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1. Introduction and notations.

Recently the theory of symmetrization due to P\’olya and Szeg\"o has
successfully been utilized in the theory of functions and potential theory
by Hayman [3] and Jenkins [4]. In the prese.nt paper we will, by the
method of symmetrization, obtain several results on omitted values of
univalent functions in an annulus, which may be considered as exten-
sions of theorems established by Goodman [1] and Jenkins [4].

For the purpose we take an annulus in the z-plane

$D$ : $Q<|z|<1$ $(Q>0)$

as a doubly-connected basic domain and consider a class $\mathfrak{F}$ of univalent
functions $w=f(z)$ which are regular in $D$ and map $D$ onto subdomains
of the domain $|w|>Q$ in such a way that the circle $|w|=Q$ corresponds
to the circle $|z|=Q$.

In the sequel the Gr\"otzsch’s extremal function [2]

$\mathcal{T}(1)$ $w_{q}=f_{0}(z, q)$ , $f_{0}(Q, q)=q$ $(0<q<Q)$ ,

which maps $D$ onto an annulus $q<|w_{q}|<1$ slit from $w_{q}=1$ to $w_{q}=\omega_{q}$

$(q<\omega_{q}<1)$ along the positive real axis, plays an important r\^ole and
it is explicitly represented in terms of the elliptic function $b(u)$ in the
form [6]

(2) $k^{\prime}(q)^{2}\frac{\oint_{q}(\frac{1}{i}1gw_{q})-e_{3}(q)}{\rho_{q}(\frac{1}{i}1gw_{q})-e_{2}(q)}=k^{\prime}(Q)^{2}\frac{\theta_{Q}(\frac{1}{i}1gz)-e_{3}(Q)}{b_{Q}(\frac{1}{i}1gz)-e_{2}(Q)}$ ,

the primitive periods of $\oint_{q}(u)$ being $ 2\pi$ and $2ilg(1/q)$ , and $k^{\prime}(q)$ being
.a complementary modulus of the elliptic function sn. For the brevity
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we denote the right.hand side by $S(z, Q)$ . Then we have, instead of
(2),

$S(w_{q}, q)=S(z, Q)$

or
(3) $w_{q}=S^{-1}(S(z, Q),$ $q$) $(0<q<Q)$ ,
and
(4) $\omega_{q}=S^{-1}(k^{\prime}(Q)^{2}, q)$ $(0<q<Q)$ .

2. Preliminary lemmas.

For later use we will establish several lemmas in the following.
LEMMA]. Let $w=f(z)$ be any function belonging to the class $\mathfrak{F}$

and let $d$ be the shortest distance from the origin $w=0$ to the outer
boundary component of the image domain of the annulus $D$ by $w=f(z)$ .
Then it holds that
(5) $PQ\leqq d\leqq 1$ ,

where $P(>1)$ is a value satisfying a relation $1/Q=\Phi(P),$ $lg\Phi(P)$ being
the modulus of the so.called Grotzsch’s extremal domain $G_{P}$ : $|w|>1$

with a slit along the $ray<P,$ $+\infty>$ . The result is best possible.
PROOF. By means of the invariance of modulus of any ring domain

under any conformal mapping and the well-known Grotzsch’s theorem
[2], the lemma is easily proved. The equality occurs in the left-hand
side of (5) if and only if the image domain is the domain transformed
by $w^{\prime}=e^{i\theta}Qw$ ( $\theta$ real) from $G_{P}$ , and in the right-hand side of (5) if
and only if the image domain is identical with the annulus $D$ itself.

It is known that $\omega_{q}$ of (4) is a strictly monotone increasing func-
tion of $q$ in the interval $(0, Q)$ . Further we shall obtain another pro $\cdot$

perty of this function in the following
LEMMA 2. $\omega_{q}/q$ is a strictly monotone increasing function of $q$ in

the interval $(0, Q)$ . More precisely stated, there holds

(6) $\frac{d1g_{\omega_{q}}}{d1gq}>1$ in $(0, Q)$ ,

and further

(7)
$\lim_{q\rightarrow 0}\frac{\omega_{q}}{q}=P$ and $\lim_{q\rightarrow Q}\frac{\omega_{q}}{q}=\frac{1}{Q}$ $(\frac{1}{Q}=\Phi(P))$ .
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PROOF. Owing to Komatu [6], we can conclude that the function
$\omega_{q}$ of $q$ satisfies the following differential equation

$\frac{dlg\omega_{q}}{dlgq}=1+2\sum_{n=1}^{\infty}\frac{\omega_{q}^{n}-q^{2n}/\omega_{q}^{n}}{1-q^{2n}}$ $(0<q<Q)$ .

Since $\omega_{q}>q$ in $(0, Q)$ , there holds the inequality (6) and therefore the
monotonicity of the function $\omega_{q}/q$ is an immediate consequence of (6).
Rewriting (2) in terms of the elliptic $\theta$ -functions, we obtain

(8) $\prod_{n=1}^{\infty}(\frac{1-}{1+}qq_{2\overline,-1}^{2n_{l}-1})^{4}\frac{\theta_{3}(0)\theta_{4}(v)}{\theta_{4}(0)\theta_{3}(v)}=k^{\prime}(Q)$ $(v=\frac{1g_{\omega}}{2\pi i}q)$ .

Putting $\lim_{q\rightarrow 0}\omega_{q}/q=A$ and letting $q$ tend to $0$ in (8), we have a relation

$A=\frac{1+k^{\prime}(Q)}{1-k(Q)}$ .

Therefore it holds that $A=P(1/Q=\Phi(P))[6]$. Thus the first relation
of (7) holds and the second of (7) is immediately obtained, since $\omega_{q}\rightarrow 1$

as $q\rightarrow Q$.

3. Circular symmetrization.

Let $D(f)$ be an image domain by any function $w=f(z)\in \mathfrak{F}$ With
$D(f)$ we associate a domain $D^{*}(f)$ by circuiar symmetrization in the
following manner: for all $s,$ $ Q<s<\infty$ , if $D(f)\cap\{|w|=s\}$ consists of
the whole circumference $|w|=s,$ $D^{*}(f)\cap\{|w|=s\}$ shall do the same;
otherwise $D^{*}(f)\cap\{|w|=s\}$ shall consist of a single arc on $|w|=s$ of
length equal to that of $D(f)\cap\{|w|=s\}$ and centered at the point
$w=-s$ . Both ring domains $D(f)$ and $D^{*}(f)$ have the circle $|w|=Q$

as the inner boundary component.
It was proved by P\’olya [9] that if $\Omega$ (or $\Omega^{*}$ ) denotes the harmonic

measure of the outer boundary component of the respective ring domain
$D(f)$ (or $D^{*}(f)$ ) there holds the following inequality relating to the
Dirichlet integrals of both functions;

(9) $(\int_{D(f)}(grad\Omega)^{2}dudv\geqq\int\int_{D^{*}(f)}(grad\Omega^{*})^{2}dudv,$ $(w=u+iv)$ .

On the other hand it is well known that the Dirichlet integral of
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$AQ$ (or $\Omega^{*}$ ) equals $2_{\pi}/$($modulus$ of the respective ring domain). Therefore
we obtain the following

LEMMA 3. Let $D(f)$ be an image ring domain by $w=f(z)\in \mathfrak{F}$, and
denote by $D^{*}(f)$ the ring domain obtained by circular symmetrization of
$D(f)$ in the above manner. Then it holds that
$’(10)$ Mod $D(f)\leqq ModD^{*}(f)$ ,

the notation Mod denoting the modulus of the respective domain.

4. Generalization of Jenkins’ theorem.

Recently J. A. Jenkins [4] has proved the following theorem: Let
$S$ denote the class of functions $f(z)$ regular and univalent for $|z|<1$

with the expansion $ f(z)=z+a_{2}z^{2}+\cdots$ about $z=0$ . Let $L(f, r)$ denote the
length of the set of values on the circle $|w|=r(1/4<r<1)$ not covered
.by values of $f(z)eS$ for $|z|<1$ . Then there $h_{0}u_{S}$

$t(11)$ $L(f, r)\leqq 2r\cos^{-1}(8r^{i}-8^{1}r-1)$ $(1/4<r<1)$ .
The result is best possible.

In this section we will generalize the above theorem to the case
where an annulus $D:Q<|z|<1$ is a doubly-connected basic domain.
For the purpose we use the following canonical slit mapping function
$w=H_{q}(z,p)$ . This function maps an annulus $q<|z|<1$ onto the unit
circle $|w|<1$ with a concentric circular slit, which is bisected by the
positive real axis, as follows: $|w|=1$ corresponds to $|z|=1$ , the slit to
the circle $|z|=q$ and the origin $w=0$ to a point $z=-p(q<p<1)$ .
Such mapping function can be determined uniquely and its explicit
representation is given in the form [11]

(12) $w=H_{q}(z,p)=z\frac{\theta(qz/p)}{\theta(pz/q)}$ $(0<q<p<1)$ ,

$\theta(z)=\sum_{n--\infty}^{+\sim}q^{n}’ z^{n}$ . Since

$\theta(z)=\theta_{3}(v/2)=\prod_{n-1}^{\infty}(1-q^{2n})\prod_{n\Leftrightarrow 1}^{\infty}(1+q^{2n-1}z)(1+q^{2n-1}z^{-1})$ ,

$(z=\exp(v\pi i))$ ,
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we can find the values of the function $H_{q}(z,p)$ . An alternative repre.
sentation of this function was given by Komatu [7]. It is known that
the circular slit is situated on the circle $|w|=p$ and centered at the
point $w=p$. We denote the slit by $\{|w|=p, |\arg w|\leqq\delta(p, q)\}$ . $\delta(p, q)$,

depends upon $p$ and $q$.
Now we successively map the annulus $D$ onto new domains by

the following functions:

(i) $\zeta=f_{0}(z, q)$ , (ii) $\zeta_{1}=-\underline{q}$ ,
$\zeta$

(iii) $\zeta_{2}=H_{q}(\zeta_{1},p)(p=q/\omega_{q})$ , (iv) $w=\frac{Q}{\zeta_{2}}$ .

Thus the annulus $D$ is mapped onto a domain: $|w|>Q$ slit along a
ray $<Q_{\omega_{q}}/q,$ $+\infty>$ and along a concentric circular arc $\{|w|=Q_{\omega_{q}}/q$,
$|\arg w|\leqq\delta(q/\omega_{q}, q)\}$ , in such a way that the circle $|w|=Q$ corresponds
to the circle $|z|=Q$ and the slit to the circle $|z|=1$ .

Using Lemma 2, for any value of $r(PQ<r<1)$ we can uniquely
determine $q(0<q<Q)$ such that

(13) $\frac{Q_{\omega_{p}}}{q}=r$ .

In other words, $q$ is uniquely determined as a function of $r$. Here we
denote by $B(r)$ the above slit domain, $i$ . $e$ .

$B(r):\left\{\begin{array}{l}|w|>Qs1ita1ongtheray<r,+\infty>anda1ongthe\\concentriccircu1ararc\{|w|=r,|argw|=<\delta(Q/r,q)\}.\end{array}\right.$

Obviously, $\delta(Q/r, q)$ is a function of $r$ only. For the brevity, we denote
this function of $r$ by $\delta_{1}(r)$ .

After above preparatory considerations, we obtain the following
THEOREM 1. Let $L(f, r)$ denote the length of the set of values on

the circle $|w|=r(PQ<r<1)$ not covered by values of $f(z)\in \mathfrak{F}$ for the
annulus $D:Q<|z|<1$ . Then there holds
(14) $L(f, r)\leqq 2r\delta_{1}(r)$ .
The inequality (14) is best possible.

PROOF. Now suppose that we had $L(f, r)>2r\delta_{1}(r)$ for some $f\in \mathfrak{F}$

and some $r(PQ<r<1)$ . Let $D^{*}(f)$ be the domain obtained from $D(f)$
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by circular symmetrization in the manner explained in \S 3. Then
$D^{*}(f)$ would be a proper subdomain of the domain $B(r)$ . Hence we
obtain an inequality

(15) Mod $D^{*}(f)<ModB(r)$

and further, by lemma 3, another inequality

(16) Mod $D(f)\leqq ModD^{*}(f)$ .
Therefore it holds that
(17) Mod $D(f)<ModB(r)$ .
Since the latter has the value $lg(1/Q)$ , we would be led to a contradic $\cdot$

tion. This proves the theorem. The exactness of the inequality (14)
is easily recognized.

REMARK. In the above theorem, we determined the upper bound
of $L(f, r)$ for any function $f\in \mathfrak{F}$ and for any value of $r$ in the interval
$(PQ, 1)$ . For any value of $r,$ $Q<r\leqq PQ$ or $r\geqq 1,$ $L(f, r)\equiv 0$ or
$ L(f, r)\equiv 2\pi\gamma$, respectively, because of Lemma 1. Hence it is trivial to
deal with the problem in such cases.

5. Generalization of Goodman’s theorem.

Few years ago R. E. Goodman [1] proved the following theorem on
omitted values: Let $S$ denote the class of functions $f(z)$ regular and
univalent for $|z|<1$ with the expansion $ f(z)=z+a_{2}z^{2}+\cdots$ about $z=0$.
Let $c$ be fixed, and suppose that for $|z|<1,$ $f(z)$ omits all $\xi$ for which

$|\xi-c|\leqq R$ .
Then there holds

$1(18)$ $R\leqq|c|\frac{4|c|-1}{4|c|+1}$ .

The inequality (18) is best possible.
In order to generalize the theorem to the case of doubly.connected

basic domain $D$ , we now introduce the following linear transformation
[5]:

(19) $\zeta=t\frac{R_{1}}{r_{1}}e^{i\Theta}\frac{d(w-w_{1})-s(w_{2}-w_{1})}{d(w-w_{1})-t(w_{2}-w_{1})}$ ; $\Theta$ real, $d=|w_{2}-w_{1}|(>0)$ ,
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$s$ and $t(s>t)$ being the roots of the equations

\langle 20)

$w_{1},$ $w_{2},$ $r_{1}(>0),$ $r_{2}(>0);w_{1}\neq w_{2}$ and $R_{1}(>0),$ $R_{2}(>0)$ being given but
satisfying a relation

(21) $\frac{R_{2}}{R_{1}}=\frac{J_{2}^{\prime}}{\gamma_{1}}\frac{t}{d-t}$ .

By this transformation the whole w.plane with two circular holes
$|w-w_{1}|\leqq r_{1}$ and $|w-w_{2}|\leqq r_{2}$ is mapped onto an annulus in the $\zeta$-plane:
$R_{2}<|\zeta|<R_{1}$ , in such a way that the circle $|\zeta|=R_{j}(j=1,2)$ corresponds
to the circle $|w-w_{j}|=r_{j}(j=1,2)$ and the circle $|\zeta|=R_{1}t/r_{1}$ to the’ radical
axis of two circles $|w-w_{j}|=r_{j}(i=1,2)$ .

Putting $w_{1}=c(>0),$ $w_{2}=0,$ $r_{1}=R_{0},$ $r_{2}=Q(<1),$ $R_{1}=1,$ $R_{2}=q(<1)$ ,
$d=c$ and $\Theta=0$ in (19) (20) and (21), we obtain a transformation

(22) $\zeta=\frac{t}{R_{0}}\frac{w-c+s}{w-c+t}$ ,

$’(23)$ $(t<s)$

(24) $q=\frac{Q}{R_{0}}\frac{t}{c-t}$ .

From (23), $t$ is the smaller root of the quadratic equation

(25) $ct^{2}-(c^{2}+R_{0}^{2}-Q^{2})t+cR_{0}^{2}=0$ .
The inverse function of (22) maps the annulus $q<|\zeta|<1$ onto the
domain $B$ : whole plane with two circular holes, $|w|\leqq Q,$ $|w-c|\leqq R_{0}$.
It is easily verified that the point $ w=\infty$ corresponds to the point
$\zeta=t/R_{0}$ and the point $w=c+R_{0}$ to the point $\zeta=1$ , and hence the ray
$ c+R_{0}<w<+\infty$ to the segment $1>\zeta>t/R_{0}$.

We shall now verify that for a proper choice of $q(0<q<Q)$ there
holds a relation

\langle 26) $\omega_{q}=\frac{t}{R_{0}}$ $(<1)$ ,
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$\omega_{q}$ being the function of $q$ given by (4). For the purpose, eliminating
$t$ from (25) and (26), we obtain
(27) $\omega_{q}R_{\cup}^{2}-c(\omega_{q}^{2}+1)R_{0}+(c^{2}-Q^{2})\omega_{q}=0$ ,

and analogously from (24) and (26)

(28) $R_{0}=\frac{c}{\omega_{q}}-\frac{Q}{q}$ .

Inserting (28) into (27), we obtain

(29) $c=\frac{Q_{\omega_{q}}(1-q^{2})}{q(1-\omega_{q}^{2})}$ .

Consider $c$ as a function of $q(0<q<Q)$ . Since $(q/\omega_{q})(d\omega_{q}/dq)>1$ by
(6) of lemma 2 and $1>\phi(1-\omega_{q}^{2})/\omega_{q}^{2}(1-q^{2})$ , an inequality

$\frac{d}{dq}\frac{1-q^{2}}{1-\omega_{q}^{2}}>0$ $(0<q<Q)$

is easily deduced. Because of the monotonicities of both functions
$(1-q^{2})/(1-\omega_{q}^{2})$ and $\omega_{q}/q$ we conclude that (29) considered as a function
of $q$ is strictly monotone increasing in the interval $(0, Q)$ . Further
$c\rightarrow PQ$ as $q\rightarrow 0$ by (7) and $ c\rightarrow+\infty$ as $q\rightarrow Q$ . Hence, for any value
of $c(>PQ)$ we can uniquely determine the value of $q(0<q<Q)$ satisfy-
ing the relation (29). By the value of $q$ thus obtained and (26) and
(28), the value of $t$ and of $R_{0}$ are determined. It is easily shown that
conversely these values satisfy the conditions (23) and (24). Thus the
annulus $D:Q<|z|<1$ in the z-plane is successively mapped by the
function $\zeta=f_{0}(z, q)$ and the inverse function of (22) onto the domain
$B_{c}$ : whole w-plane with two circular holes $|w|\leqq Q,$ $|w-c|\leqq R_{0}$ and
with the slit along the ray $<c+R_{0},$ $+\infty>$ . Obviously such mapping
function belongs to the class $\mathfrak{F}$ .

After above preparatory considerations, we will prove the following
THEOREM 2. Let $c$ be any fixed value $(|c|>PQ)$ and suppose that

in the annulus $D,$ $w=f(z)e\mathfrak{F}$ omits all $\xi$ for which
$|\xi-c|\leqq R$ .

Then there holds

(30) $R\leqq R_{0}=\frac{|c|}{\omega_{q}}-\frac{Q}{q}$
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$q$ being determined by (29) and $\omega_{q}$ by (4). The inequality (30) is best
possible.

PROOF. Without loss of generality take $c>0$. Now suppose that
we had $R>R_{0}$ for some $f(z)e\mathfrak{F}$ and some $c(PQ<c)$ . Then we can, by
the same method with that of proof of Theorem 1, deduce the inequality

Mod $D(f)<ModB_{c}$ .
Since the latter has the value $lg(1/Q)$ , we should be led to a contradic-
tion. This proves the theorem. The exactness of the inequality (30)
is easily recognized.

REMARK. By Lemma 1 it is easily r-ecognized that, if $Q<|c|$
$\leqq PQ,$ $R_{0}=0$ . Hence it is trivial to deal with the problem in such a
case.

6. A subclass of $\mathfrak{F}$ .
In this section we deal with a certain subclass $\mathfrak{F}_{c}$ of $\mathfrak{F}$ , namely a

class of univalent functions $\in \mathfrak{F}$ such that in $D:Q<|z|<1$

${\rm Re} f(z)>-c$ $(c>0)$ .
In order to obtain a theorem on omitted values by any function

$\in \mathfrak{F}_{c}$ , we start with a preparatory consideration. Consider again the
linear transformation (19). Putting $r_{1}=r_{2}=Q,$ $w_{1}=-2c,$ $w_{2}=0$ , $d=2c$,
$\Theta=\pi,$ $R_{1}=1/q$ and $R_{2}=q$, we obtain

$1(31)$ $\zeta=-\frac{t}{Qq}\frac{w+2c-s}{w+2c-t}$

(32) $(s>t)$ ,

{33) $q^{2}=\frac{t}{2c-t}$

It is easily verified that by this transformation the half.plane ${\rm Re} w>-c$

with a circular hole $|w|\leqq Q$ is mapped onto an annulus $q<|\zeta|<1$.
Here the circle $|\zeta|=q$ corresponds to the circle $|w|=Q$ , the circle $|\zeta|=1$

to the straight line ${\rm Re} w=-c$ and the point $\zeta=1$ to the point $w=-c$.
Since the straight line ${\rm Re} w=-c$ is the radical axis of the circles $|w|=Q$

and $|w+2c|=Q$, there holds
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(34) $t=qQ$ .
Eliminating $t$ from (33) and (34), we have

(35) $c=\frac{Q}{2}(q+\frac{\tau L}{q})$ .

Considering $c$ as a function of $q(0<q\leqq Q),$ $c$ is strictly monotone de-
creasing. Conversely, for any value of $c(\geqq(1+Q^{2})/2),$ $q$ is uniquely
determined so as to satisfy the relation (35). By the Grotzsch’s func.
tion $\zeta=f_{0}(z, q)$ for the value of so determined $q$ and the inverse func.
tion of (31) $(t=qQ)$ , the annulus $D$ can be mapped onto a domain $G_{\sigma}$

in the w-plane:

$G_{c}$ : $\left\{\begin{array}{l}theha1f\cdot p1aneRew>-cwithacircularho1e|w|\leqq Q\\andwithas1ita1ongthesegment<-c,\gamma_{0}>,where\end{array}\right.$

(36) $\gamma_{0}=-\frac{(2c-s)+(2c-t)\omega_{q}}{1+\omega_{q}}$ $(<0)$ .

Here the circle $|w|=Q$ corresponds to the circle $|z|=Q$ . Therefore
such a mapping function belongs to the class $\mathfrak{F}_{c}$ .

After above consideration, we can prove the following
THEOREM 3. Let $f(z)\in \mathfrak{F}_{c}$ omit $\gamma$ in the annulus $D:Q<|z|<1.$ .

Then there holds

(37) $|\gamma|\geqq|\gamma_{0}|=\frac{(2c-s)+(2c-t)\omega_{q}}{1+\omega_{q}}$ , $(c\geqq(1+Q^{2})/2)$ ,

$q$ being determined by (35) and $s,$
$t$ by (32). The inequality (37) is

best possible.
The proof of this theorem is similar to that of Theorem 1 or 2,

and will be omitted. We only notice that in this case for the sym-
metrized domain $D^{*}(f),$ $D^{*}(f)\cap\{|w|=s\}(Q<s)$ should be centered at
the point $w=s$ .

REMARK. It is easily verified that for any function $f(z)\in \mathfrak{F}_{c}$

$c\geqq(1+Q^{2})/2$ .

7. Bounded univalent functions.

In this section we deal with a subclass $\mathfrak{F}_{M}$ of $\mathfrak{F}$ , namely a class.
of bounded univalent functions: $|f(z)|<M(M>1)$ . Using Gr\"otzsch $s$
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extremal function, consider a function
(38) $w=Mf_{0}(z, q)$ $(q=Q/M)$ ,

which maps the annulus $D:Q<|z|<1$ onto an annulus $Q<|w|<M$
slit along a segment $<M_{\omega_{Q/M}},$ $M>$ . This function obviously belongs.
to the class $\mathfrak{F}_{M}$.

By the method of symmetrization we obtain the following
THEOREM 4. Let $f(z)\in \mathfrak{F}_{M}$ omit $\gamma$ in the annulus $D:Q<|z|<1$ .

Then there holds
139) $|\gamma|\geqq M_{\omega_{QJM}}$ ,

$\omega_{q}(q=Q/M)$ being determined by (4). The inequality (39) is best
possible.

The proof of this theorem is similar with that of Theorem 1, and
will be omitted. We only notice that the theorem can also be deduced‘
from Grotzsch’s distortion theorem [2] or Komatu’s theorem [6] without
using the method of symmetrization.

8. Steiner symmetrization.

In this section we deal with a certain class of univalent functiona
different from the class $\mathfrak{F}$ , namely the class $\mathfrak{C}$ of all univalent functions
$w=f(z)$ in the annulus $D;Q<|z|<1$ which map $D$ onto subdomains
of the strip domain $S:0<{\rm Re} w<1$ in such a way that the whole
boundary of $S$ (${\rm Re} w=0$ and ${\rm Re} w=1$ ) corresponds to the circle $|z|=1$ .
For simplicity we denote the inner boundary component of the image
ring domain by $I^{\gamma}$ and put $h(f)=_{we\Gamma}Osc({\rm Im} w)$ . Then we have the fol-
lowing

THEOREM 5. Let $f(z)$ be any function $\in \mathfrak{C}$ . Then there holds the
following inequality

(40) $h(f)\leqq\frac{1}{\pi}lg\frac{1}{k^{\prime}(Q)}$

$k^{\prime}(Q)$ being the complementary modulus of the sn-function with the
primitive periods $ 2\pi$ and $2i$ Ig $(1/Q)$ . The inequality (40) is best pos-
sible.

PROOF. Denote by $D(f)$ the image ring domain by $w=f(z)$ . Let
$D^{*}(f)$ be the domain obtained from $D(f)$ by Steiner symmetrization
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[10] with respect to the line ${\rm Re} w=\frac{1}{2}$. Speaking more precisely, let

$T=S-D(f)$ , and let $T^{*}$ be the set obtained from the set $T$ by Steiner
symmetrization with respect to ${\rm Re} w=\frac{1}{2},$ $i.e$. the set intersected

by any line $v=const$. $(w=u+iv)$ in a single segment of length equal
to the total intersection of $T$ with this line and centered at the point

$w=\frac{1}{2}+iv$. Thus $D^{*}(f)$ is defined as follows: $D^{*}(f)=S-T^{*}$ . Then,

in the case of Steiner symmetrization, Lemma. 3 al$o holds for $f(z)\in \mathfrak{C}$.
Therefore we obtain
\langle 41) Mod $D(f)\leqq ModD^{*}(f)$ .

Now suppose that we had

$h(f)>\frac{1}{\pi}$ Ig $\frac{1}{k^{\prime}(Q)}$

for some $f(z)\in \mathfrak{C}$ . Then $D^{*}(f)$ would be a proper subdomain of the
strip domain $S$ with a slit along the line ${\rm Re} w=\frac{1}{2}$ and of length

$(1/\pi)lg(1/k^{\prime}(Q))$ . Now we denote by $S_{0}$ such a slit-domain. Hence
we obtain another inequality

(42) Mod $D^{*}(f)<ModS_{0}$ .
From (41) and (42) we have

(43) Mod $D(f)<ModS_{0}$ .
Since the latter has the value $lg(1/Q)$ , as was shown by the author
[8], we should be led to a contradiction. This proves the theorem.
The exactness of (40) is obvious.

October, 1953, Kyoto University.
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