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On the regularity of homeomorphisms of $E^{n}$ .
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Introduction. Let $X$ be a compact metric space and $h$ a homeo.
morphism of $X$ onto itself. The homeomorphism $h$ has been called by
B. $v$ . Ker\’ekj\’art\’o $[3]^{1)}$ regular at $p\in X$ , if $h$ satisfies the following con-
dition: for each $\epsilon\nearrow 0-$

, there exists $\delta,0$ such that for each $x$ with
$ d(p, x)<\delta$ and for each integer $m$

$ d(h^{m}(p), h^{m}(x))\cdot\cdot\rightarrow\epsilon$ .
One of the purpose of this paper is to prove the following
THEOREM 1. $L\rho tX$ be a compact metric space and $h$ a homeo-

morphism of $X$ onto itself. Assumc that $X$ and $h$ have the following
property: there exist two distinct points $a$ and $b$ such that

(i) for each point $xeX-b$ the sequence $\{h^{m}(x)\}$ converges to a
and

(ii) for each point $x\in X-a$ the sequence $\{h^{-\prime\prime l}(x)\}$ converges to $b$ ,
whcre $ m=1,2,3,\cdots$ .

Then $h$ is regular at every point of $X$ except for $a$ and $b$ .
As a corollary of Theorem 1 we have the following
$T\iota\iota F_{\lrcorner}^{\backslash }OREM2$ . Let $h$ be a homeomorphism of the $n\cdot dimensional$

sphere $S^{n}$ onto itself satisfying the same condition as that of Theorem
1. Then $h$ is regular at every point of $S^{t}$ except for $a$ and $b$ .

Now let $S^{it}$ be the n-dimensional sphere in the $(n+1)$-dimensional
Euclidean space $E^{n+1}$ and let $P$ be a point of $S^{t}$ . Let $p(x)$ be the
stercographic projection of $S^{\prime l}-P$ from $P$ onto the n-dimensional Eucli.
dean space $E^{tl}$ tangent at the antipode $O$ of $P$, where we assume that
$O$ is the origin of $E^{l}$ . Let $h$ be a homeomorphism of $E^{t}$ onto itself.
Put $\overline{h}(x)=p^{-1}/\iota p(x)$ where $x\in S^{l}-P$ and put $\overline{h}(P)=P$. Then we have
a homeomorphism $\overline{h}$ of $S^{Jl}$ onto itself. B. $v$ . Ker\’ekj\’arto [3] called a

1) The $numl$ )$crs$ in the brackets refer to the references at the end of this paper.
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homeomorphism $h$ of $E^{n}$ onto itself regular at $p\in E^{n}$ , if 77 is regular at
$p^{-1}(p)$ . By Theorem 2 we have immediately the following

THEOREM 3. Let $h$ be a homeomorphism of $E^{n}$ onto itself satisfy-
ing the following conditions:

(i) for each $xeE^{n}$ the sequence $\{h^{m}(x)\}$ converges to the origin $O$ ,
(ii) for each $x\in E^{n}$ except for $O$ the sequence $\{h^{-m}(x)\}$ converges

to the point at infinily $\infty$ , where $ m=1,2,3,\cdots$ .
Then $h$ is regular at every point of $E^{n}$ except for $O$ .
If $n=2$ , in virtue of a theorem of Ker\’ekj\’art\’o [3], we have im-

mediately the following
THEOREM 4. Let $h$ be a homeomorphism of the plane onto itself

satisfying the same conditions as that of Theorem 3. If $h$ is sense.
prescrving, then $h$ is topologically equivalent to the transformation

$x^{\prime}=21x$ , $y^{\prime}=21y$ ,

and if $h$ is sense-reversing, then $h$ is topologzcally equivalent to the
transformation

$x^{\prime}=21x$ , $y^{\prime}=-\frac{1}{2}y$ ,

in Cartesian coordinates.
Since Theorem 2 follows immediately from Thcorem 1, Theorem

3 immediately from Theorem 2, and Theorem 4 immediately from
Theorem 3, we shall prove in this paper Theorem 1 only. To this
purpose a notion of bulging sequences will be introduced in $S1$ . Then
in $.\backslash _{\backslash }2$ Theorem 1 will be proved. In $\backslash .\nwarrow_{\backslash ^{l}}3$ we shall give another applica-
tion of bulging sequences in relation to the works of A. S. Besicovitch
[1] [2].

\S 1. Bulging sequences.

Let $A$ be a sub,set of a separable metric space $X$ and let $f$ be a
continuous mapping of $X$ into itself. A soquence $\{f^{\iota}(A)\}$ will be said
to be a bulging sequence, if for each natural number $n$

$f^{\prime i}(A)-U$ i-ll) $f^{i}(A)\dashv=0$ .
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LEMMA 1. Let $A$ be compact. If $\cup n=0\infty f^{n}(A)$ is not compact, then
$\{f^{n}(A)\}$ is a bulging sequence.

PROOF. Suppose on the contrary that $\{f^{n}(A)\}$ is not a bulging
sequence and that there exists a natural number $m$ such that

$f^{m}(A)\subset A\cdot f(A)\cdot\cdots\cup f^{m-1}(A)$ .
Then it is easy to see that for each natural number $i$

$f^{m+i}(A)\subset A\cdot f(A)\cdot\cdots\cdot f^{m^{-1}}(A)$ .
Therefore we have

$(^{*})$ $\bigcup_{n- 0}^{\infty}f^{n}(A)=A\cdot f(A)\cdot\cdots\cdot f^{m-1}(A)$ .
Since a continuous image of a compactum is compact and since a
finite sum of compacta is also compact, the right hand side of $(^{*})$ is
compact, which is a contradiction.

LEMMA 2. Let $\{f^{n}(A)\}$ be a bulging sequence and let

$C_{n}=A\sim fn(f^{n}(A)-\bigcup_{i=\iota}^{n-1_{)}}\int^{i}(A))$

for every natural numbcr $n$ . Then $C_{\iota}+0$ and $C_{jl-}$ ) $C_{n\}}1$ .
PROOF. First we prove that $C_{\iota}+0$ . Since $\{f^{n}(A)\}$ is a bulging

sequence, there exists a point $p\in f^{n}(A)-U^{n_{l}- 1}()f^{i}(A)$ . Then there exists
a point $q\in A$ such that $f^{n}(q)=p$ and then $q\in A\leftrightarrow f^{-n}(f^{n}(A)-\bigcup_{i()}^{n-I}f^{i}(A))$

$=C_{l}$ . Therefore $C_{i}\neq 0$ ,

Now we prove that $C_{n-}$ ) $C_{n11}$ . I.et $x$ be a point of $C_{ll+1}$ and suppose
that $x^{-}\in C_{n}$ . Then there exists an $m$ $n$ such that $f^{n}(x)ef^{m}(A)$ . There-
fore $f^{n+1}(x)\in f^{\prime\prime\iota+}{}^{t}(A)$ , which contradicts $xeC_{\iota+1}$ .

LEMMA 3. Let $A$ be compact and let $\{f^{\iota}(A)\}$ be a bulging
sequence. Then there exists a point $p\in A$ such that for each natural
number $n$

$f^{n}(p)\rightarrow Int(A)=0$ .

PROOF. Let $C,,$ , be the same as in Lemma 2. Take $x_{l}\in C_{l}$ .
Since $A$ is compact, there exists a subsequence $\{x,,lj\}$ which converges

to a point $p\in A$ . Then $\{f^{n}(x_{\iota_{i}})\}$ converges to $f^{l}(p)$ for every $n$ . If
$m_{i}\nearrow n$ , then $f(x_{l})tf^{\prime l}(C_{l})i$ $f^{\prime l}(C_{n})$ by Lemma 2. Since $f^{n}(C_{n})\sim A=0$

by the definition of $C_{l},$ $f^{l}(x_{/\iota’})\sim A=0$ for every $m_{i}$ $7l$ . Then wc have
$f^{l}(p)\rightarrow Int(A)=0$ for every $n$ , and the proof is complete.
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\S 2. Proof of Theorem 1.

In \S 2 we suppose that $X$ is a non.degenerated compactum. Take
two distinct points $a$ and $b$ of $X$ and let $\varphi$ be a continuous real.valued
function on $X$ such that

$\int|\varphi(x)=\frac{1}{2}\pi\varphi(x)=-\frac{1}{2}\pi-\frac{1}{2}\pi\leqq\varphi(x)\leqq\frac{1}{2}\pi$

for each $x\in X$ ,

if and only if $x=a$ ,

if and only if $x=b$ .

The existence of such a function is obvious. Put
$\psi(x)=\tan\varphi(x)$ .

For each real number $r$ put

$A(r)=\{x|\psi(x)\geqq r\}\cup a$ , and
$B(r)=\{x|\psi(x)\leqq r\}\cup b$ .

It is easy to see that
(i) $A(r)$ and $B(r)$ are compact,
(ii) if $r>r^{\prime}$, then $\overline{A(r)}\subset A(r^{\prime})$ and $B(r)\supset\overline{B(r^{\prime})}$ ,
(iii) if $r$ tends to $+\infty$ , then $A(r)$ converges to $a$, and
(iv) if $r$ ‘tends to $-\infty$ , then $B(r)$ converges to $b$ .
Now we prove the following
LEMMA 4. Let $f$ be a continuous mapping of $X$ into itself such

that for each $x\in X-b$ the sequence $\{f^{n}(x)\}$ converges to $a$. Then
$\bigcup_{n-0}^{\infty}f^{n}(A(r))$ is compact for every $r$.

PROOF. Suppose on the contrary that $U_{n}2_{0}f^{n}(A(r))$ is not compact.

Then by Lemma 1 $\{f^{n}(A(r))\}$ is a bulging sequence. Therefore by

Lemma 3 there exists a point $p\in A(r)$ such that for each $n$

$f^{n}(p)\rightarrow Int(A(r))=0$ .
Then $\{f^{r}(p)\}$ does not converge to $a$ , which is a contradiction.

Hereafter in \S 2 we assume that a homeomorphism $h$ of $X$ onto
itself satisfies the condition of Theorem 1. Then we have the following
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LEM. IA 5. For cach $r$ the $c\backslash \prime l^{l/lt}’\{h^{ll}(\wedge^{\prime 1(r))}\}$ $0/m’ rgs$ to $a$ .

PROOF. Since $\bigcup_{t-}^{\infty_{()}}((/))$ is compact by $L\iota^{\backslash }nlma4$ , there exists a
real number $r_{0}$ such that $\bigcup_{l}^{\infty_{-()}}/l^{Jl}(\wedge^{-1(r))}\subset A(r_{0})$ . Take $x_{\iota^{\llcorner}}\cdot/\iota^{\prime\prime}(\Lambda(r))$ . It
is easy to see that if we prove that the sequence $\{.r_{\iota}\}$ converges to $a$ ,

then the proof of Lemma 5 is complete.
Since $x_{n}eA(r_{0}),$ .the set $U_{l-()}^{\leftrightarrow}r_{l}$ has a limit point. Now we suppose

that $\bigcup_{l-\approx 0}^{\infty}x_{l}$ has a limit point $p_{c’}A(J_{()}^{\prime)}$ different from $a$ . Then tllere
exists a subsequence $\{x_{l};\}$ which converges to $p$ . Tlicn { $h^{-}’;\iota(,t_{\iota_{j}}^{\prime,)\}}$ con-
verges to $h^{-;;\iota}(p)$ for every natural number $/’ l$ . Now put $y_{r_{i}}=h^{-\prime}’ i(,\iota^{\prime},,);$

’

then $y_{\mu_{j}}eA(r)$ . If $/\iota;>\prime tl$ , then

$h^{-;n}(x_{\iota_{i}})=h^{-\prime\prime l}h^{\prime l};(y,)=h^{Jr_{i^{-\prime}}/\iota}(y,)ch^{\prime l};//l(A(r))$ $\Lambda(r_{()})$ .

Therefore $h^{-;;\iota}(p)\iota_{\sim}^{-A(r_{0})}$ for $every//l$ . Then $\{h^{-\prime/l}(p)\}$ does not converge
to $b$, which is a contradiction.

Similarly we have the following

LEMMA 6. For each $r$ the sequencc $\{h^{-\prime/}(B(J^{l}))\}$ cdnvcrgcs to $b$ .

PROOF OF THEOREM 1. Let $p\in X-a-b$ and let $e$ bc $a$ given
positive real number. Then there exist real numbers $r_{1}$ and $\gamma_{-}$, such
that

$p\in Int(A(r_{1}))$ and $p\in Int(B(r\cdot.’))$ ,

respectively. Put

$U_{1}=\{x|d(a, x)\nwarrow_{\vee}\wedge\frac{1}{2}e\}$ and

$U_{\sim^{)}}=\{x|cl(b, x)<\frac{1}{l\prime 4}e\}$ .

By Lemma 5 and Lemma 6, there exist natural numbers $n_{I}$ and $/l_{\sim}$: such
that $h^{n}(A(r_{1}))\subset U_{1}$ for every $n^{-}\backslash n_{1}$ and that $/\iota^{-Jl}(l3(r) U)$ for $\iota^{\backslash }v_{t^{\iota}}ry$

$n\sim n_{2}$, respectively. Now let $V_{1}$ and $V_{-}$ be $n(-\backslash ighbourhoods$ of $p$ such
that $\delta(h^{n}(V_{1}))<e$ for every $0\leqq n\leqq n_{1}$ and that $\delta(h^{-\gamma\prime}(V_{-},))<\epsilon$ for every
$0\leqq n\leqq n_{2}$ , respectively. Take $\delta>0$ such that

$\{x|d(p, x)<\delta\}(-- V_{1}\sim V_{l}\leftrightarrow 1nt(A(r_{1}))\leftrightarrow Int()$
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Then it is easy to see that for each $x\in X$ with $ d(p, x)<\delta$ and for each
integer $m$

$d(h^{J’ l}(p), h^{\prime’ l}(x))\nearrow_{\epsilon}$ .
Therefore $h$ is regular at every point of $X$ except for $a$ and $b$ , and
the proof is complete.

\S 3. Another application of bulging sequences.

Let $X$ bc a separable metric space and let $f$ be a continuous
mapping of $X$ into itself. For each point $x\in K$ the set $\bigcup_{\iota- 1}^{\infty}f^{n}(x)$ will
be said to be a positive half-orbit of $x$ . Let $P(f)$ be the set of points
whose positive half-orbits are everywhere dense in $X$ and put $Q(f)=X$
$-P_{(}f)$ . It is easy to see that if $P(f)\frac{1}{-1}-- 0$ then $P(f)$ is everywhere
dense in $X$. Now we prove the following

THEOREM 5. Let $X$ be a locally compact, non $co$mpact, separable,
mcty $ic$ space and let $\int$ be a continuous mapping of $X$ inlo itself. Then
$Q(f)$ is everywhcre dense in $X$.

PROOF. Suppose on the contrary that $Q(f)$ is not everywhere
dense in $X$. Then there exist a point $p$ and a neighbourhood $U$ of $p$

such that $Q(f)\leftrightarrow U=0(i. e. Uc^{-}P(f))$ . Since $X$ is locally compact,
there exists a neighbourhood $V$ of $p$ with $\overline{V}$

( $U$ such that $\overline{V}$ is com-
pact.

Now we prove that $\{f^{il}(\overline{V})\}$ is a bulging sequence. In fact, if
$\{f^{il}(\overline{V})\}$ is not a bulging $sequc\cdot nce$ , then the set $W=U_{/\iota^{\rightarrow}0}\int^{\prime\prime}(\overline{V})$ is
compact by Lemma 1. Since $\overline{V\backslash }\prime U(P(f),$ $W=\overline{\overline{W}}=X$ is compact, which
is a contradiction. Thercfore { $f^{\prime\prime}(\overline{V})_{J}^{1}$ is a bulging sequence.

Then by Lemma 3 there exists a point $qe\overline{V}$ such that $f^{Jl}(q)c_{-}^{-}V$

for every natural number $/\iota$ . Therefore $q\epsilon:Q(f)$ . Since $qc-\overline{V}$ ( $U$ , we
have $q\in P(f)$ , which is also a contradiction, and the proof is complete.

COROLI.$ARY$ . Let $f$ be a $conti/\iota uous$ mapping of $E^{\iota}$ into itself.
Then $Q(f),$ $i$ . $e$ . the set of points whose positive half-orbits are not
everywhere dense in $E^{il}$, is $ev()ry\iota uh\ell)re$ dense in $I_{-}^{\prime l}\backslash $ .

Rr$ $MARI\backslash ^{-}1$ . A. S. Besicovitch $|1|$ has shown that there exists a
homeomorphism of the plane onto itsclf such that there exists a point
whose positive half-orbit by this homeomorphism is everywhere dense
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on the plane. His statement that by this homeomorphism the positive
half-orbit of every point of the plane except for the origin is everywhere
dense on the plane is erroneous, as he has shown in his recent pa er
[2]. The fault of his assertion can also be seen by the above CoroHary.

REMARK 2. If $h$ is a homeomorphism of $E^{Jl}$ onto itself, then the
set $Q(f)$ will be seen to be an $F_{\sigma}$ without difficulty.

Department of Mathematics, Tokyo Institute of Technology
and

Department of Mathematics, Osaka University
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