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A metrical theorem on the singular set of
a linear group of Schottky type.

By Masatsugu TSUJI

(Received Nov. 4, 1953)

Let $G$ be a linear group of Schottky type on the $\zeta$-plane, whose
fundamental domain $D_{0}$ is bounded by $p(\geqq 2)$ pairs of disjoint analytic
Jordan curves $C_{i},$ $C_{i}^{\prime}(i=1,2,\cdots,p)$ , where $C_{i},$ $C_{i}^{\prime}$ are equivalent by $G$.
The equivalents $D_{v}$ of $D_{0}$ cluster to a non.dense perfect set $E$, which
is called the singular set of $G$ . Myrberg1) proved that

cap. $E>0$ ,

where cap. $E$ denotes the logarithmic capacity of $E$, while, in another
paper,2) I have proved that every point of $E$ is a regular point for
Dirichlet problem. Since cap. $E>0$ , if we map the outside of $E$ on
$|w|<1$ conformally, then $E$ is mapped on a set of mesure $ 2\pi$ on
$|w|=1$ . We shall prove

THEOREM. Let $E_{1}$ be the sub-set of $E$ , which lies in $C_{1}$ and every
point of which is contained in infinitely many equivalents of $C_{1}$ . Then

cap. $E_{1}>0$ ,

and $E_{1}$ is mapped on a set of positive measure on $|w|=1$ .
PROOF. Since the proof is the same, we assume that $p=2$ .
First we shall prove that cap. $E_{1}>0$ . Let $S_{1},$ $S_{2}$ be two generators

of $G$ , such that $C_{1}=S_{1}(C_{1}^{\prime})$ . $C_{2}=S_{2}(C_{2}^{\prime})$ . If we apply $S_{I}$ to $D_{0}$, then
$D_{0}$ becomes $D_{1}$ , which lies in $C_{1}=K_{1}$ and is bounded by $K_{1}$ and three
other closed curves $C_{11},$ $C_{12},$ $C_{13}$, which are equivalent to $C_{1}$ or $C_{2}$ . Let
$C_{11}$ be equivalent to $C_{1}$ and we write $C_{11}=K_{11}$ . $C_{12},$ $C_{13}$ are equivalent to
$C_{2}$ . We choose one of them, $C_{12}$, say. Let $D_{12}$ be the equivalent of

1) P. J. Myrberg: Die Kapazit\"at der singularen Menge der linearen Gruppe. Ann.
Fenn. Ser. A 10 (1941).

2). M. Tsuji: On the capacity of general Cantor sets. Journ. of Math. Soc. Japan
5 (1953).
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$D_{0}$ , which lies in $C_{12}$ and is bounded by $C_{12}$ and three other closed
curves $C_{121},$ $C_{122}$ , Cms, which are equivalent to $C_{1}$ or Q. Let $C_{121}$ be
equivalent to $C_{1}$ and we write $C_{121}=K_{12}$ . Hence, inside of $K_{1}$ , we
have two equivalents $K_{11},$ $K_{12}$ of $C_{1}$.

Similarly we define $K_{1i_{1}\cdots i_{n}}(i_{1},\cdots, i_{n}=1,2)$ , which are equivalent to $C_{1}$ ,
such that if we denote the inside of $K_{1i_{1}\cdots i_{n}}$ by $\Delta_{1i_{1}\cdots i_{n}}$ , then

$\Delta_{1i_{1}}\ldots {}_{i_{n}}C\Delta_{1i_{1}\cdots i_{n-1}}$ $(i_{n}=1,2)$ .
We put

$M=\prod_{n^{R}1}^{\infty}(\sum_{i_{1}.\cdot i_{n}}^{1...2}.\Delta_{1j_{1}}\ldots;_{n})$ . (1)

By Koebe’s distortion theorem, we can prove easily3)

$\delta(\Delta_{1i_{1}\cdots i_{n}})\geqq a\delta(\Delta_{1i_{1}\cdots i_{n^{-1}}})$ (2)

and the mutual distance of

$\Delta_{1i_{1}\cdots i_{n-1}.1}$ and $\Delta_{1i_{1}\cdots i_{n-1}2}$ is $\geqq b\delta(\Delta_{Ii_{1}\cdot\cdot i_{n-1}})$ , (3)

where $\delta(\Delta)$ is the diameter of $\Delta$ and $a>0,$ $b>0$ are constants, which
are independent of $n$ . Hence cap. $M>0$ by a theorem proved by the
author4). Since $M\subset E_{1}$ , we have

cap. $E_{1}>0$ . (4)

Next we shall prove that $E_{1}$ is mapped on a set of positive measure
on $|w|=1$ .

If we identify the equivalent points on $C_{i},$ $C_{i}^{\prime}$ , then $D_{0}$ becomes a
closed Riemann surface $F$, whose genus is $p=2$ . We consider $F$

spread over the z-plane. $C_{i},$ $C_{i}^{\prime}$ correspond to the both shores $\gamma_{i^{+}},$ $\gamma_{i^{-}}$

of a ring cut $\gamma;(i=1,2)$ of $F$. If we cut $F$ by $\gamma_{1},$ $\gamma_{2}$ , then $F$ becomes
a surface $F_{0}$, whose boundary consists of $\gamma_{1^{+}},$ $\gamma_{1}^{-},$ $\gamma_{2^{+}},$ $\gamma_{2^{-}}$ . We write

$\gamma^{(1)}=\gamma_{1^{+}}$ , $\gamma^{(2)}=\gamma_{1}^{-}$ , $\gamma^{(3)}=\gamma_{2^{+}}$ , $\gamma^{(4)}=\gamma_{2^{-}}$ (5)

In the following, $F_{j},$ $ F_{ji_{1}},\cdots$ are the same samples as $F_{0}$. Along
$\gamma^{(j)}(j=1,2,3,4)$ , we connect $F_{j}$ to $F_{0}$ . Along three remaining boundary

3), 4) M. Tsuji. 1. $c$ . $2$).
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closed curves of $F_{j}$. we connect $F_{ji_{1}}(i_{1}=1,2,3)$ to $F_{J}$ . Similarly we
define $F_{ji_{1}\cdots i_{n}}(j=1,2,3,4;i_{1},\cdots i_{n}=1,2,3)$ and put

$ F<\infty)=F_{0}+\sum_{j}F_{j}+\sum_{j.i_{1}}F_{ji_{1}}+\cdots+\sum_{j.i_{1}\ldots i_{n}}..F_{ii_{1}\cdots i_{n}}+\cdots$ , (6)

then $F^{(\infty)}$ is of planar character and is mapped on the outside of $E$.
If $\gamma^{CA)}(k=1,2,3,4)$ belongs to the boundary of $F_{ji_{1}\cdots i_{n}}$ , but does not
belong to the boundary of $F_{ji_{1}\cdots i_{n-1}}$ , then we denote it by $\gamma_{ji_{1}\cdot\cdot i_{n}}^{(k)}$ .

Let $\Phi$ be a sub-surface of $F^{(\infty)}$ , such that

$\Phi=F_{1}+\sum_{i_{1}}F_{1};_{1}+\cdots+\sum_{i_{1}\ldots..i_{n}}F_{1i_{1}\cdots i_{n}}+\cdots$
, (7)

and put

$\Phi_{n}=F_{1}+\sum_{i_{1}}F_{1i_{1}}+\cdots+\sum_{i_{1}.\cdots.i_{n}}F_{1i_{1}}\ldots;_{n}$ . (8)

Let $\gamma^{(1)}+\Gamma_{n}$ be the boundary of $\Phi_{n}$ , then $I_{n}^{7}$ consists of $3^{n}$ closed
curves, each of which is $\gamma_{1}$ or $\gamma_{2}$ . Let $I_{n}^{7^{\prime}}$ be the sum of those,
which are $\gamma_{1}$ and $J_{n}^{7^{\prime\prime}}$ be that of those, which are $\gamma_{2}$ , then $\Gamma_{n}=\Gamma_{n}^{\prime}+\Gamma_{n}^{\prime\prime}$ .
Let $u_{n}(z)$ be the harmonic measure of $\Gamma_{n}^{\prime}$ with respect to $\Phi_{n}$ , such
that $u.(z)$ is harmonic in $\Phi_{n}$ ,

$u_{n}=1$ on $I_{n}^{\tau^{\prime}}$ , $u_{n}=0$ on $\gamma^{(1)}$ and on $\Gamma_{n}^{\prime\prime}$ . (9)

We shall prove that $u_{n}(z)$ does not tend to zero with $ n\rightarrow\infty$ .
Let $v.(z)$ be the conjugate harmonic function of $u_{n}(z)$ and put

$d_{n}=\int_{\gamma^{(1)}}dv_{n}>0$ . (10)

We remark that at least one of the boundary curves $\gamma_{1i\cdots i_{n}}^{(k_{1})}$ of $F_{1i_{1}\cdots i_{n}}$

belongs to $\Gamma_{n}^{\prime}$ .
Let $F_{1i_{1}\cdots in}$ connect to $F_{1i_{1}\cdots i_{n-1}}$ along $\gamma=\gamma_{1i\cdots i_{n-1}}^{(k_{1})}$ . We draw a ring

cut $\gamma^{\prime}$ in $F_{1i_{1}\cdots i_{n-1}}$ , which lies in a small neighbourhood of $\gamma$ , such that
$\gamma,$

$\gamma^{\prime}$ bound a ring domain $\Delta$ in $F_{1i_{1}\cdots i_{n-1}}$ . We add $\Delta$ to $F_{1i_{1}\cdots i_{n}}$ and put

$F_{1i_{1}\cdots i_{n}}=\Delta+F_{1i_{1}\cdots i_{n}}$ .

Let $\omega(z)$ be harmonic in $ff_{1i_{1}\cdots i_{n}}$ , such that
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$\omega=\left\{\begin{array}{llllll} & & & & & 0on\gamma^{\prime}andon\gamma_{1i}^{(k_{1})}..;_{n}eI_{n}^{v/\prime},\\ & & & & & 1 on\gamma_{1i\cdots i_{n}}^{(k_{1})}\in\Gamma_{n}^{\prime},\end{array}\right.$ (11)

then
$\omega(z)>\alpha>0$ on $\gamma$ ,

where $\alpha>0$ is a constant. Since $u_{n}(z)>0$ on $\gamma^{\prime}$, we have by the
maximum principle,

$u_{n}(z)\geqq\omega(z)>\alpha>0$ on $\gamma$ . (12)

Hence the connected part $\Phi_{n}(\tau)$ of $\Phi_{n}$ , for which $u_{n}(z)\leqq\tau(\leqq\alpha)$ and
contains $\gamma^{(1)}$ on its boundary does not contain $\gamma$ , so that if we denote
the niveau curve: $u_{n}(z)=T(0\leqq\tau\leqq 1)$ by $C_{\tau}$ , then if $\tau\leqq\alpha$ ,

$\int_{c_{\tau}}dv_{n}=\int_{\gamma^{(1)}}dv_{n}=d_{n}$ $(\tau\leqq\alpha)$ . (13)

Let $L(\tau)$ be the length of $C_{\tau}$ measured on the z-sphere and $A(\tau)$ be the
spherical area of $\Phi_{n}(\tau)$ :

$L(\tau)=\int_{c_{\tau}}\frac{|z^{\prime}|dv_{n}}{1+|z|^{2}}$ , $z^{\prime}=\frac{dz}{d\zeta},$ $\zeta=u_{n}+iv_{n}$ ,

$A(\tau)=\int_{0}^{\tau}\int_{c_{\tau}}(\frac{|z^{\prime}|}{1+|z|^{2}})^{2}d\tau dv_{n},$ $S(\tau)=A(\tau)/|F|$ ,

$|F|$ being the spherical area of $F$, then

$L(\tau)^{2}\leqq\int_{C_{\tau}}dv_{n}.\int_{C_{\tau}}(\frac{|z^{\prime}|}{1+|z|^{2}})^{2}dv_{n}\leqq d_{n_{d\tau^{\tau}}^{-}}^{dA()}(\tau\leqq\alpha)$ . (14)

Now $C_{\tau}$ consists of a finite number $\nu(\tau)$ of disjoint closed curves, each
of which is not homotop null, so that each curve has a length $\geqq a>0$ ,
where $a$ is a constant, which depends on $F$ only, hence

$L(\tau)\geqq a\nu(\tau)$ . (15)

Let $\rho(\tau)$ be the Euler’s characteristic of $\Phi_{n}(\tau)$ , then since $\Phi_{n}(\tau)(0\leqq\tau\leqq\alpha)$

is of planar character and the boundary of $\Phi_{n}(\tau)$ consists of $C_{\tau}$ and
$\gamma^{(1)}$ ,

$\rho(\tau)\leqq\nu(\tau)\leqq L(\tau)/a$ . (16)

Now $\Phi_{n}(\tau)$ is a covering surface of $F$ and $2(p-1)=2$ is the Euler’s
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characteristic of $F$, so that by Ahlfors’ fundamental theorem on cover.
ing $surfaces^{5)}$ :

$\rho^{+}(\tau)\geqq 2S(\tau)-hL(\tau)$ , (17)

where $h>0$ is a constant, which depends on $F$ only.
Hence from (16), (17), we have

$A(\tau)\leqq kL(\tau)$ , (18)

where $k>0$ is a constant, so that from (14),

$A(\tau)^{2}\leqq k^{2}d_{n}\frac{dA(\tau)}{d_{\mathcal{T}}}$ $(\tau\leqq\alpha)$ ,

hence

$\frac{\alpha}{2}\leqq k^{2}d_{n}\int_{--,2}^{\alpha_{\alpha}}\frac{dA(\tau)}{A(\tau)^{2}}\leqq k^{2}d_{n}/A(\frac{\alpha}{2})$ , or

$\frac{\alpha}{2}A(\frac{\alpha}{2})\leqq k^{2}d_{n}$ .

If $u_{n}(z)\rightarrow 0$ , then $d_{n}\rightarrow 0$ , so that $A(\frac{\alpha}{2})\rightarrow 0$ , which is absurd. Hence

$u_{n}(z)$ does not tend to zero with $ n\rightarrow\infty$ .
Let $\gamma$ be a ring cut of $\Phi$ , which lies in $\Phi-F_{1}$ . If we cut $\Phi$

along $\gamma$, then $\Phi$ breaks up into two parts. We denote that part,
which does not contain $F_{1}$, by $\Phi[\gamma]$ .

With this notation, we put

$\tilde{\Phi}_{n}=\Phi_{n}+$

$\sum_{k_{1}),\gamma_{1i\cdots i_{n}}^{\prime}\epsilon\Gamma_{n}^{\prime}}\Phi[\gamma_{1i\cdots i_{n}}^{(k_{1})}]$

. (19)

Let $\Lambda_{n}$ be the compact boundary of $\tilde{\Phi}_{n}$ and $\tilde{u}_{n}(z)$ be the harmonic
measure of the ideal boundary of $\tilde{\Phi}_{n}$ with respect to $\tilde{\Phi}_{n}$ , such that
$\tilde{u}_{n}(z)$ is harmonic in $\tilde{\Phi}_{n},$

$\nu n\sim t_{n}=0$ on $\Lambda_{n},$ $u_{n}=1$ on the ideal boundary of
$\tilde{\Phi}_{n}^{\S}$ , then since cap. $E_{1}>0$ , we see easily that $\tilde{u}_{n}(z)\not\equiv 0$, so that
$0<\tilde{u}_{n}(z)<1$ in $\tilde{\Phi}_{n}$ .

We shall prove that $l^{\vee}’\iota_{n}(z)$ does not tend to zero with $ n\rightarrow\infty$ . Let
$\gamma=\gamma_{1i\cdots i_{n}}^{(k_{1})}\in I_{n}^{7^{\prime}}$ . We draw a ring cut $\gamma^{\prime}$ in $F_{1i_{1}\cdots i_{n}}$ , which lies in a small

5) L. Ahlfors: Zur Theorie der \"Uberlagerungsflachen. Acta Math. 65 (1935).
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neighbourhood of $\gamma$, such that $\gamma,$
$\gamma^{\prime}$ bound a ring domain $\Delta$ in $F_{1i_{1}\cdots i_{n}}$.

Let $\omega(z)$ be the harmonic measure of the ideal boundary of $\Phi[\gamma^{\prime}]$

with respect to $\Phi[\gamma^{\prime}]$ , such that $\omega(z)$ is harmonic in $\Phi[\gamma^{\prime}],$ $\omega=0$ on
$\gamma^{t},$ $\omega=1$ on the ideal boundary of $\Phi[\gamma^{\prime}]$, then

$\omega(z)>\alpha>0$ on $\gamma$ ,

where $\alpha>0$ is a constant. Since $\tilde{u}_{n}(z)>0$ on $\gamma^{\prime}$ , we have by the
maximum principle,

$\tilde{u}_{n}(z)\geqq\omega(z)>\alpha>0$ on $\gamma$ ,

so that
$\tilde{u}_{n}(z)\geqq\alpha u_{n}(z)$ on $\gamma$ ,

hence by the maximum principle,

$\tilde{u}_{n}(z)\geqq\alpha u_{n}(z)$ in $\Phi_{n}$ . (20)

Since $u_{n}(z)$ does not tend to zero, $\tilde{u}_{l}(z)$ does not tend to zero with
$ n\rightarrow\infty$ , so that

$\tilde{u}_{n}(z_{0})\geqq\eta>0$ $(n=1,2,\cdots)$ , (21)

where $z_{0}$ is a fixed point of $F_{1}$ .
We map $\tilde{\Phi}_{n}$ on $|\tau|<1$ conformally, such that $z_{0}$ becomes $\tau=0$ and

put $U_{n}(\tau)=\tilde{u}_{n}(z)$ , then
$U_{n}(0)\geqq\eta>(n=1,2,\cdots)$ . (22)

Since the compact boundary of $\tilde{\Phi}_{n}$ is mapped on a set of arcs on $|\tau|=1$ ,
on which $U_{n}(\tau)=0$ , if we denote the complement of this set by $e_{n}$ , then

$me_{n}\geqq 2\pi U_{n}(0)\geqq 2\pi\eta>0$ $(n=1,2,\cdots)$ . (23)

We map $F^{(\infty)}$ on $|w|<1$ conformally, such that $z_{0}$ becomes $w=0$.
Then $|\tau|<1$ is mapped on a domains $\Delta_{n}$ in $|w|<1$ . Let $M_{n}$ be the
image of $e_{n}$ on $|w|=1$ , then by an extension of Lowner’s theorem6), we
have $mM_{n}\geqq me_{n}$ , so that

$mM_{n}\geqq 2\pi\eta>0$ $(n=1,2,\cdots)$ .

6) Y. Kawakami: On an extension of Lowner’s lemma. Jap. Journ. Math. 17 (1941).
M. Tsuii: On an extension of Lowner’s theorem. Proc. Imp. Acad. 18 (1942).
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Hence if we put $M=\varlimsup_{n\rightarrow\infty}M_{n}$ , then

$mM\geqq 2\pi\eta>0$ . (24)

We see easily that $M$ is a sub.set of the image of $E_{1}$ on $|w|=1$ , hence
$E_{1}$ is mapped on a set of positive measure on $|w|=1$ .

Hence our theorem is proved.

Mathematical Institute, Tokyo University.
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