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On the three-dimensional cohomology
group of Lie algebras.
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Eilenberg and MacLane [1] have built up, by means of the cohomo-
logy theory, an analogue in the theory of groups to the theory of the
Brauer group of normal simple algebras with a fixed splitting field over
a given field: The theory of similarity classes of Q-kernels with a
fixed abelian group $G$ as center. They arrived at a remarkable result
that the group of similarity classes of Q-kernels is isomorphic to the
three-dimensional cohomology group $H^{3}(Q, G)$ of $Q$ over the abelian
coefficient group $G$ , and gave an answer to the problem of Baer [21

on group extensions in terms of the two-dimensional cohomology theory.
On the other hand, Chevalley and Eilenberg [3] have shown that the
two-dimensional cohomology group $H^{2}(L, Z, P)$ of a Lie algebra $L$ with
respect to an abelian Lie algebra $Z$ and a representation $P$ of $L$ over
$Z$ is isomorphic to the group of equivalent classes of extensions of $L$

by $(Z, P)$ .
In the present paper, we shall try to develop further the theory

of Chevalley and Eilenberg to obtain in the theory of Lie algebras an
analogous result to that of Eilenberg and MacLane in the theory of
groups. We shall introduce in $\backslash ^{\sigma_{i}}1$ the concept of L-kernels as an
analogue of Q-kernels and define the similarity group of L-kernels for
Lie algebras with a fixed center. We shall show in \S 2 that this
similarity group is isomorphic with a subgroup of the three.dimensional
cohomology group $H^{3}(L, Z, P)$ whose meaning will be given later on,
but we have not succeeded to decide whether these two groups are
isomorphic with each other. In \S 3 we shall deal with an analogue of
the problem of Baer on group extensions for Lie algebras.

The content of this paper was carried out in a summer seminar
of Professor S. Iyanaga to whom the author wishes to express here his
sincere thanks for his kind leading.
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\S 1. In the following, we consider Lie algebras $E=\{e,\cdots\},$ $L=\{x,y,$ $z$ ,
$-\cdot\}$ over a fixed field $F$, and a homomorphism $\phi$ from $E$ onto $L$ . Let

$V=\{v, u,\cdots\}$ be the kernel of $\phi$ , and $D(V),$ $I_{/}(\backslash V)$ the derivation-algebra
and inner derivation.algebra of $V$ respectively If we put $\sigma_{e}v=[v, e]$ ,
$e\in E$ , then $\sigma_{e}\in D(V)$ , and if $e\equiv e^{\prime}(mod V)$ then we have $\sigma_{e}\equiv\sigma_{e}$ ’

$(mod I(V))$ . So if we put $\mathfrak{p}.=\sigma+I(V)$ , where $\sigma$ is a derivation induced
by an element $e$ in $E$ mapped by $\phi$ to an element $x\in L$ , then the
mapping $x\rightarrow \mathfrak{p}_{x}$ is a homomorphism from $L$ into $D(V)/I(V)$ . We call
the pair $(E, \phi)$ an extension of $L$ by the kernel (V, $\mathfrak{p}$ ). We shall say
that an L.kernel (V, $\mathfrak{p}$ ) is given, when a Lie algebra $V$ and a homo.
morphism $\mathfrak{p}$ from $L$ into $D(V)/I(V)$ are given. Especially, if $Z$ is the
center of $V$, and $ceZ$, then for all $\sigma e\mathfrak{p}.,$ $\sigma C$ is a fixed element in $Z$,
determined by $c$ and $x$ , and if we put $\sigma c=P_{x}c$, then the mapping
$x\rightarrow P_{x}$ is a representation of $L$ over $Z$ In the following, we fix a Lie
algebra $L$ and an abelian Lie algebra $Z$ of a finite dimension over $F$

and a representation $P$ of $L$ over $Z$, and consider the L.kernels (V, p)
such that $V$ has $Z$ as center,1) and $\sigma c=P_{x}c,$ $\forall\sigma\in \mathfrak{p}_{x},$ $\forall x\in L$ .

The product of two kernels $(V_{1}, \mathfrak{p}^{(1)}),$ $(V_{2}, \mathfrak{p}^{(2)})$ is defined as follows:
Let $V_{1}\times V_{2}=\{(v_{1}, v_{2});v_{i}\in V_{i}, i=1,2\}$ be the direct product of $V_{1}$ and $V_{\underline{o}}$ ,
$S$ the ideal $\{(c, -c);ceZ\}$ and put $V=(V_{1}\times V_{2})/S$. Then $V$ is a Lie
algebra with obvious addition and commutation, and has a center
which is isomorphic to and will be identified with $Z$ (such identifica-
tion will be done in the following without mentioning it especially.)

Put $\sigma_{x^{=()}}\sigma_{x}^{(1)},$$\sigma_{x}^{(2)}$ , $\sigma_{x^{i)}}^{(}\in \mathfrak{p}_{x^{i)}}^{(}$, $i=1,2$, and $\mathfrak{p}_{x}=\sigma_{x}+I(V)$ , then the
pair (V, p) is an L-kernel, which we shall call the product of $(V_{1}, \mathfrak{p})$

and $(V_{2}, \mathfrak{p}^{(2)})$ and denote by $(V_{1}, \mathfrak{p}^{(1)})\otimes(V_{2}, \mathfrak{p}^{(2)})$ .
An L-kernel (V, $\mathfrak{p}$ ) is said to be equivalent to an L-kernel (V’, $\mathfrak{p}^{\prime}$ ),

written (V, $\mathfrak{p}$ ) $\cong(V^{\prime}, \mathfrak{p}^{\prime})$ , if there exists an isomorphism $\tau$ from $V$ onto
$V^{\prime}$ such that

$\tau c=c$ $\forall ceZ$ ,

$\tau\sigma_{x}\tau^{-1}\in \mathfrak{p}_{x}^{\prime}$ $\forall\sigma_{x}\in \mathfrak{p}_{x}$ , $\forall xeL$ .

This equivalence is clearly reflexive, symmetric and transitive, and
$(V_{1}, \mathfrak{p}^{t1\rangle})\cong(V_{1}^{\prime}, \mathfrak{p}^{\prime(1)})$ , $(V_{2}, \mathfrak{p}^{(2)})\cong(V_{2}^{\prime}, \mathfrak{p}^{\prime(2)})$ imply (V,, $\mathfrak{p}^{t1)}$) $\otimes(V_{2}, \mathfrak{p}^{(2}’)$

1) We shall call $(Z, P)$ the center of th $\vee^{\backslash }$ L.kernel (V, p).
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$\sim=(V_{1}^{\prime}, \mathfrak{p}^{;(1)})\otimes(V_{2}^{\prime}, \mathfrak{p}^{;(2)})$, so we can define the $\otimes$-multiplication of the
equivatent classes of L-kernels, which is associative and commutative,
the class containing $Z=(Z, P)$ being the unit.

An L.kernel (V, $\mathfrak{p}$ ) is said to be extendible, if there exists an ex-
tension $(E, \phi)$ of $L$ by the kernel (V, $\mathfrak{p}$ ), such that $\sigma_{e}\in \mathfrak{p}_{\phi e}$, where
$\sigma_{e}v=[v, e]$ , for each $e$ in $E$ . Then we have the following lemma:

LEMMA 1. The product of two extendible L-kernels is also extendi.
$ble$.

PROOF. Let $(E_{1}, \phi_{1})$ and $(E_{2}, \phi_{2})$ be the extensions of $L$ by the
extendible L.kernels $(V_{1}, \mathfrak{p}^{(t)})$ and $(V_{2}, \mathfrak{p}(2))$ with center $(Z, P)$ respec.
tively. Consider the subalgebra $R=\{(e_{1}, e_{2});\phi_{1}(e_{1})=\phi_{2}(e_{2})\}$ of the direct
product $E_{1}\times E_{2}$ and set $\phi^{\prime}(e_{1}, e_{2})=\phi_{1}(e_{1})=\phi)(e_{2})$ for $(e_{1}, e_{2})\in R$. Let $S$

be the ideal $\{(c, -c);c\in Z\}$ of $R$ . Then $\phi^{t}$ induces a homomorphism
$\phi$ from $E=R/S$ onto $L$ . We shall call the extension $(E, \phi)$ the product
of $(E_{1}, \phi_{1})$ with $(E_{2}, \phi\underline{)})$ , and denote by $(E_{1}, \phi_{1})\otimes(E_{2}, \phi_{2})$ . The kernel
of $(E, \phi)$ is then exactly the product (V, $\mathfrak{p}$ ) of $(V_{1}, \mathfrak{p}^{(1)})$ with $(V_{2}, \mathfrak{p}^{(2)})$ .

Now we define the inverse $(V^{*}, \mathfrak{p}^{*})$ of an L-kernel (V, $\mathfrak{p}$ ) as
follwoing: Let $V^{*}$ be the set of element $v^{*}$ , which is in the one-to-
one correspondence to $v\in V$. We define the following law of composi-
tions in $V^{*}:$ $(\alpha v)^{*}=\alpha v^{*},$ $v_{1}^{*}+v_{2}^{*}=(v_{1}+v_{2})^{*},$ $[v_{1}^{*}, v_{2}^{\star}]=[v_{2}, v_{1}]^{*}$ , then $V^{*}$

is a Lie algebra over $F$ of the same dimension as $V$, and has $Z$ as
center. Put $\sigma^{*}v^{*}=(\sigma v)^{*}$ for each $\sigma\in D(V)$ , then $\sigma^{*}eD(V^{*})$ , and if
we put $\mathfrak{p}_{x}^{*}=\{\sigma^{*} ; \sigma\in \mathfrak{p}_{x}\}$ , then $(V^{*}, \mathfrak{p}^{*})$ is an L-kernel, which we shall
call the inverse of $(V, \cdot\backslash _{\simeq^{\backslash }}^{\sim})$ . Now we have

LEMMA 2. The product (V, $\mathfrak{p}$ ) $\backslash \times\supset(V ‘‘, \mathfrak{p}^{*})$ of an L.kernel (V, $\mathfrak{p}$ )
and its inverse $(V^{*}, \mathfrak{p}^{*})$ is extendible.

In fact, $\tilde{E}=\{(v, \sigma, X);v\in V_{\sigma}\in \mathfrak{p}_{x}, xeL\}$ is a Lie algebra with re-
spect to the law of compositions:

$(v, \sigma, X)+(v, \tau,y)=(v+u, \sigma+\tau, X+y)$ ,

$[(v, \sigma, X), (u, \tau,y)]=([v, u]+\tau v-\sigma u, [\sigma, \tau], [x,y])$ .
and the mapping $\psi(v, \sigma, x)=x$ is a homomorphism from $\tilde{E}$ onto $L$ .
Then $(\tilde{E}, \psi)$ is an extension of $L$ by the kernel $(\tilde{V}, \mathfrak{p})\sim$ , where $\tilde{V}=\{(v$ ,
$\sigma,$

$0$) $;\sigma\in I(V)$ } and $\mathfrak{p}\sim$ is constructed as foIlows: The element of $\tilde{V}$

will be denoted generally by $\tilde{v}$. We put $\tilde{u}(x)=(u, \sigma_{x}, X)$ and $\tilde{\sigma}_{x}v\sim$
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$=[\tilde{v},\tilde{u}(x)]$ . Then $\mathfrak{p}\sim$ is defined by $\mathfrak{p}_{x}=\tilde{\sigma}_{x}\sim+I(\tilde{V})$ . Thus $(\tilde{V}, \mathfrak{p})\sim$ is an
extendible L-kernel. Now we put $V_{0}=\{(v, 0,0)\}$ , and let $\sigma_{x}^{(0)}$ be the
restriction of $\tilde{\sigma}_{x}$ to $V_{0}$ , then we have an Lkernel $(V_{0}, \mathfrak{p}^{(0)})$ with the
homomorphism $\mathfrak{p}^{(0)}$ : $L\rightarrow D(V_{0})/I(V_{0}),$ $\mathfrak{p}_{x^{0)}}^{(}=\sigma_{x^{0)}}^{(}\neq I(V_{0})$ , and here we
have $(V_{0}, \backslash _{-}^{\sim}\backslash (0))\cong(V, \mathfrak{p})$ by the correspondence $(v, 0, O)+\rightarrow v$ . Put more-
over $V_{1}=\{v, \sigma_{-v}, 0)\}$ and let $\sigma_{x}^{(1)}$ be the restriction of $\tilde{\sigma}_{x}$ to $V_{1}$ , then we
have an L-kernel $(V_{1}, \mathfrak{p}^{t1)})$ with the homomorphism $\mathfrak{p}^{(1)}$ : $L\rightarrow D(V_{1})/$

$I(V_{1}),$ $\mathfrak{p}_{x}^{(\iota)}\sigma=_{X}(1)+J(V_{1})$ , and here we have $(V_{1}, \mathfrak{p}^{(1)})\cong(V^{*}, \mathfrak{p}^{*})$ by the
correspondence $(v, \sigma_{-v}, O)+\rightarrow v^{*}$ . Now every element of the form $(v,$

$\sigma_{l}$ ,
$0)$ in $\tilde{V}$ is uniquely written as the sum $(v+u, 0, O)+(-u, \sigma_{u}, 0)$ , where
$(v+u, 0,0)\in V_{0}$ and $(-u, \sigma_{ll}, 0)\in V_{1}$ . Hence we conclude that (V, $\tilde{\mathfrak{H}}$ )
$\cong(V_{0}, \mathfrak{p}^{(0)})\subset_{\vee^{\backslash }}\times(V_{1}, \cdot|_{\sim}^{\backslash }\urcorner^{(1)})\cong(V, \mathfrak{p})^{\prime_{\vee}}(\times(V^{*}, \mathfrak{p}^{*})$ .

Now an L.kernel (V, $\mathfrak{p}$ ) is said to be similar to (V’, $\mathfrak{p}^{\prime}$ ), written
(V, $\mathfrak{p}$ ) $\sim(V^{\prime}, \mathfrak{p}^{\prime})$ , if there exist two extendible L.kernels $(U, q),$ $(U^{\prime}, q^{\prime})$

such that

(V, $\mathfrak{p}$ ) $\otimes(U, q)\cong(V^{\prime}, \mathfrak{p}^{\prime})^{\tau_{\times}}\vee(U^{\prime}, \mathfrak{q}^{\prime})$ .

Then this relation of similarity is reflexive,2) symmetric and transitive
by lemma 1. Moreover equivalent L.kernels are similar,2) and $V_{1}\sim V_{1}^{\prime}$ ,
$V_{2}\sim V_{2}^{\prime}$ imply $V_{1^{\backslash \nu}}^{\Gamma}\times V_{2}\sim V_{1}^{\prime}\prime_{\vee}\times V_{2}^{\prime}$ , as is easily seen. Now we classify
the L-kernels by the similarity relation and denote the class containing
the L-kernel (V, $\mathfrak{p}$ ) by [V, $\mathfrak{p}$ ]. By the above remark, we can define
the $’\times f$ -product [ $(V, \downarrow))\otimes(V‘, \mathfrak{p}^{\prime})1$ of [V, $\mathfrak{p}1$ and [V’, $\mathfrak{p}^{\prime}$ ], and this multi-
plication is associative and commutative, $Z=[Z, P]$ being the unit, and
$[V^{*}, \mathfrak{p}^{*}]$ the inverse of [V, $\mathfrak{p}$ ]. Hence we have

THEOREM 1. The similarity classes of L.kernels form an abelian
group under the above defined $\otimes$ -multiplication.

We shall call this group the similarity group of ( $L$ , Z. $P$).

\S 2. Now we proceed to consider the three.dimensional cohomology of
Lie algebra. Let an L.kernel (V, $\mathfrak{p}$ ) be given. If a derivation $\sigma_{x}e\mathfrak{p}_{x}$

is linear in $x,$
$i$ . $e$ . if it has the property

2) $(Z, P)$ is extendible. In fact, we put $E$ as the direct sum $L+Z$ with $\dot{\varphi}(x, c)=x$ .
Commutation in $E$ is defined by the formula $[(x, c), (y, d)]=([x, y], P_{y}c-P_{x}d)$ . Then $E$

is a Lie algebra, which is an extension of $L$ by the kernel $(Z, P)$ . Hence it follows
immediatelly that the similarity relation is reflexive, and that equivalent L-kernels are
similar.
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\langle 1) $\sigma_{\alpha x+\beta y}=\alpha\sigma_{x}+\beta\sigma_{y}$ ,

we shall call $\sigma_{x}$ a $\sigma$-function. The existence of such a function is as-
sured as follows: Let $x_{1},\cdots,$ $x$. be a base of $L$ over $F$, and select an
arbitrary derivation $\sigma_{x_{i}}$

, fixed once fo\’i all, from $\mathfrak{p}_{x_{i}},$
$1\leq i\leq n$ . Then

put $\sigma_{x}=\sum\alpha_{i}\sigma_{x_{i}}$ , for $x=\sum\alpha_{i}x_{i},$ $\alpha_{i}\in F$. $\sigma_{x}$ is then obviously a $\sigma-$

function. For a given $\sigma$ -function $\sigma_{x}$ , we call a v-function related to
$\sigma_{x}$ , of $x,$ $y\in L$ , a function $v(x,y)$ with values in $V$ satisfying $[\sigma_{x}, \sigma_{y}]$

$-\sigma_{fx.y}=\sigma_{v(x.y)}$ and having the properties

$v(\alpha x+\beta y, z)=\alpha v(x, z)+\beta v(y, z)$

(2) $v(x, \alpha y\neq\beta z)=\alpha v(x,y)+\beta v(x, z)$

$v(y, x)=-v(x,y)$

$i$ . $e$ . when $v(x, y)$ is bilinear and alternative in $x,y$ . The existence of
such a v-function related to $\sigma_{x}$ is assured as follows: Let as before
$x_{1},\cdots,$ $x_{l}$ be a base of $L$ over $F$. Then since $[\sigma_{x_{\oint}}, \sigma_{x_{j}}],$

$\sigma_{\llcorner X_{l}.x_{j^{j}}}$
belongs

to the same class $\mathfrak{p}_{L}\ulcorner x_{i}.x_{j^{I}}^{-}$ ’ there exists an element $v(x_{i}, x_{j})$ in $V$ such

that $[\sigma_{X}, \sigma_{x}]=ij$ Here we can suppose that $v(x_{j}, x_{i})$

$=-v(x_{i}, x_{j})$ . We fix once for all such element $v(x_{i}, x_{j})$ for each pair
$(i, j),$ $i,$ $j=1,\cdots,$ $n$ , and put $v(x,y)=\sum\alpha_{i}\beta_{j}v(x_{j}, x_{j})$ for $x=\sum\alpha_{i}x_{i}$ ,
$y=\sum\beta_{j}x_{j},$ $\alpha_{i},$ $\beta_{j}\in F$. Then $v(x,y)$ is a v-function related to $\sigma_{x}$ .
Now we have

$[[\sigma_{x}, \sigma_{y}],$
$\sigma_{z}$] $+[[\sigma_{y}, \sigma_{z}],$

$\sigma_{x}$] $+[[\sigma_{z}, \sigma_{x}],$
$\sigma_{y}$]

$=[\sigma_{L^{-}X.y3}, \sigma_{z}]+[\sigma_{[y.z]}, \sigma_{X}]+[\sigma_{\subset z.x\lrcorner}\neg, \sigma_{y}]+[\sigma_{v(x.s)},\sigma_{z}]+[\sigma_{v^{(}y,z)},\sigma_{x}]+[\sigma_{v^{(}z.xj},\sigma_{y}]$

$=\sigma_{L\subset X.\mathcal{Y}_{\lrcorner}^{\neg}.l_{\rightarrow}}+\sigma_{\overline{\llcorner}[y.z_{-}^{\neg}.x]}+\sigma_{[[z.x].y]}+\sigma_{\sigma x^{v(1}’}-\cdot z)+\sigma_{\sigma_{y}v(z.x)}+\sigma_{\sigma_{z}v^{(}x.y)}$

$+_{\sigma_{v}\neg}(\subset X.\mathcal{Y}\lrcorner z)+\sigma_{y(\zeta y.z^{\backslash }..x)}+\sigma_{v(\Gamma z.x_{-}^{\urcorner}.y)}=\sigma_{J^{(x.y.z)}}=0$ ,

where
(3) $f(x,y, z)=\sigma_{x}v(y, z)+\sigma_{y}v(z, x)+\sigma_{z}v(x,y)$

$+v([x, y], z)+v([y, z], x)+v([z, x],y)$ .
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Since $\sigma_{f(x.’.z)^{=0,f(x,y,z)}}$ belongs to $Z$. We can easily verify that
$f(x_{\mathfrak{t}},y, z)$ is a 3-Z-cochain. Moreover we have

’
LEMMA 3. $f(x,y, z)$ is a 3-Z.cocycle.
PROOF. Let us compute the coboundary $\partial f(x,y, z, t)$ of $f$ :

$\partial f(x,y, z, t)=P_{x}f(y, z, t)-P_{y}f(x, z, t)+P_{z}f(x,y, t)-P_{t}f(x,y, z)$

(4) $+f([x,y], z, t)-f([x, z],y, t)+f([x, t],y, z)+f[(y, z],$ $x,$
$t$)

$-f[(y, t],$ $x,$ $z$) $+f([z, t], x,y)$ .
In the right hand side of this formula, express each $f$ in the form (3)
and replace each $P$ by $\sigma$ . Then we have terms of the following types:
$\sigma_{*}\sigma_{*}v(*, \#),$ $\sigma_{*}v([*, *], \star),$ $\sigma_{[*.*]}v(*, \star),$ $\sigma_{*}v(*, [\star, *]),$ $v([[\star. \star], *], *)_{r}$

$v([*, \star], [*, *])$ and $v([*, [*, \star]], *)$ . Many of these of terms cancel with
each other as we have the relations such as $\sigma_{x}v([y, z], t)+\sigma_{x}v(t, [y, z])$

$=0,$ $v[[z, t],$ $[x,y]]+v([x,y], [z, t])=0$ and $vt[[x,y],$ $z$]
$,$

$t$) $-v([[x, z],y], t)$

$+v([[y, z], x], t)=0$, in virtue of (2). Thus (4) is reduced to the fol.
lowing:

$(\sigma_{x}\sigma_{\mathcal{Y}}-\sigma_{\mathcal{Y}}\sigma_{x})v(z, t)+\sigma_{\dot{L}}x.yJv(z, t)+(\sigma_{x}\sigma_{z}-\sigma_{z}\sigma_{x})v(t,y)\supset$

$+(\sigma_{x}\sigma_{t}-\sigma_{t}\sigma_{x})v(y, z)+\sigma_{\subset x.t_{s}^{\urcorner}}v(y, z)+(\sigma_{z}\sigma_{y}-\sigma_{y}\sigma_{z})v(t, x)-\sigma_{(y.zJ}v(t, x)$

$+(\sigma_{y}\sigma_{t}-\sigma_{t}\sigma_{y})v(z, x)+\sigma_{\mathcal{Y}.t\supset}v(z, x)+(\sigma_{z}\sigma_{t}-\sigma_{t}\sigma_{z})v(x,y)+\sigma_{r_{z.tJ}}v(x,y)$ .
Since $[\sigma_{x}, \sigma_{y}]-\sigma_{\Gamma}=\sigma_{V(y.y)}\llcorner x.yj$ , this is rewritten as follows:

$-[v(z, t), v(x,y)]-[v(t,y), v(x, z)]-[v(y, z,), v(x, t)]$

$+[v(t, x), v(y, z)]-[v(z, x), v(y, t)]-[v(x,y), v(z, t)]$ ,

hence we have $\partial f(x,y, z, t)=0$ . Thus if we choose a $\sigma$-function $\sigma_{x}$

and a v-function $v(x,y)$, we obtain a 3-Z.cocycle $f(x,y, z)$ defined by
(3). We shall call it the f.cocycle related to $\sigma_{x}$ and $v(x,y)$ .

We shall state here some more remarks. If we replace the v-
function $v(x,y)$ by another v.function $v^{\prime}(x,y)$ related to the same $\sigma-$

function $\sigma_{x}$ , then the element $c(x,y)=v^{\prime}(x,y)-v(x,y)$ is a 2-Z-cochain.
We shall call it a c-element. Obviously every $2- Z\cdot c\propto hain$ can be re-
garded as a c-element. The $f$-cocycle $f^{\prime}(x,y, z)$ related to $\sigma_{x}$ and
$v^{\prime}(x,y)$ is cohomologous to $f(x,y, z)$ : $f^{\prime}(x,y, z)=f(x,y, z)+\partial c(x,y, z)$ .
As we can take an arbitrary 2-Z.cochain as c-element $c(x,y)$, every
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cocycle $f(x,y, z)$ cohomologous to $f(x,y, z)$ can be regarded as $f\cdot cocycle$ .
Now if we replace $\sigma_{x}$ by another $\sigma\cdot function\sigma_{\acute{x}}$ , then there exists an
element $v(x)$ in $V$ such that $\sigma_{\acute{x}}=\sigma_{x}+\sigma_{v(x)}$ . Here we can suppose that
$v(x)$ is linear: $v(\alpha x+\beta y)=\alpha v(x)+\beta v(y)$ . Put $v^{\prime}(x,y)=v(x,y)$

$+\sigma_{y}v(x)-\sigma_{x}v(y)+[v(x), v(y)]$, then the $f\cdot cocycle$ related to $\sigma_{\acute{x}}$ and
$v^{\prime}(x,y)$ is equal to $f(x,y, z)$ . Thus we have the following

LEMMA 4. To each L-kernel (V, $\mathfrak{p}$ ) corresponds a $3\cdot Z\cdot cohomology$

class, $i.e$ . the class of an f-cocycle related to $\sigma_{x}$ and $v(x,y),$ $\sigma_{x}$ being
an arbitrary $\sigma$ function and $v(x, y)$ a v-function related to $\sigma_{x}$ . To
equivalent kernels corresponds the same class.

We shall denote the cohomology class corresponding to (V, $\mathfrak{p}$ ) by
$F(V, \mathfrak{p})$ .

LEMMA 5. An L.kernel (V, $\mathfrak{p}$ ) is extendible if and only if $F(V, \mathfrak{p})$

is O-class.
PROOF. 1) Let us assume that (V, $\mathfrak{p}$ ) is extendible. let $(E, \phi)$ be

an extension of $L$ by (V, $\mathfrak{p}$ ), and $x_{1},\cdots,$ $x_{n}$ a base of $L$ over $F$, and
$u(x_{i})$ an element in $E$ mapped by $\phi$ to $x_{i}$ , fixed once for all, $1\leq i\leq n$ ,

then put $u(x)=\sum\alpha_{i}u(x_{i})$ for $x=\sum\alpha_{i}x_{i},$ $\alpha_{i}\in F$. For the construction
of $f$-cocycle corresponding to (V, $\mathfrak{p}$ ), choose a $\sigma$ -function $\sigma_{x}$ , defined by
$\sigma_{x}v=[v, u(x)]$ . Then $v(x,y)=[u(x), u(y)]-u([x, y])$ is a v-function
related to $\sigma_{x}$ . We have then

$[[u(x), u(y)], u(z)]+[[u(y), u(z)], u(x)]+[[u(z), u(x)], u(y)]$

$=[u([x, y]), u(z)]+[u([y, z]), u(x)]+[u([z, x]), u(y)]$

$+[v(x,y), u(z)]+[v(y, z), u(x)]+[v(z, x), u(y)]$

$=u([[x,y], z])+u([[y, z], x])+u([[z, x],y])+\sigma_{x}v(y, z)+\sigma_{y}v(z, x)$

$+\sigma_{z}v(x,y)+v([x,y], z)+v([y, z], x)+v([z, x],y)$

—f $(x,y, z)=0$ ,

where $f(x,y, z)$ is the $f\cdot cocycle$ related to $\sigma_{x}$ and $v(x,y)$ , which proves
that $F(V, \mathfrak{p})$ is 0.class.
2) Conversely, let us assume that $F$ (V. $\mathfrak{p}$ ) is 0.class. Select now any
$\sigma$ -function $\sigma_{x}$ . By the above remark we may then select a v.function
$v(x, y)$ so that the $f$-cocycle related to $\sigma_{x}$ and $v(x,y)$ is identically $0$ .
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Then $E=\{(v, x);v\in V, x\in L\}$ is a Lie algebra with law of composi-
tions:

$(v, x)+(u,y)=(v+u, x+y)$

$[(v, x), (u,y)]=([v, u]+\sigma_{y}v-\sigma_{x}u+v(x, y), [x,y])$ .
The correspondence $\phi(v, x)=x$ is a homomorphism from $E$ onto $L$, and
the kernel consists of the pair $(v, 0)$ which may be identified with the
element $v$ in $V$. The element $(0, x)$ in $E$ is thereby mapped by $\phi$ to
$x\in L$ . If we take this element $(O, x)$ as $u(x)$, then we have $[(v, O)$ ,
$u(x)]=[(v,0), (0, x)]=(\sigma_{X}v, 0)$ , so that $u(x)$ induces the derivation $\sigma_{x}\in\downarrow)_{X}$ .
Thus (V, $\mathfrak{p}$ ) can be realized as the kernel of an extension $E$ .

LEMMA 6.

$F[(V_{1}, \mathfrak{p}^{(1)})\subset\times)(V_{2}, \mathfrak{p}^{(2)})]=F(V_{1}, \mathfrak{p}^{(1)})+F(V_{2}, \mathfrak{p}^{(2)})$ .
PROOF. Choose first $\sigma_{x}^{ti)}C-\downarrow)^{(i)}x’ v_{(x.y)}^{(i)}\in V_{i},$ $i=1,2$, such that $[\sigma_{x^{i)}}^{(}, \sigma_{v}^{(i)}]$

$-\sigma_{\mathfrak{l}x.\mathcal{Y}I}^{(}=\sigma_{vx^{)}.v)}^{(i}i)$

( , and denote the $f\cdot cocycle$ related to $\sigma_{\chi}^{(i)}$ and $v_{(x.v)}^{(i)}$ by
$f_{(x.yz)}^{(i)}$ . In the product (V, $\mathfrak{p}$ ) $=(V_{1}, \downarrow)^{t1)})^{(\times)}(V_{2}, \mathfrak{p}^{(2)})$ , where $V=(V_{1}\times V_{2})/S$,
we shall put $\sigma_{\chi}=$

$(\sigma_{x}^{(1)}, \sigma_{\chi}^{(2}‘)$ , $v(x,y)=(v^{(1)}(x, y),$ $v^{(2)}(x, y))+S$. Then the f-
cocycle related to $\sigma_{x}$ and $v(x,y)$ is $(f^{(1)}(x,y, z), f^{(2)}(x, y, z))+S=(f^{(1)}(x$,
$y,$ $z$ ) $+f^{2)}|(x,y, z),$ $O$ ) $+S$. Since $f^{(i)}\in Z,$ $i=1,2$ , it may be identified with
$f^{(1)}+f^{2)}(eZ$.

Now if $V_{1}\sim V_{2}$ , then $V_{1^{(\times^{\backslash }1}}^{\prime}U_{1}\cong V_{2^{(\times\backslash }}^{\prime}U_{2}$ for extendible L-kernel
$U_{1}$ and $U_{2}$ . Since $F(U_{1})=F(U_{2})=0$ by lemma 5, it follows that $F(V_{1})$

$=F(V_{2})$ by lemma 4 and 6. Conversely, suppose that $F(V_{1})=F(V_{2})$ .
If $V_{1}^{*}$ is the inversc of $V_{1}$ , then $V_{1\backslash ^{\prime}}\times\backslash V_{1}^{\star}$ is extendible and we have
$-F(V_{1})=F(V_{1}^{*})$ . Hence $F(V_{2\backslash }O\times V_{1}^{\star})=0$ , so that $V_{2^{(\times}}V_{1}^{*}$ is extendible.
Now $i1(V_{1}(\times)V_{1^{\star}})^{(\times)}V_{2}\cong V_{1}\times)(V_{2}(\times)V_{1}^{*}),$ $ V_{1^{\backslash ^{\prime}}}\times$ ) $V_{1}^{*}$ and $V_{2^{(}\sim^{)}}^{x}V_{1}^{*}$ are
both extendible, so we have $V_{1}\sim V_{2}$ . In other words,

$V_{1}\sim V_{2}$ if and only if $F(V_{1})=F(V_{2})$ .
Thus we have

THEOREM 2. The similarity group of $(L, Z, P)$ is isomorphic to a
subgroup of the three.dimensional cohomology group $H^{3}$ ($L$ , Z. $P$).
\S 3. Now we consider the relation between the extensions of $L$ by a
given extendible L-kernel (V, $\mathfrak{p}$ ) and the two-dimensional cohomology
group $H^{2}$ ( $L$ , Z. $P$). We shall thus solve the problem to construct the
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extensions by the center of (V, $\mathfrak{p}$ ) and to determine all extensions of
$L$ by (V, $\mathfrak{p}$ ).

Two extensions $(E, \phi),$ $(E‘, \phi^{\prime})$ of $L$ by the L-kernel (V, $\mathfrak{p}$ ) are
called equivalent, written $(E, \phi)\approx(E^{\prime}, \phi^{\prime})$ , if there exists an isomor-
phism $\tau$ from $E$ onto $E^{\prime}$ such that $\tau v=v,$ $\forall v\in V$, and $\phi^{t}\tau=\phi$ . The
equivalence of extensions of $L$ by $(Z, P)$ is similarly defined. We shall
prove the following two lemmas:

LEMMA 7. Every extension $(E^{\prime}, \phi^{\prime})$ of $L$ by an extendible L-kernel
(V, $\mathfrak{p}$ ) is equivalent with the product $E_{\backslash }^{\Gamma\times)}D$ of a fixed extension $(E, \phi)$

of $L$ by (V, $\mathfrak{p}$ ) with some extension $(D, \eta)$ of $L$ by the center $(Z, P)$ .
$I_{\lrcorner}EMMA8$ . $E\cap\times D_{1}\approx EC\times D_{2}$ if and only $lfD_{1}\approx D_{2}$ .
To prepare the proof of these lemmas, we give first a remark on

the product of extensions. Let $(E, \phi)$ be any extension of $L$ by $(V,$ $\downarrow))$ ,
and as before $x_{1}$ , $\cdot$ , $x_{n}$ a base of $L$ over $F$, and $u(x_{i})$ an element in $E$

with $\phi u(x_{i})=x_{j},$ $1\leq i\leq n$ , fixed once for all. Put $u(x)=\sum\alpha_{i}u(x_{i})$

for $x=\sum\alpha_{i}x_{i},$ $\gamma_{i}\in F$. The derivation $\sigma_{x}e\cdot\backslash _{\sim}^{\backslash }\tau_{x}$ defined by $\sigma_{x}v=[v, u(x)]$

is a $\sigma$ -function, and the element $v(x,y)$ in $V$ with $[u(x), u(y)]-u([x,y])$
$=v(x, y)$ is a v-function related to $\sigma_{J},$ , which we shall call a factor set
of $(E, \phi)$ corresponding to the set of rcpresentatives $\{u(x)\}$ . Then
Jacobian identity in $E$ gives

(5) $\sigma_{x}v(y, z)+\sigma_{y}v(z, x)+\sigma_{z}v(x, y)+v([(x,y],$ $z$ )

$+v([y, z], x)+v([z, x],y)=0$ .
In an extension $(D, 77)$ of $L$ by $(Z, P)$ , we shall select for each $x\in L$ a
representative $d(x)$ in $D$ with $\eta d(x)=x$ and $d(\alpha x)=\alpha d(x)$ . We have
thereby $[c, d(x)]=P_{x}c$ . Then the element $c(x,y)$ defined by $[d(x), d(y)]$

$-d([x, y])=c(x,y)$ is a 2-Z.cocycle, as is easily seen. We shall call
$c(x,y)$ a factor set of $(D, \eta)$ corresponding to the set of representatives
$\{d(x)\}^{\zeta 31}$ . Now the element $(u(x), d(x))S$ in the product $ E_{\backslash }^{r}\times$) $D$

$=(E_{1}, \phi_{1})$ is mapped by $\phi_{1}$ to $x\in L$ . If we take this element $(u(x), d(x))S$

as representative $u_{1}(x)$ in $E_{1}$ with $\phi_{1}u_{1}(x)=x$ , then we have
(6) $[u_{1}(x), u_{1}(y)]-u_{1}([x,y])=(v(x, y),$ $c(x, y))S=(v(x,y)+c(x, y),$ $O$ ) $S$

where the element $(v+c, 0)S$ may be identified with $v+c$ in $V^{31}$ In
3) Every element of the form $(v. c)S$ in the product $(V^{\prime}, \mathfrak{p}^{\prime})=(V, \mathfrak{p})(\times 1$ (Z. $P$) may

be identified with the element $v+c$ in V. In the following such an identification will be
done without $mentio\iota\iota ing$ it especially.



180 M. MORI

other words, to the product of extensions $(E, \phi)$ and $(D, \eta)$ corresponds

the sum of the factor sets $v$ and $c$.
PROOF OF LEMMA 7. Let $(E^{\prime}, \phi^{\prime})$ be any extension of $L$ by L-

kernel (V, $\mathfrak{p}$ ). Select representatives $u^{\prime}(x)$ in $E^{\prime}$ with $\phi^{\prime}u^{\prime}(x)=x,$ $[v$,
$u^{\prime}(x)]_{-\sigma_{x}}^{\rightarrow}v$ and $u^{\prime}(\alpha x)=\alpha u^{\prime}(x)$ , and a v-function $v^{\prime}(x,y)$ related to $\sigma_{x}$

such that $[u^{\prime}(x), u^{\prime}(y)]-u^{t}([x,y])=v^{\prime}(x,y)$ , where $v^{\prime}(x,y)$ is the factor
set of $(E^{\prime}, \phi^{\prime})$ corresponding to the set of representatives $\{u^{\prime}(x)\}$ . Since
$[\sigma_{x}, \sigma_{y}]-\sigma_{[x.y]}=\sigma_{v^{(x.y)}}=\sigma_{v^{\prime}(x.y)},$

$v^{\prime}(x,y)-v(x,y)$ lies in $Z$. We shall put
$c(x, y)=v^{\prime}(x, y)-v(x,y)$ . Now the equation (5) holds also when we
replace $v$ by $v$ ‘. The function $c(x,y)$ is thus a $2- Z\cdot cocycle$ , and so
determines an extension $(D, \eta)$ of $L$ by $(Z, P)$ . It follows immediately

that $E\otimes D\approx E^{\prime}$ by (6). This proves lemma 7.
PROOF OF LEMMA 8. Let $(E_{1}, \phi_{1}),$ $(E_{2}, \phi)$ be equivalent extensions

with isomorphism $\tau$ : $E_{1}\rightarrow E_{2}$ and $E_{i}=E\otimes D_{i},$ $i=1,2$ , where $D_{i}$ is an
extension with a set of representatives $\{d_{i}(x)\}$ and the factor set
$\{c_{i}(x,y)\}$ corresponding to $\{d_{i}(x)\}$ . Let $u(x)$ be as before the represent-

atives of $E$ . Then the element $u_{i}(x)=(u(x), d_{i}(x))S$ may be taken as
a representative of $E_{i}$ , and we have $[u_{i}(x), u_{i}(y)]-u_{i}([x,y])=v(x,y)$

$+c_{i}(x,y)$ . Since $\phi_{2^{T}}=\phi\iota,$ $\tau u_{1}(x)$ is an element of the form $u_{2}(x)+b(x)$

for some $b(x)\in V$. Now we have $\tau[v, u_{1}(x)]=[v, \tau u_{1}(x)]=[v, u_{2}(x)+b(x)]$

$=\sigma_{x}v+\sigma_{b^{(}x)}v$ , and on the other hand $\tau[v, u_{1}(x)]=\tau(\sigma_{x}v)=\sigma_{x}v$ , hence

it follows that $b(x)eZ$ and $b(x)$ is a l-Z.cochain. Moreover we have
$\tau\{[u_{1}(x), u_{1}(y)]-u_{1}([x,y])\}=\tau(v+c_{1})=v+c_{1}$ , and on the other hand

$\tau\{[u_{1}(x), u_{1}(y)]-u_{1}([x,y])\}=[\tau u_{1}(x), \tau u_{1}(y)]-\tau u_{1}([x,y])$

$=[u_{2}(x)+b(x), u_{2}(y)+b(y)]-\{u_{2}([x,y])+b([x,y])\}$

$=[u_{2}(x), u_{2}(y)]-u_{2}([x,y])-P_{x}b(y)+P_{y}b(x)$

$-b([x,y])=v+c_{2}-\partial b(x, \gamma)$ ,

since $\tau u_{1}(x)=u_{2}(x)+b(x)$ , $b(x)_{\in}Z$ and $[b(x), u_{2}(y)]=P_{y}b(x)$ . This
shows $c_{2}-c_{1}=\partial b$ , so that the cocycle $c_{i}$ defining $D_{i},$ $i=1,2$, are coho $\cdot$

mologous to each other: therefore $D_{1}$ and $D_{2}$ are equivalent.[3] This
proves lemma 8. From lemma 7 and 8 follows

THEOREM 3. Let (V, $\mathfrak{p}$ ) be an extendible L.kernel, then the set of
equivalent classes of extensions $(E^{\prime}, \phi^{\prime})$ of $L$ by this kernel (V, p) may
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be put into one-to-one correspondence with the cohomology classes of
$H^{2}(L, Z, P)^{4)}$

Now we construct the extensions by the center $(Z, P)$ . We shall
call the graph of a given L.kernel (V, $\mathfrak{p}$ ), extendible or not, the I,ie
algebra $I^{7}=\{(X, \sigma);\sigma\in \mathfrak{p}_{x}\}$ contained in the direct product $L\times D(V)$ .
The mapping $\rho(X, \sigma)=x$ is then a homomorphism of $I^{\gamma}$ onto $L$ with
kernel isomorphic to $I(V)$ . We define now $[v, (X, \sigma)]$ to be $\sigma v$ for
$v\in V,$ $(X, \sigma)\in 1^{7}$ . Then each element $(X, \sigma)$ of $I$ ‘ induces a derivation
in $V$, and we have

(7) $[c, (X, \sigma)]=P_{x}c$, $\forall c\in Z$, $\forall(X, \sigma)\in\Gamma$ .
Now let $(E, \phi)$ be an extension of $L$ by the L.kernel (V, $\mathfrak{p}$ ). The cor-
respondence $\psi e=(\phi e, \sigma_{e})$ is then a homomorphism from $E$ onto $L$

with kernel $Z$, and we have $\rho\psi=\phi$ . Thus the Lie algebra $E$ may be
regarded either as an extension of $L$ by (V, $\mathfrak{p}$ ) or as an extension of
$I$

’ by $(Z, P)$ : in the latter case, $I^{7}$ has a representation $P$ over $Z$ de.
fined by (7). Now we have

THEOREM 4. (REDUCTION THEOREM). Every extension $(E, \phi)$ of
$L$ by (V, $\mathfrak{p}$ ) induces an extension $(E, \psi)$ of $I^{7}$ by $(Z, P),$ $I$

’ being the
graph of (V, $\mathfrak{p}$ ) defined as above, and $(E, \phi)\approx(E‘, \phi^{\prime})$ implies $(E, \psi)$

$\approx(E^{\prime}, \psi^{\prime})$ . It may happen that inequivalent extensions of $L$ by (V, $\mathfrak{p}$ )
induce equivalent extensions of $I^{\gamma}$ by $(Z, P)$ .

Now we shall introduce a subgroup $H_{V}^{2}(L, Z, P)\subset H_{2}(L, Z, P)$ deter-
mined by the given L-kernel (V, $\mathfrak{p}$ ) as follows: The lift correspondence
$\Lambda c((X, \sigma),$ $(y, \tau))=c(x,y)$ of $c\in C^{2}(L, Z, P)$ to $\Lambda c\in C^{2}(I^{7}, Z, P)$ provides
a homomorphism from $H^{2}(L, Z, P)$ onto a subgroup $\Lambda H^{2}(L, Z, P)$ of
$H^{2}(I’, Z, P)$ , since $\partial\Lambda c=\Lambda\partial c$, as is easily seen. $H_{V}^{2}(L, Z, P)$ is now
defined to be the kernel of this homomorphism.

We shall call an extension $(E, \psi)$ of $I^{\gamma}$ by $(Z, P)$ admissible, if it
is induced by some extension $(E, \phi)$ of $L$ by (V, $\mathfrak{p}$ ).

Now let $(E^{\prime}, \phi^{t})$ an extension of $L$ by $(V, \mathfrak{p})$ , and $E^{\prime}=E\otimes D$ ,

4) We shall denote by $\{E\},$ $\{D\}$ the class of extensions $\epsilon$ quivalent with $E,$ $D$ respec $\cdot$

tively. Let $E^{\prime}$ be any extension and $E^{\prime}\approx E\otimes D,$ $E$ being an extension, fixed once for
all. Then the correspondence $\{E^{/}\}=\{E\otimes D\}\rightarrow\{D\}$ provides a one-to-one correspondence
between the set of classes of extensions of $L$ by (V. p) and the set of extensions of $L$ by
$(Z;P)$ . The later set forms a group isomorphic to $H2(L, Z, P)$ . Cf. Chevalley and
Eilenberg, l.c.
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$(E, \phi)$ being a fixed extension of $L$ by (V, $\mathfrak{p}$ ), and $D$ an extension of
$L$ by $(Z, P)$ . Let $\{d(x)\}$ be a set of representatives and $c(x,y)$ the factor
set corresponding to $\{d(x)\}$ , and $(E‘, \psi^{\prime})$ the extension of $I$

’ by $(Z, P)$

induced by $(E‘, \phi^{\prime})$ . We shall denote generally by $\tilde{x}$ the element $(X, \sigma)$ ,

$\sigma\in \mathfrak{p}_{x}$ , in 1’. The element $\sigma\in \mathfrak{p}_{x}$ may be written in the form $\sigma_{u^{(x)v}}|$ ’

$v\in V$, and the element in $E^{\prime}$ has the from $(u(x)+v, d(x)+c)S,$ $veV$,
$c\in Z,$ $u(x)$ being as before the representative of $E$ with $\phi u(x)=x$ .
Then the element $(u(x)+v, d(x))S$ is mapped by $\psi^{\prime}$ to $\tilde{x}=(X, \sigma_{u^{(}x)\vdash v})$

in 1’. If we take this element $(u(x)+v, d(x))S$ as $\tilde{u}(\grave{A}^{\prime}\sim)$ , then we have
$[\tilde{u}(\tilde{x}),\tilde{u}(\tilde{y})]-\tilde{u}([\Lambda\sim’,\tilde{y}])=c(x,y)$ , where the left hand side is a factor set
$c\sim(\tilde{x},\tilde{y})$ of $(E‘, \psi^{\prime})$ corresponding to the set of representative $\{\tilde{u}(\tilde{x})\}$ . It
follows that the factor set of $(E^{\prime}, \psi^{\prime})$ is cohomologous to $\Lambda c$. Con-
versely, let $(E_{1}, \psi_{1}),$ $(E_{\underline{\prime}}, \psi\cdot))$ be equivalent extensions of $J$

’ by $(Z, P)$ ,

induced by $(E_{1}, \phi_{1}),$ $(E_{2}, \phi_{\underline{\lambda}})$ respectively. We may put $E_{1}\approx E_{1}\times D_{1}$ ,
$E_{2}\approx E_{1}\times D_{2}$ , where $D_{1}$ is a trivial extension of $L$ by $(Z, P)$ , so that the
factor set $c_{1}$ of $D_{1}$ is cohomologous to $0$ , and $D_{p}$ is an extension of $L$

by $(Z, P)$ with th $e$ factor sct $c_{\epsilon^{)}}$ . By the previous result, the factor set
of $(E_{i}, \psi_{i}),$ $i=1,2$, is cohomologous to $\Lambda c_{i}$ , respectively. Since $(E_{1}, \psi_{1})$ ,
$(E_{2}, \psi_{2})$ are equivalent to each other we have $\Lambda c_{1}\sim\Lambda c_{2}$ , and moreover
4 $c_{2}\sim O$ , since $c_{1}\sim O$ . It follows that the cohomology class $\{c_{2}\}$ be-
longs to $H_{V}^{2}(,LZ, P)$ . Thus we have the following

THEOREM 5. Let (V, $\mathfrak{p}$ ) be an extendible L-kernel. Then the set
of equivalent classes of admissible extensions of $1^{\tau}$ by $(Z,P)$ may be
put into one-to-one correspondence with $H^{2}(L, Z, P)/H_{V}^{2}(L, Z, P)^{5)}$ If
moreover $(E, \psi)$ is an admissible extension of $I^{\prime}$ by $(Z, P)$ , then the set
of equivalent classes of extensions $(E‘, \phi^{\prime})$ of $L$ by (V, $\mathfrak{p}$ ) which induce
the extensions $(E‘, \psi^{\prime})$ equivalent with $(E, \psi)$ may be put into one-to-one
correspondence with $H^{2_{V}}(L, Z, P)^{6)}$

By means of this theorem, we can enumerate all extensions of $L$

by a given L-kernel.
Mathematical Institute, University of Tokyo.

5) The set of equivalent classes of admissible extensions of $\Gamma$ by $(Z, P)$ may be put

into one-to $\cdot$one correspnodence with the image $\Lambda H2(L, Z, P)$ of $H2(L, Z, P)$ by $\Lambda$ .
6) Let $\{c^{\prime}\}$ be the class of cocycles (factor sets) corresponding to $(E^{\prime},\dot{\varphi}^{\prime})$ , where

$(E^{\prime}, \emptyset^{/})$ induces $(E^{\prime}, \psi^{/})$ quivalent with $(E, \psi)$ . The correspnodence $\{E^{\prime}\}->\{c^{/}\}$ , where

$\{c^{\prime}\}$ belongs to $H_{V}^{2}$ ( $L$ , Z. $P$) provides the $one\cdot to\cdot one$ correspondence between the set of

classes of extensions $(E^{\prime}, \mu’)$ and $H_{V}^{2}(L, Z, P)$ .
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