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1. Let $k$ be an arbitrary field and $Z(k)$ the set of all integers
$n\geqq 1$ such that $k$ contains a primitive n-th root of unity. It is clear
that, if $Z(k)$ contains $m$ and $n$, it also contains the least common
multiple of these two integers. Therefore the set of all rational
numbers with denominators in $Z(k)$ is an additive group $R(k)$ contain-
ing the group of all integers $Z$, and the quotient group $\overline{R}(k)=R(k)/Z$

is isomorphic with the multiplicative group $W(k)$ of all roots of unity
in $k$.

We now take an algebraic closure $\Omega$ of $k$ and consider the sub.
field $K$ of $\Omega$ obtained by adjoining all $\alpha^{1/n}$ to $k$, where $\alpha$ is an arbitrary
element in $k$ and $n$ is an arbitrary integer in $Z(k)$ . $K$ is obviously
the composite of all finite Kummer extensionq of $k$ contained in $\Omega$

and hence, may be called the Kummer closure of $k$ in $\Omega$ . $K/k$ is
clearly an abelian extension and its structure is independent of the
choice of the algebraic closure $\Omega$ of $k$ . In particular, the structure
of the Galois group $G(K/k)$ of $K/k$ is an invariant of the field $k$, and
we shall show in the following how we can describe it by means of
groups which depend solely on the ground field $k$ .

2. We shall first define a symbol $(\sigma, \alpha, r)$ for arbitrary $\sigma$ in
$G=G(K/k),$ $\alpha\neq 0$ in $k$ and $r$ in $R(k)$ . Namely, we express $r$ as a
fraction $\frac{m}{n}$ with denominator $n$ in $Z(k)$ and choose an elemnt $a$ in
$K$ such that $a^{n}=\alpha^{m}$ . The symbol $(\sigma, \alpha, r)$ is then defined by

$(\sigma, \alpha, r)=a^{\sigma-1}$ .
It is easy to see that $(\sigma, \alpha, r)$ is an n.th root of unity in $k$ and is
independent of the choice of the fractional expression $\frac{m}{n}$ of $r$ and,

also, of the eltoice of $a$ in $K$ such that $a^{n}=\alpha^{m}$ .
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The symbol $(\sigma, \alpha, r)$ , defined uniquely in this way, has the fol-
lowing properties which can be verified easily from the definition:

1) $(\sigma_{1}\sigma_{2\prime}\alpha, r)=(\sigma_{1}, v, r)(\sigma_{\angle}, \alpha, /^{\prime}’)$,
2) $(\sigma, \alpha_{1}\alpha_{2}, r)=(\sigma, \alpha_{1}, r)(\sigma, \alpha_{2}, r)$ ,
3) $(\sigma, \alpha, r_{1}+r_{2})=(\sigma, \alpha, r_{1})(\sigma, \alpha, r_{2})$ ,
4) $(\sigma, \alpha, m)=1$ , $m\in Z$.

From 3), 4), it follows that $(\sigma, (\gamma r)$ essentially depends upon $\sigma$ , ct

and the residue class $\overline{r}$ or $rmod$ . $Z$ and that we may thereforc put
$(\sigma, \alpha, \gamma)=(\sigma, \alpha, \overline{r})$ . The new symbol $(_{t\overline{J}}, \alpha, \overline{r})$ then has properties
similar to 1), 2), 3) above.

We now fix $\sigma$ and ( $t$ and consider a mapping $\varphi_{r.\alpha}$ of $\overline{R}(k)$ into
$W(k)$ defined by

$r/J_{r}\alpha(\overline{r})=(\sigma, \alpha, \overline{r})$ .
By 3), $\varphi_{\sigma.a}$ is a homomorphism of $\overline{R}(k)$ into $W(t?)$ , i. e. an element of
the group of homomorphisms $Hom$ (A $(k),$ $W(k)$ ). We then define, for
any fixed $\sigma$ , a $m_{\iota}\prime tP1$ ) $ingf_{r}$ of the $m$ultiplicativc group $k^{*}$ of $k$ into
$Hom(\Gamma f(k), W(k))$ by

$f_{(r}((()=C/r_{\tau r\alpha}$ .
$f_{\sigma}$ is again a homomorphism by 2), i. e. an element of the group of

homomorphisms $Hom$ $(k ’, Hom (\overline{Ji}(k), W(k)))$ . We finally define a
mapping ($p$ of (; into IIom $(k ‘, Hom(\overline{R}(k), W(k)))$ by

$\Phi$ : $\sigma\rightarrow f_{\sigma}$ .

$\Phi$ is a homomorphism by 1) and is, in fact, an isomorphism, for, if
$f_{\sigma}$ is the identity, $(\sigma, \alpha, r)=1$ for every $\alpha$ in $k^{*}$ and every $r$ in $R(k)$ ,

and it follows from thc definition of $(\sigma, $a $, r)$ that each $\alpha^{1/}\prime\prime$ is invariant
under $\sigma$ , and that $\sigma$ is, conscquently, the identity of the group $G=$

$G(K/k)$ .

We now consider $W(k),\overline{R}(k)$ and $k^{*}$ as discrcte groups and intro-
duce the so-called compact convergence topologyl) in $Hom(\overline{R}(k), W(k))$

and $Hom$ $(k^{k}, Hom(\overline{If}(k), W(k)))$ . It is then easy to see that both

l) Cf. N. Bourbaki, Topologie g\’en\’erale, Chap X.
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these groups become topological groups and that a fundamental system

of neighborhoods of the identity in $H=Hom(k^{t}, Hom(\overline{R}(k), W(k)))$

is given by the family of subsets $U((\iota_{J}^{\prime}, \cdots, \alpha_{s} ; n)$ , where the set
$U$( $\alpha_{1},$ $\cdots,$ $\alpha_{s}$ ; n) is defined for any finite set of elements $\alpha_{1},$ $\cdots,$ $\alpha_{s}$

in $k^{\prime}$” and for any integer $n$ in $Z(k)$ , and consists of elements $f$ in $H$

such that $f((\gamma_{i})$ in $fIom(\overline{R}(k), W(k))$ maps the residue class of
$n$

$mod$ .1

$Z$ to the unity eloment 1 in $W(k)$ . $’]^{\tau}h_{(f(}\backslash \backslash f_{or(}\backslash $ , an elemcnt $\sigma$ of $G$ is

contained in $\phi$ ( $U((\downarrow^{\prime}l, , (Y_{\backslash } ; l?))$ if a $n(1$ only if $(\sigma,$
$\alpha_{i},$ $1’)=1$ for

$i=1,$ $\cdot\cdot,$
$s$ , and, taking $a_{i}$ in $K$ with ($l_{i^{l}}^{\prime}=\alpha_{i}$ and puttin.$\zeta iL^{\urcorner}=k(a_{1}, \cdots, a_{c})$ ,

we see that $\Phi 1(\lceil\gamma((\gamma_{1}\cdots c_{\backslash } ; /\iota))$ coincides with the $G_{\urcorner}\subset 10]_{\backslash }\circ$ group
$G(K/F_{\lrcorner})$ of $K/E$ . But, since $E/k$ is a finite extension, $G(If/ii)$ is an
open subgroup of $C_{J^{\backslash }}$ in Krull’s topology of the $Galoi_{S}$ group $G=G(K/k)$ .
Therefore $\phi$ is a continuous mapping of $G$ into II.

We shall next show that the $i_{1\mathfrak{n}ag_{(}}\backslash \Phi((f^{\backslash })$ of $(_{I^{\backslash }}$ is everywhere
densc in II. Let $f$ be an arbitrary element of II $\iota\urcorner 11dl\wedge c\iota_{1}^{\prime}$ , , ( $Y_{S}$ ; n)

an arbitrary neighborhood of the identity (
$1\backslash ^{\backslash }$ givcn $c\gamma b_{0(}1$ We prove

that there exists an element $\sigma$ in $(_{J}$ such that $f|f$ , is contained in
$U((f_{1} , (\gamma_{\backslash }. ; ll.)$ ; namely, such that

$f_{((\downarrow^{\prime};})(\iota\iota 1)^{2)}=(\sigma,$ ( $(1, 1,l)$ , $1^{-1}$ , $\cdot$ $s$ .

To see this, $\backslash \}^{r}(\iota consi(1_{(}\backslash \iota^{-}(\gamma fun_{t}^{\wedge}tio\iota 1\backslash ^{\prime}(1\downarrow)$ oi“ ! ( $1\iota^{1}!\backslash \iota l1({}^{t}(1$ by

$\chi((\iota^{\prime})-\prime 7^{\prime}((\int)(il1)\cdot$

Since $\chi(\alpha)$ is $0\dagger\backslash vion\circ_{)}1y$ a character of $k$ $;171.1$ is trivial on the sub
group $(k^{!})^{n}$ , it $f^{\gamma}$) $1_{\backslash }^{1}|0\backslash v^{\sim_{\urcorner}}$ from $fh_{(}\backslash $ theory $0^{1}$ $f\backslash ummc^{Y}r$

’ extensions that
there exists a /;-autOmorphism $\sigma$ of the field $K_{l}$ generated over $k$ by
all n-th roots of $e1_{(^{\rangle}\ln(nts}$ in $k$ , such that

$\chi((()=(\alpha^{1/\prime l})^{\sigma- 1}$

Denotin,$q$ an extension of $\sigma$ in the Galois group $G$ of $K/k$ again by $\sigma$ ,

we see $immediat_{(}Yly$ from the definition of ( $\sigma,$
$(Y, r)$ that

1 12) Ilere st ands for the $r_{1}\cdot si(\iota_{u(}\tau c1\cdot\iota^{c}.;s$ of $mod$ . $Z$ .
$il$ $/l$
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$\chi(\alpha)=(\sigma,$ $\alpha,$ $\frac{1}{n})$ ,

which proves the assertion.
We have thus shown that $\Phi$ is a continuous isomorphism of $G$

into $H$ and the image $\Phi(G)$ of $G$ is everywhere dense in $H$. But,
since $G$ is a compact group as the Galois group of $K/k,$ $\Phi$ must be
an isomorphism of $G$ onto $H$, and we have thus obtained the following

THEOREM 1. Let $k$ be an arbitrary field and $K$ the Kummer
closure of $k$ in an algebraic closure of $k$ . Then the Galois group of
$K/k$ is canonically isomorphic with the group of homomorphisms
$Hom(k^{*}, Hom(\overline{R}(k), W(k)))$ which is attached to the field $k$ as described
above.

3. Now, it is easy to see that the group of roots of unity $W(k)$

of a field $k$ is isomorphic with a subgroup of the group of ordinary
roots of unity $W_{0}=\{e^{2nir} ; r=rationals\}$ . Therefore, taking such an
isomorphism $g$ of $W(k)$ into $W_{0}$, every element $\varphi$ of $Hom(\overline{R}(k), W(k))$

defines a character go $\varphi$ of the discrete group $\overline{R}(k)$ . Moreover, using
the fact that $\overline{R}(k)$ is isomorphic with $W(k)$ , it can be seen that every

character of $\overline{R}(k)$ can be written in the form $ g^{\zeta)}\varphi$ with some $\varphi$ in
$Hom(\overline{R}(k), W(k))$ and that $Hom(\overline{R}(k), W(k))$ is consequently isomor-
phic with the character group $\tilde{W}(k)$ of $W(k)$ , both being considered
as topological groups. Hence the Galois group $G$ of the Kummer
closure $K$ of $k$ is isomorphic with the group of homomorphisms
$Hom(k^{*},\tilde{W}(k))$ , and, though such a description of $G$ is not canonical
(unlike the one as given in Theorem 1), it is useful when we only
consider the structure of $G$ as a topological group and not a canonical
description of it.

Let, for instance, $k$ be a field of characteristic $0$ containing all
roots of unity. Every finite abelian extension of $k$ is then a Kummer
extension and the Kummer closure $K$ of $k$ coincides with the maximal
abelian extension $A$ over $k$ . Moreover, in such a case, the group
$W(k)$ is isomorphic with the group $W_{0}$ . Hence the Galois group
$G(A/k)$ of the maximal abelian extension $A$ over $k$ is isomorphic with
the group of homomorphisms $Hom(k^{*},\tilde{W}_{0})$ of $k^{*}$ into the character
group $\tilde{W}_{0}$ of $W_{0}$ . To determine the structure of the group $G(A/k)$
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more explicitly, we have, therefore, only to study the structure of the
multiplicative group $k^{*}$ of $k$, and we shall do this in the following
sections for a certain kind of algebraic number field containing all
roots of unity.

4. We shall first define a special type of abelian group and give
some simple properties which will be used later. Let $G$ be an abelian
group and $T$ the torsion subgroup of $G$ . We call $G$ a regular abelian
group when the factor group $G/T$ is free abelian. The following
properties of regular abelian groups are immediate consequences of
the definition:

$\alpha)$ an abelian group $G$ is regular if and only if it is the direct
product of its torsion subgroup $T$ and a free abelian subgroup of $G$,

$\beta)$ if $H$ is a subgroup of an abelian group $G$ and if every element
of $H$ has finite order, $G/H$ is regular if and only if $G$ is regular,

$\gamma)$ a subgroup of a regular abelian group is regular,
$\delta)$ the direct product of a finite number of regular abelian groups

is regular,
e) if $\{H_{i}\}$ is a finite set of subgroups of an abelian group $G$ such

that their intersection is $e$ and if every $G/H_{i}$ is regular, then $G$ itself
is also regular.3)

We shall now prove the following lemmas:
LEMMA 1. Let $G$ be a regular abelian group and let $\{\sigma\}$ be a

finite set of endomorphisms of G. If $H$ is the subgroup of $G$ consist-
ing of all elements of $G$ which are invariant under all $\sigma$, then $G/H$

is also a regular abelian group.
PROOF. For each $\sigma$, let $H_{\sigma}$ denote the kernel of the endomorphism

$\tau(a)=\sigma(a)a^{-1}$ of $G$ . Since $G/H_{\sigma}$ is isomorphic with $\tau(G)$ and $\tau(G)$ is
regular by $\gamma$), $G/H_{\sigma}$ is also regular. But, as $H$ is clearly the inter-
section of all $H_{\sigma},$ $G/H$ is regular by e).

LEMMA 2. Let $G$ be an abelian group and $H$ a subgroup of $G$ .
If $H$ and $G/H$ are both regular and $lf$ the orders of elements of the
torsion subgroup of $G/H$ are bounded, then $G$ is also regular.

PROOF. Let $U$ be the torsion subgroup of $H$. By $\beta$ ) above, it
suffices to show that $G/U$ is regular. We may therefore assume that
$U=e$ and $H$ is free abelian. Let $V$ be the subgroup of $G$ containing

3) Notice that $G$ is isomorphic with a subgroup of the direct product of all $G/H;$ .
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$H$ such that $V/H$ is the torsion subgroup of $(_{J^{\prime}}H$. By thc assuinption,
there is an integer $m$ such that $V^{\prime\prime l}$ is $Contd$ in $H$. If we then
denote by $T$ the kernel of the endomorphism $\sigma(a)=a^{\prime/l}$ of $V,$ $V/T$ is
isomorphic with the $!;^{\backslash }’ uI_{3}$group $V^{\prime\prime l}$ of the $i_{i(\llcorner^{\prime}}\subset\prime 1b_{(}\backslash $ ] $i_{d}\prime n$ group $H$ and,
hence, is again $f$ree $d^{\prime b_{C^{\iota}}1ia\iota\iota}$ . $()\iota 1$ the other hand, $si_{IlC(}\backslash G_{/^{\prime}}I1$ is regular,
$G/V$ is also $fre$( abelian. $\prime 1’ t\iota\iota\cdot\iota^{-}c^{\prime}for$

( $(_{/}^{\backslash }T$ is tree abelian and (; is
regular, for $T$ must be the torsion subgroup of G. i )

5. We shall now study the structure of the multiplicative groups
of a certain class of algebraic number fields by applying the result of
the preceding section. If there will be no $ris!\mathfrak{c}$ of confusion, we shall
denote, for simplicity, the multiplicative group of a $t_{1C}^{\backslash }\cdot 1dk$ by the
same letter $k$ , instead of $k^{\prime}$ .

$LLI\backslash IMA3$ . $T/lC$) $’’ lt\iota lliplicc\iota li_{\iota}$)( $\backslash cr\gamma()ltp$ of a ]$i/\iota i!c(l/\neg(b_{j^{\prime}}ai\cdot/l/l//l/JLl$

field $E$ is $rc_{\backslash }$
) $\prime\prime nln/$.

$1^{J}1\backslash ^{)}OO1^{\backslash }$ . Since the group of ideals of $F_{\lrcorner}^{\backslash }$ is obviously free auelian,
so is the subgroup of principal ideals of $L^{\backslash }$ . But $t1\iota$ ( latter group is
isomorphic with the factor group $E^{\prime}U$ of $th_{(}$ . multiplicative group of
$E$ modulo the group of units of $F_{p^{\backslash }}$ , and, as $U$ is re.gular by I)irichlet’s
theorem, $E$ is also regular by Lemnia 2.

LICMMA 4. Let $Ebc$ a finitc $nlg\prime c/$) $rc/ic/m/’\iota/y\iota’\gamma-//c$) $/pl$ and $llFbc$’

a $ Jinit\ell$ extcnsion of E. Thcn the factor $e>\sigma\gamma onpF^{\backslash }/E$ is $j^{\prime}e_{\sim}\prime\prime nlcx,^{\prime}$.
$PROO1^{\backslash }$ . Let $K$ be a finite Galois extension of $L^{\backslash }$ containing $l^{\backslash }$.

Since $F/E$ is a subgroup of the factor $\iota^{r}rou1$ ) $K,/i_{\sim^{\backslash }}$ , it $su1\grave{I}icC_{\backslash }b^{\backslash }$ to show
that $K/E$ is regular. But $K$ is regular by Lemm\v{c}t 3 $\subset’\ln(1L^{v^{\backslash }}$ is the
subgroup of $K$ consisting of all $\llcorner^{\backslash ]_{\llcorner^{1}1}nt_{-\cdot nts}}$ of $ K\iota v1\iota$ ich arc invariant
under the Galois automorphisms of the extension $K/E$ . The group
$K/E$ is therefore regular by Lemma 1.

LEMMA 5. $Ix^{r}tE$ be a finite algebraic number $fi^{r}ld$ and let A $bc$)

an abelian extcnsion of $E$ containing all roots of unity. Denote by $W$

the group of roots of unity in $A$ and by $N$ the $\backslash \searrow^{\backslash }ltb_{\wedge}\sigma,^{\prime}0\iota\ell p$ of $A(0/\iota’$

taining $E$ such that $N/E$ is the $t(y\gamma sio/\iota\backslash \backslash ^{\backslash }nbgrjnp$ of $A/E$ . If $m$ is
the order of the finite group $E\rightarrow W,$ $N^{;;\ell}$ is containcd in $the\backslash t_{>^{j}}ro\iota lpEW$.

$PROO1^{^{\urcorner}}$ . Let $p$ be an arbitrary prime number and let $p^{c}((’ ’ 0)$

be the $p$-part of the order $m$ . To prove the theorem, it suffices to
4) In general, an abelian group $G$ is not regular even when 11 and $ G/JI:\iota$ re $|$ )$oth$

regular groups. Example: $G=the$ additive group of rationals, $lI=t1_{1}e$ additive group of
integers.
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show that $N$ contains no element of order $p^{c^{}\}}$ ‘ modulo $EW$ . For the
proof, we assume that there exists an element $\xi$ of order $p^{e+\iota}$ modulo
$EW$ and show that such an assumption leads to a contradiction. Let
$\xi^{p^{e\vdash I}}=\alpha_{\omega}$ with $\alpha$ in $E,$ $\omega$ in $W$. Taking a $p^{e+1}$ -th root $\omega^{\prime}$ of $\omega^{-1}$ and
replacing $\xi$ by $\xi\omega^{\prime}$, we may assume that

$\xi^{p^{e+1}}=\alpha$ , $\alpha\in E$ .
Let $f(x)$ be the minimal polynomial of $\xi$ over $E$ and $n$ the degree
of f$(x)$ . Since $f(x)$ is a divisor of $x-/^{C\vdash I}J-(\mathfrak{r}=11(x-\eta\xi)$ , where $\eta$ runsover all $p^{e\vdash 1}.th$ roots of unity, the constant term of $f(x)$ must be of
the form $\eta_{1}\xi^{t}$ with a suitable $p^{e+1}.th$ root of unity $7_{1}$ . It follows that
$\zeta^{l}$ is contained in $EW$ and, consequently, that $n=p^{e+1},$ $ f(x)=x^{P^{e+1}}-\alpha$ .
Therefore $K=E(\xi)$ is an abelian extension of degree $p^{e+1}$ over $E$

and it contains a primitive $p^{e+1}$ -th root of unity $\zeta$ . Since $\zeta$ is not
contained in $E$ , while $\zeta-/$

) is in $E$ , the intermediate field $E(\eta)$ of $K/E$
must be an extension of degree $p$ over $E$ , and we see, in particular,
that $c>1$ . The constant term of the mirzimal polynomial of $\xi$ over
F—E $(\zeta)$ is again of the form $\gamma)_{-\xi-}$)

$/$)
$c$

with a suitable $p^{C\}1}.th$ root of unity
$\eta$ ” and it follows that $\beta=\xi^{\prime J}c$ is in $F$ and $F=E(\beta)$ . Now, since $F=$
$E(\zeta)=E(\beta)$ is a Kummer extension of degree $p$ over $E$ such that $\zeta^{p}$

and $\beta^{1^{y}}$ are both contained in $E$ , the product of $\beta$ with a suitable
power of $\zeta$ must be in $E$. But $\beta=\xi^{p^{i}}$ is then contained in $EW$ and
this contradicts the assumption that the order of $\xi$ modulo $EW$ is $p^{c\vdash 1}$ .
The lemma is therefore proved.

We now consider an arbitrary abelian extension $A$ of a finite
algebraic number field $k$ and prove that the multiplicative group of $A$

is regular. Let $A^{\prime}$ be the field obtained by adjoining all roots of unity
to A. $A^{\prime}$ is then still abelian over $k$ and the multiplicative group $A$

is a subgroup of the multiplicative group $A^{\prime}$ . Hence it suffices to
show that $A^{\prime}$ is regular, and we may assume from the beginning that
$A$ contains all roots of unity.

Let $E$ and $F$ be finite extensions of $k$ such that $ErF^{\Gamma}$ $A$ and
let $W$ be again the group of all roots of unity in A. $Since(F\wedge W)E/E--$

is a finite group and $F/E$ is regular by Lemma 4, the group
$F/(F\rightarrow W)E$ is again regular by $\beta$ ) above. But, since we have the
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isomorphism
$FW/EW\cong F/(F\leftrightarrow W)E$ ,

$FW/EW$ is also a regular abelian group. On the other hand, if we
denote by $N_{\Gamma}$ the subgroup of $A$ containing $E$ such that $N_{F}/E$ is the
torsion subgroup of $A/E$ , and by $N_{F}$ the corresponding group for $F$,

the orders of elements of $N_{F}/FW$ are bounded by Lemma 5. There-
fore $N_{F}/EW$ is regular by Lemma 2. Since $N_{E}/EW$ is obviously the
torsion subgroup of $N_{F}/W$, it follows that $N_{F}/N_{E}$ is a free abelian
group.

Now, let
$ k=E_{0}\leqq E_{1}\leqq E_{2}\subseteqq\cdots$

be a sequence of finite extensions of $k$ such that $A$ is the union of
all these $E_{n}$ , and let $N_{n}=N_{E_{n}}$ be the subgroup of $A$ containing $E_{n}$

such that $N./E$. is the torsion subgroup of $A/E_{n}$ . By what we have
proved above, every factor group $N_{n}/N_{n-1}(n=1,2, \cdots)$ is a free abelian
group. Since the group $A$ is obviously the union of all $N_{n}$ , it follows
immediately that $A/N_{0}$ is also free abelian. On the other hand, con-
sidering $E_{0}W/W$ instead of $FW/EW$ and using a similar argument,
we can see easily that $N_{0}$ is a regular abelian group. It then follows
from Lemma 2 that the group $A$ is also regular, thus proving our
previous contention. By $\alpha$ ) above, our result can be stated as follows:

THEOREM 2. The multiplicative group of an abelian extension $A$

of a finite algebraic number field is the direct product of a free abelian
group and the group of roots of unity in $A$ .

6. We now change our notation and denote by $k$ an algebraic
number field which contains all roots of unity and which is an abelian
extension of a finite algebraic number field. As we have seen in \S 3,
the Galois group $G(A/k)$ of the maximal abelian extension $A$ over $k$

is isomorphic with the group of homomorphisms $Hom(k^{*},\tilde{W}_{0})$ . In
this section, we shall determine the structure of the latter group using

the result of \S 5.
By Theorem 2, the multiplicative group $k^{*}$ of $k$ is the direct

product of the group of roots of unity in $k,$ $W(k)$ , and a free abelian
group $U$ which has, as readily seen, a countable number of free
generators $u_{1},$ $u_{2},$ $\cdots$ . Let $\varphi$ be any homomorphism in $Hom(k^{*},\tilde{W}_{0})$ .
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We shall show that the character $\chi=\varphi(\omega)$ of $W_{0}$ is trivial for any
root of unity $\omega$ in $W(k)$ . To see this, let $\zeta$ be an arbitrary root of
unity in $W_{0}$ and let $\zeta^{n}=1$ . If we take $\omega_{1}$ in $W(k)$ such that $\omega_{1}^{n}=\omega$

and put $\chi_{1}=\varphi(\omega_{I})$ , we have
$\chi=\chi_{1}^{n}$ ,

$\chi(\zeta)=\chi_{1}^{n}(\zeta)=\chi_{1}(\zeta^{n})=\chi_{1}(1)=1$ ,

which proves our assertion. Hence, a homomorphism $\varphi$ in $Hom(k^{*},\tilde{W}_{0})$

is completely determined by its values $\varphi(u_{i})$ for the basis $u_{i}$ ,
$i=1,2,$ $\cdots$ . On the other hand, since the $u_{i}$ are free generators of the
group $U$, there exists at least one homomorphism $\varphi$ in $Hom(k^{*},\tilde{W}_{0})$

satisfying $\varphi(u_{i})=\chi_{i}$ for any given sequence of characters $\chi_{i}$ in $\tilde{W}_{0}$.
It then follows immediately that the mapping

$\varphi\rightarrow(\varphi(u_{1}), \varphi(u_{2}),$ $\cdots$ )

gives a topological isornorphism of $Hom(k^{*},\tilde{W}_{0})$ with the direct product
of a countable number of copies $\tilde{W}_{0^{(;)}}$ of the group $\tilde{W}_{0}$.

We have therefore the following theorem:
THEOREM 3. Let $k$ be an abelian extension of a finite algebraic

number field containing all roots of unily and let $A$ be the maximal
abelian extension of $k$ . Then the Galois group of $A/k$ is isomorphic
with the direct product of a countable number of groups each of which
$\iota s$ isomorphic with the character group of the group of roots of nuity
in $k$ .

7. We add here some remarks on the above result. Let $k$ and
$A$ be as in Theorem 3. Let $A_{0}=k,$ $A_{1}=A$ and let, in general, $A_{n}$ be
the maximal abelian extension of $A_{n-1}(n\geqq 2)$ . We can determine the
structure of the multiplicative group of $A_{n}(n\geqq 1)$ by a method similar
to that of \S 5 and, then, by using the result of \S 3, we can also prove
that the Galois group of the extension $A_{n}/A_{n-1}$ is always isomorphic
with the direct product of a countable number of copies $\tilde{W}_{0}^{(i)}$ of the
group $\tilde{W}_{0}$. In other words, if we take the maximal solvable extension
$\Sigma$ of $k$ and denote by $G_{n}$ the n-th topological commutator group of
the Galois group $G(\Sigma/k)$ of $\Sigma/k(G_{0}=G(\Sigma/k))$, we have

$c_{n-\sqrt G_{n}\cong t^{\infty}|,i=1}\tilde{W}_{0}^{(j)}$ , $n=1,2,$ $\cdots$ .
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This gives considerable information about the group $G(\underline{\backslash }/k)$ , though
we can determine the structure of $G(\underline{\backslash }’/k)$ completely by an entirely
different method.5)

University of Tokyo
Massachusetts. Institute of Technology.

5) Cf. the author’s forthcoming paper‘ On solvab[6 extensions of algebraic number
fields ‘’.
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