\eta}dh\int_{\Gamma}|\varphi(\zeta)|\frac{\partial g(\zeta,z)}{\partial\nu}|d\zeta|\right). \tag{21}$$

Let $\eta < \delta < \frac{1}{2}$. If $z \in \Gamma_{\rho}(\eta)$, $\zeta \in \Gamma - \Gamma(\delta)$, and $z \to \zeta \in \Gamma(\eta)$, then $\frac{\partial g(\zeta, z)}{\partial \nu} \to 0$, hence

$$\int_{\Gamma_0(\eta)} u \frac{\partial u}{\partial \nu} |dz| = O\left(\int_{-\eta}^{\eta} dh \int_{\Gamma(\delta)} |\varphi(\zeta)| \frac{\partial g(\zeta,z)}{\partial \nu} |d\zeta|\right) + O(\eta).$$

As before, we map $U(\zeta_0)$ on |w| < 1, y > 0 and let $z \in \Gamma_{\rho}(\eta)$ correspond to w = x + iy, then dh = O(dx), so that by (15),

$$\int_{\Gamma_{\rho}(\eta)} u \frac{\partial u}{\partial \nu} |dz| = O\left(\int_{-\eta}^{\eta} dx \int_{-\delta}^{\delta} \frac{y d\xi}{|\xi|^{\beta} (y^{2} + (x - \xi)^{2})}\right) + O(\eta) = O\left(\int_{-\delta}^{\delta} \frac{d\xi}{|\xi|^{\beta}} \int_{-\eta}^{\eta} \frac{y dx}{y^{2} + (x - \xi)^{2}}\right) + O(\eta) = O(\delta^{1-\beta}) + O(\eta), (0 < \beta < 1). (22)$$

Since η , δ are arbitrary, we have from (19), (20), (22),

$$D[u] = \lim_{\rho \to 0} D_{\rho}[u] = -\int_{\Gamma} u \frac{\partial u}{\partial \nu} | d\zeta |. \tag{23}$$

Since $|u| \le k_1(D)$, $\left| \frac{\partial u}{\partial \nu} \right| = |f(\zeta)| \le 1$, we have $D[u] \le k_2(D)$, where $k_2(D)$ is a constant, which depends on D only. Hence our theorem is proved.

Mathematical Institute, Tokyo University.