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1. Let 2 be an arbitrary field and Z(k) the set of all integers
n =1 such that 2 contains a primitive #z-th root of unity. It is clear
that, if Z(k) contains m and #, it also contains the least common
multiple of these two integers. Therefore the set of all rational
numbers with denominators in Z(k) is an additive group R(%) contain-

ing the group of all integers Z, and the quotient group R(%k)=R(k)/Z
is isomorphic with the multiplicative group W{(k) of all roots of unity
in &.

We now take an algebraic closure 2 of 2 and consider the sub-
field K of £ obtained by adjoining all a'# to k, where « is an arbitrary
element in £ and » is an arbitrary integer in Z(k). K is obviously
the composite of all finite Kummer extensions of %2 contained in 2
and hence, may be called the Kummer closure of B in £2. K/k is
clearly an abelian extension and its structure is independent of the
choice of the algebraic closure 2 of k. In particular, the structure
of the Galois group G(K/k) of K/k is an invariant of the field %, and
we shall show in the following how we can describe it by means of
groups which depend solely on the ground field Z.

2. We shall first define a symbol (o, «a, #) for arbitrary o in
G=G(K/k), a0 in k and » in R(k). Namely, we express » as a
fraction —’:zi with denominator » in Z(k) and choose an elemnt ¢ in
K such that @a*=am™. The symbol (o, a, 7) is then defined by

(o, a, )=a""1.

It is easy to see that (s, «, ) is an #n-th root of unity in %2 and is
m

independent of the choice of the fractional expression % of » and,
n

also, of the choice of ¢ in K such that a*=a™.
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The symbol (e, «, 7), defined uniquely in this way, has the fol-
lowing properties which can be verified easily from the definition :

1) (0‘10’2, Y, 7’):‘—(0'[, «, 7’)(0‘2, Y, 7‘),

2) (o, s, #)=(o, 1, #)(o, s 7),

3) (o, a, n+r)="(c, a, 1o, a, ),

4) (o, @, m)=1, me Z.
From 3), 4), it follows that (s, «, #) essentially depends upon o, «
and the residue class » or » mod. Z and that we may therefore put
(o, ¢, ¥)=(o, a, 7). The new symbol (s, «, #7) then has properties
similar to 1), 2), 3) above.

We now fix « and « and consider a mapping ¢, , of R(E) into
W(k) defined by
P, 7)== (, @, 7).

By 3), ... is a homomorphism of R(k) into W(k), i.c. an clement of

the group of homomorphisms Hom (R(k%), W(k)). We then define, for
any fixed o, a mapping f, of the multiplicative group k* of k into

Hom (R(k), W(k)) by

f.;((():’/‘.r'a .
f. is again a homomorphism by 2), i.e. an element of the group of
homomorphisms Hom (k*, Hom (R(k), W(k))). We finally define a
mapping @ of ¢ into Hom (&', Hom (R(k), W(k))) by

o - o— f..
@ is a homomorphism by 1) and is, in fact, an isomorphism, for, if
f, is the identity, (o, «, #)=1 for cvery « in k% and every 7 in R(E),
and it follows from the definition of (o, «, #) that each «V” is invariant

under o, and that o is, consequently, the identity of the group G=
G(K/k).

We now consider W{k), }é(k) and k* as discrete groups and intro-
duce the so-called compact convergence topology” in Hom (R(k), W(k))
and Hom (k*, Hom {R(k), W(k))). It is then easy to sec that both

1) Cf. N. Bourbaki, Topologie générale, Chap. X.
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these groups become topological groups and that a fundamental system
of neighborhoods of the identity in H-=Hom (k", Hom (R(k), W(k)))
is given by the family of subsets U« -, «s; n), where the set
Ulay, -+, ag; n) is defined for any finite set of elements «y, -, «y
in £ and for any integer z in Z(k), and consists of clements f in H
1
n
Z to the unity clement 1 in W(k). Therefore, an clement o of G is

such that f(«;) in Hom (R(%), W(k)) maps the residue class of mod.

contained in @ '(U(wy, -, «; 1))y if and only if <(r, «;, 1 )r-:l for
-

i=1, -+, s, and, taking «@; in K with «?=«; and putting /x=Fk(a, ---, a,),
we see that @ (U, -+, «,; 1)) coincides with the Galois group
G(K/E2) of K/FE. But, since E/k is a finite cxtension, G(K/I) is an
open subgroup of GG in Krull’s topology of the Galois group G=G(K/E).
Therefore ¢ is a continuous mapping of G into .

We shall next show that the image @) of G is cverywhere
dense in /. Let f be an arbitrary clement of 77 and U« -+, «g; n2)
an arbitrary neighborhood of the identity as given above. We prove
that there cxists an element o in  such that f 'f, is contained in
Uy, -, oty n); namely, such that

f\n’i)( 1 )2):‘-‘-((1'», wy, 1 \), i=1,, s.
n

o

To sece this, we consider a function x(«) of 7 defined by
o1
X(n’)?ﬁfku’) ( ) .
il

Since x(«) is obviously a character of %7 and is trivial on the sub-
group (£7)2, it follows from the theory of Kummer extensions that
there exists a /-automorphism « of the field K, generated over &k by
all 72-th roots of clements in %, such that

() =(a!™) 1,

Denoting an extension of &« in the Galois group G of K/k again by o,
we see immediately from the definition of (o, «, #) that

2) Here ! stands for the residue class of 1 mod. Z.
3 M
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x(a)= (a, a, %) ,

which proves the assertion.

We have thus shown that @ is a continuous isomorphism of G
into H and the image @(G) of G is everywhere dense in H. But,
since G is a compact group as the Galois group of K/k, @ must be
an isomorphism of G onto H, and we have thus obtained the following

THEOREM 1. Let k be an arbitrary field and K the Kummer
closure of k in an algebraic closure of k. Then the Galois group of
K/k is canonically isomorphic with the group of homomorphisms
Hom (k*, Hom (R(k), W(k))) which is attached to the field k as described
above.

3. Now, it is easy to see that the group of roots of unity Wi(k)
of a field 2 is isomorphic with a subgroup of the group of ordinary
roots of unity Wy;={e%*"i; r=rationals}. Therefore, taking such an

isomorphism g of W(k) into W, every element @ of Hom (R(k), W(k))
defines a character go @ of the discrete group R(k). Moreover, using
the fact that R(%k) is isomorphic with W{(k), it can be seen that every
character of R(k) can be written in the form go ¢ with some ¢ in
Hom (R(k), W(k)) and that Hom (R(k), W(k)) is consequently isomor-
phic with the character group ﬁf(k) of W(k), both being considered

as topological groups. Hence the Galois group G of the Kummer
closure K of k is isomorphic with the group of homomorphisms

Hom (&*, W(k)), and, though such a description of G is not canonical
(unlike the one as given in [Theorem 1)), it is useful when we only
consider the structure of G as a topological group and not a canonical
description of it.

Let, for instance, 2 be a field of characteristic 0 containing all
roots of unity. Every finite abelian extension of & is then a Kummer
extension and the Kummer closure K of %k coincides with the maximal
abelian extension A over k. Moreover, in such a case, the group
W(k) is isomorphic with the group W,. Hence the Galois group
G(A/k) of the maximal abelian extension A over % is isomorphic with

the group of homomorphisms Hom (%&*, Wo) of k* into the character
group Wo of W,. To determine the structure of the group G(A/k)
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more explicitly, we have, therefore, only to study the structure of the
multiplicative group &* of %, and we shall do this in the following
sections for a certain kind of algebraic number field containing all
roots of unity.

4. We shall first define a special type of abelian group and give
some simple properties which will be used later. Let G be an abelian
group and T the torsion subgroup of G. We call G a regular abelian
group when the factor group G/T is free abelian. The following
properties of regular abelian groups are immediate consequences of
the definition : ’

«) an abelian group G is regular if and only if it is the direct
product of its torsion subgroup T and a free abelian subgroup of G,

B) if H is a subgroup of an abelian group G and if every element
of H has finite order, G/H is regular if and only if G is regular,

v) a subgroup of a regular abelian group is regular,

8) the direct product of a finite number of regular abelian groups
is regular,

e) if {H;} is a finite set of subgroups of an abelian group G such
that their intersection is e and if every G/H; is regular, then G itself
is also regular.®

We shall now prove the following lemmas:

LEMMA 1. Let G be a regular abelian group and let {cs} be a
finite set of endomorphisms of G. If H is the subgroup of G consist-
ing of all elements of G which ave invarviant under all o, then G/H
is also a regular abelian group.

PrOOF. For each o, let H, denote the kernel of the endomorphism
r(@)=d(a)a™ of G. Since G/H, is isomorphic with «(G) and +(G) is
regular by v), G/H, is also regular. But, as H is clearly the inter-
section of all H,, G/H is regular by e).

LEMMA 2. Let G be an abelian group and H a subgroup of G.
If H and G/H are both regular and if the orders of elements of the
torsion subgroup of G/H are bounded, then G is also regular.

PrROOF. Let U be the torsion subgroup of H. By B) above, it
suffices to show that G/U is regular. We may therefore assume that
U=e and H is free abelian. Let V be ‘the subgroup of G containing

3) Notice that G is isomorphic with a subgroup of the direct product of all G/H;.
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H such that V/H is the torsion subgroup of G/H. By the assumption,
there is an integer m such that V” is contained in H. If we then
denote by T the kernel of the endomorphism cla)=am of V, V/T is
isomorphic with the subgroup V™ of the free abelian group- H and,
hence, is again free abelian. On the other hand, since G/II is regular,
G/V is also free abelian.  Therefore G/T is free abelian and ¢ is
regular, for 7 must be the torsion subgroup of G."°

5. We shall now study the structure of the multiplicative groups
of a certain class of algebraic number ficlds by applying the result of
the preceding section.  If there will be no risk of confusion, we shall
denote, for simplicity, thce multiplicative group of a ficld % by the
same letter %, instead of %°.

LEMMA 3. The multiplicative group of a finite alechraic number
JSicld E is reoular.

PRroor. Since the group of ideals of £ is obviously free abehan,
so is the subgroup of principal ideals of /. But the latter group Is
isomorphic with the factor group E/U of the multiplicative group of
E modulo the group of units of K, and, as U/ is regular by Dirichlet’s
theorem, £ is also regular by Lemma 2.

LeMMA 4. Let E be a finite algebraic nmber  ficld and lot Fbe
a finite extension of E. Then the factor group IVE is regulay,

Proor. Let K be a finite Galois extension of 7 containing /.
Since F/E is a subgroup of the factor group K/, it suffices to show
that K/E is regular. But K is regular by Lemma 3 and /£ is the
subgroup of K consisting of all clements of A which are invariant
under the Galois automorphisms of the extension K/E. The group
K/E is therefore regular by Lemma 1.

LEMMA 5. Let E be a finite algebraic number ficld and let A be
an abelian cxtension of E containing all roots of unity. Denote by W
the group of roots of unity in A and by N the subgroup of A con-
taining E such that N/E is the torsion subgroup of A/E. If m is
the ovder of the finite group E~W, N™ is contained in the group EW.

Proor. Let p be an arbitrary prime number and let pe (e -7 0)
be the p-part of the order m. To prove the theorem, it suffices to

4) 1In general, an abelian group G is not regular even when 71 and G/ FI are both

regular groups. Example: G=the additive group of rationals, /7= the additive group of
integers.



A note on Kummer extensions 259

show that N contains no element of order p°'! modulo EW. For the
proof, we assume that there exists an element & of order p¢*' modulo
EW and show that such an assumption leads to a contradiction. Let

e+l

& =aw with « in E, » in W. Taking a p°*'-th root o’ of o~ and
replacing ¢ by ¢/, we may assume that

e+l
& =, ackE.

Let f(x) be the minimal polynomial of & over £ and n the degree

of f(x). Since f(x) is a divisor of x2°" — =11 (x—né), where » runs
over all p°*'-th roots of unity, the constant term of f(x) must be of
the form 7, with a suitable p°*'-th root of unity 7, It follows that
£* is contained in EW and, consequently, that n=p°"", fix)=x"" —a.
Therefore K= FE(£) is an abelian extension of degree p**' over E
and it contains a primitive p°*'-th root of unity ¢. Since ¢ is not
contained in E, while ¢ is in E, the intermediate field E() of K/E
must be an extension of degree p over E, and we see, in particular,
that ¢~ 1. The constant term of the minimal polynomial of & over
F=:E(¢) is again of the form 1.£2° with a suitable p°''-th root of unity
7, and it follows that ©=¢4° is in F and F =F(L). Now, since F=
E(§)=FE(B) is a Kummer extension of degree p over E such that ¢
and B¢ are both contained in E, the product of 8 with a suitable

power of ¢ must be in £. But gB=£° is then contained in EW and
this contradicts the assumption that the order of & modulo EW is p°*'.
The lemma is therefore proved.

We now consider an arbitrary abelian extension A of a finite
algebraic number field # and prove that the multiplicative group of A
is regular. Let A’ be the field obtained by adjoining all roots of unity
to A. A’ is then still abelian over %k and the multiplicative group A
is a subgroup of the multiplicative group A’. Hence it suffices to
show that A’ is regular, and we may assume from the beginning that
A contains all roots of unity.

Let E and F be finite extensions of £ such that £ < F< A and
let W be again the group of all roots of unity in A. Since (F~W)E/E
is a finite group and F/E is regular by Lemma 4, the group
F(F~W)E is again regular by @) above. But, since we have the
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isomorphism
FW/EW = F/(F~W)E ,

FW/EW is also a regular abelian group. On the other hand, if we
denote by N, the subgroup of A containing E such that Ng/E is the
torsion subgroup of A/E, and by Ny the corresponding group for F,
the orders of elements of Nm/FW are bounded by [Lemma 5 There-
fore No/EW is regular by Since Nz/EW is obviously the
torsion subgroup of Ng/W, it follows that Nz/Ng is a free abelian
group.
Now, let

szO;EI;EZ;

be a sequence of finite extensions of £ such that A is the union of
all these E,, and let N,=Ng, be the subgroup of A containing FE),

such that N,/E, is the torsion subgroup of A/E,. By what we have
proved above, every factor group N,/N,-;(n=1,2,---) is a free abelian
group. Since the group A is obviously the union of all N,, it follows
immediately that A/N, is also free abelian. On the other hand, con-
sidering E,W/W instead of FW/EW and using a similar argument,
we can see easily that N, is a regular abelian group. It then follows
from that the group A is also regular, thus proving our
previous contention. By «) above, our result can be stated as follows:

THEOREM 2. The multiplicative group of an abelian extension A
of a finite algebraic number field is the divect product of a free abelian
group and the group of roots of unity in A.

6. Wenow change our notation and denote by % an algebraic
number field which contains all roots of unity and which is an abelian
extension of a finite algebraic number field. As we have seen in §3,
the Galois group G(A/k) of the maximal abelian extension A over &
is isomorphic with the group of homomorphisms Hom (&%, Wo. In
this section, we shall determine the structure of the latter group using
the result of §5.

By [Theorem 2, the multiplicative group k* of % is the direct
product of the group of roots of unity in k, W(k), and a free abelian
group U which has, as readily seen, a countable number of free

generators #,, #,, ---. Let @ be any homomorphism in Hom (%&*, I7Vo).
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We shall show that the character X=@(w) of W, is trivial for any
root of unity o in W(k). To see this, let ¢ be an arbitrary root of
unity in W, and let ¢»=1. If we take w; in W(k) such that o?’=w
and put x;=¢(w,), we have

X=XT,
X(é‘):X?(é‘):X1(§”)=X1(1):1 ’

which proves our assertion. Hence, a homomorphism @ in Hom (&%, Wo)
is completely determined by its values @(u;) for the basis u;,
=1, 2,---. On the other hand, since the u; are free generators of the

group U, there exists at least one homomorphism @ in Hom (&*, I7V0)

satisfying @(u;)=x; for any given sequence of characters x; in I7V0.
It then follows immediately that the mapping

» — (plu), pu,), )

gives a topological isomorphism of Hom (k*, W,) with the direct product

of a countable number of copies W{” of the group W,

We have therefore the following theorem :

THEOREM 3. Let k be an abelian extension of a finite algebraic
number field containing all roots of unity and let A be the maximal
abelian extension of k. Then the Galois group of A/k is isomorphic
with the direct product of a countable number of groups each of which
is isomorphic with the character group of the group of roots of nuity
in k.

7. We add here some remarks on the above result. Let % and
A be as in Theorem 3. Let Ay=k, A;=A and let, in general, A, be
the maximal abelian extension of A,_; (2 2>2). We can determine the
structure of the multiplicative group of A, (2 >>1) by a method similar
to that of §5 and, then, by using the result of §3, we can also prove
that the Galois group of the extension An/Au-y is always isomorphic

with the direct product of a countable number of copies ~0“" of the
group I7V0. In other words, if we take the maximal solvable extension

S of k and denote by G, the #-th topological commutator group of
the Galois group G(3/k) of 3/k (Gy=G(=/F)), we have

co ~

Gn-l/Gng Hl thi), n=1,2, -
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This gives considerable information about the group G(X/k), though
we can determine the structure of G(3/k) completely by an entirely
different method.”

University of Tokyo

Massachusetts, Institute of Technology.

5) Cf. the author’s forthcoming paper *“ On solvabl® extensions of algebraic number
fields .
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