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Wedderburn’s theorem, weakly normal rings,
and the semigroup of ring-classes.
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(Received Feb. 2, 1953)

A well.known theorem of Wedderburn asserts that if a central
simple finite.dimensional algebra $A$ , over a field, is a subalgebra of an
algebra $S$ and if the unit element of $A$ is also a unit element in $S$ ,

then $S$ is the Kronecker product $A\times V_{S}(A)$ , where $V_{S}(A)$ denotes the
commuter ring of $A$ in $S$. An interesting generali $’.\prime ation$ of the theorem
was recently obtained by Azumaya [1]. It deals with the notion of
maximally central algebras, which was introduced formerly by Azumaya
and the writer [2] in a narrower sense, in a different context. In the
present note we first offer (1$ 1, Theorem 1 and $\backslash ^{\backslash }3$ , Theorems, 2, 3) a
further generalization of that Wedderburn-Azumaya theorem, dealing
simply with a ring $A$ possessing an independent finite right-basis over
its (not necessarily commutative) subring $C$. On the other hand, weakly
normal (or “ galoisien”) subrings of a ring have recently been used
effectively by Dieudonn\’e [3] and the writer $\lfloor 7$ ], $[9],$ $[10]$ in studying
automorphisms and the Galois theory or rings. The innerly weakly
normal case is of particular interest in our context, and our theorem
can, togetheor with some other propositions, be given a finer formula-
tion in this case $(b3)$ . The maximally central case is a further parti-
cular case in which the innerly weakly normal subring $C$ is commuta-
tive and is contained in (in fact, coincides with) the center of $A$ . For
maximally central rings Azumaya defined the notion of algebra- or
ring-classes and introduced their group, a generalization of the Brauer
group of the classes of central simple algebras. We are led to introduce
the semigroup of the ring.classes of rings containing a fixed commuta-
tive ring $C$ in their center and weakly normal over $C$ (as we want to
call) (5). It turns out that Azumaya’s group is in fact the largest
subgroup in this semigroup (Thcorcm 5). In Appendix we give a
simple proof to Jacobson’s inverse to Wedderburn’s theorem.
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\S 1. Endomorphism rings over subrings.

Let $A$ be, throughout the present note, an (associative) ring with
unit element 1. Let $C$ be a subring of $A$ . We assume always that
$C$ contains the unit element 1 of $A$ and moreover $A$ possesses an in-
dependent finite rigllt.basis over $C$, of rank $n$ , say;1)

$A=a_{1}C\oplus a_{2}C\oplus\cdots\oplus a_{n}C$ .
Let $\mathfrak{A}$ be the absolute endomorphism ring of $A$ as a modul. With a
subset $X$ of $A$ we denote by $X_{R}$ (resp. $X_{L}$ ) the set of right (resp. left)
multiplications of the elements of $X$ onto $A$ , which we consider as a
subset of $\mathfrak{U}$ . The C-right-endomorphism ring of $A$ is nothing but the
commuter ring $V_{\mathfrak{A}}(C_{R})$ of $C_{R}$ in $\backslash $)$\vee l$ . $V_{\mathfrak{A}}(C_{R})$ contains the left.multi.
plication ring $A_{L}$ of $A$ apd possesses, as follows from our assumption,
an independent right-basis of rank $n$ over $A_{L}$ ;

$V_{\mathfrak{A}}(C_{R})=\gamma_{1}A_{L}\oplus\gamma_{2}A_{L}\oplus\cdots\oplus\gamma_{n}A_{L}$ .
In fact, $V_{\mathfrak{A}}(C_{R})$ is $V_{\mathfrak{A}}(C_{R})\cdot right\cdot isomorphic$ to the direct sum $A^{\prime\prime}$ of $n$

copies of the $V_{\mathfrak{A}}(C_{R})$ -module $A$ . A further different interpretation of
$V_{\mathfrak{A}}(C_{R})$ is that it is the relation-module with respect to $1\times 1$ of the
$A\cdot double$-module $A+c^{A}$ , in the sense of [8] $e$ . $g$. We note also that
$V_{\mathfrak{A}}(V_{\mathfrak{A}}(C_{R}))=C_{R}$ .

PROPOSITION 1. Let $\gamma_{1},$ $\gamma_{2},\cdots,$ $\gamma_{m}$ be a finite set of elements in the
absolute endomorphism ring $\backslash \backslash $){ of $A$ such that the sum2) $\gamma_{1}A_{L}+\gamma_{2}A_{L}+$

$+\gamma_{m}A_{L}$ forms a ring. In order that $\gamma_{1}A_{L}+\gamma_{2}A_{L}+\cdots+\gamma_{m}A_{L}$ is
$V_{\mathfrak{A}}(C_{R})$ with a certain subring $C(\ni 1)$ of $A$ over which A possesses an
independent right-basis and $\gamma_{1},$ $\gamma_{2},\cdots,$ $\gamma_{m}$ are right-independent over $A_{L}$ ,
it is necessary and sufficient that there exist $m$ elements $x_{1},$ $x_{2},\cdots,$ $x_{m}$ in
$A$ such that the matrix

1) Thus, if $C$ satisfies the minimum (maximum) condition for right.ideals, then $A$

satisfies the same (for C.right modules, whence) for $right\cdot ideals$ . On the other hand, if
$A$ satisfies the left minimum (maximum) condition, then $C$ satisfies the same; consider
$ a_{1}\mathfrak{l}\oplus a_{2}\mathfrak{l}\oplus$ $\oplus a_{n}$ I with left.ideals I of $C$.

2) Not necessarily direct, for the moment.
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$(x_{j^{i}}^{\gamma})=\left(\begin{array}{lll}x_{1}^{\gamma_{1}} & \cdots & x_{m}^{\gamma_{l}}\\x_{I}^{\gamma_{m}} & \cdots & x_{m^{m}}^{\gamma}\end{array}\right)$

in $A$ is regular. If this is the case the $m$ elements $x_{1},$ $x_{2},\cdots,$ $x_{m}$ form
an independent right.basis of $A$ over $C$.

PROOF. Suppose, firstly, that $\gamma_{1},$ $\gamma_{2},\cdots,$ $\gamma_{m}$ are right-independent
over $A_{L}$ and that $\gamma_{1}A_{L}\oplus\cdots\oplus\gamma_{m}A_{J}=V_{\mathfrak{A}}(C_{R})$ with a subring $C\ni 1$ , of
$A$ , over which $A$ possesses an independent right-basis $(a_{1}, a_{2},\cdots, a_{n})$ , of
rank $n$ . Then3) $V_{\mathfrak{A}}(C_{R})=\alpha_{1}A_{L}\oplus\cdots\oplus\alpha_{n}A_{L}$ with $\alpha_{i}\in V_{\mathfrak{A}}(C_{R})$ defined
by

$a_{j}^{\alpha_{i}}=\delta_{ij}$ (Kronecker’s $\delta$ ).

Thus necessarily4) $m=n$ and there exists a regular matrix $((b_{ij})_{L})$ of
degree $n$ in $A_{L}$ such that

$(\gamma_{1}, \gamma_{2},\cdots, \gamma_{n})=(\alpha_{1}, \alpha_{2},\cdots, \alpha_{n})((b_{ij})_{L})$ .
Setting $x_{j}=a_{j}$ we have

$(x_{j}^{\gamma,})_{ij}=(a_{j}^{\gamma_{i}})_{ij}=(\Sigma_{k}b_{ki}a_{j}^{\alpha_{k}})=(b_{ji})_{ij}$ .
Since the matrix $((b_{ij})_{L})$ in $A_{L}$ is regular, the matrix $(b_{ji})_{ij}$ in $A$ is
regular, and the first half of our proposition is proved.

Assume, conversely, that $(x_{j^{i}}^{\gamma})$ , with a certain set $x_{1},$ $x_{2},\cdots,$ $x_{m}$ of
elements in $A$ , possesses an inverse $(d_{ij})_{ij}$ . Putting $\delta_{i}=\sum_{k}\gamma_{k}(d_{ik})_{L}$ ,
we obtain $(x_{j^{i}}^{\dot{\delta}})=(d_{ij})(x_{j}^{\gamma_{i}})=I$, the unit n-matrix in $A$ . So we see
readily that we may assume that $(x_{j}^{\gamma_{i}})=I$ from the beginning. It is
then evident that such $\gamma_{1},$ $\gamma_{2},\cdots,$ $\gamma_{m}$ are $right\cdot independent$ over $A_{L}$ . For
an arbitrary element $\alpha=\gamma_{1}z_{1L}+\gamma_{2}z_{2L}+\cdots+\gamma_{m}z_{mL}$ in $\sum\gamma_{i}A_{L}$ we have
$x_{j}^{\alpha}=z_{j}$ , or $\alpha=\gamma_{1}(x_{1}^{\alpha})_{L}+\gamma_{2}(x_{2}^{a})_{L}+\cdots+\gamma_{m}(x_{m}^{\alpha})_{L}$. With $\beta\in\sum\gamma_{i}A_{L}$ and
$y\in A$ , set $\alpha=\gamma_{h}y_{L}\beta$ . Then, by the above observation,

$\alpha=\gamma_{h}y_{L}\beta=\sum\gamma_{i}(x_{i}^{\gamma_{h^{y}L^{\beta}}})_{L}=\sum\gamma_{j}(\delta_{ih}y^{\beta})_{L}=\gamma_{h}(y^{\beta})_{L}$ .
$Thus_{\wedge}\gamma_{h}y_{L}\beta=\gamma_{h}(y^{\beta})_{L}$ and

3) Cf. [8] for instance. If $m$ is infinite, then we have merely the inclusion that the
left-hand side contains the right-hand side. But we see immediately that $n$ is equal to $m$

and is finite.
4) Take for instance, a maximaI right-ideal $\mathfrak{m}$ of $A_{L}$ and consider the fully reducible

$A_{Lr}ight\cdot moduleV_{\mathfrak{A}}(C_{R})/V_{\mathfrak{A}}(C_{R})m$ .
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$(yz^{\gamma_{h}})^{\beta}=y^{\beta}z^{\gamma_{h}}$

for every $z\in A$ . Since $\beta$ is arbitrary in $\sum\gamma_{i}A_{L}$ , this shows that
$(z^{\gamma_{h}})_{R}eV_{\mathfrak{A}}(\sum\gamma_{i}A_{L})$ ,

for every $z\in A$ . Put $V_{\mathfrak{A}}(\sum\gamma_{i}A_{L})=C_{R}$ , with a subring $C$ of $A$ . Our
elements $x_{1},$ $x_{2},\cdots,$ $x_{m}$ are right.independent over $C$. For, if $x_{1}c_{1}+x_{2}c_{2}+$

$+x_{m}c_{m}=0$ with $c_{i}\in C$, then $c_{i}=\sum\delta_{ij}c_{j}=\sum x_{j}^{\gamma_{i}}c_{j}=\sum x_{j}c_{j}^{\gamma_{i}}=0^{\gamma_{i}}=0$ .
Moreover, for an arbitrary element $z$ in $A$ we have $z^{\gamma_{i}}\in C$, as was
seen above. Putting $z^{\prime}=x_{1}z^{\gamma_{1}}+x_{2}z^{\gamma_{2}}+\cdots+x_{m}z^{\gamma_{m}}$ , we get $(z^{\prime}-z)^{\gamma_{i}}=0$ ,
for $i=1,2,\cdots,$ $m$ . Thus $(z^{\prime}-z)^{\gamma}=0$ for every $\gamma\in\sum\gamma_{i}A_{L}$ . In particular,
$(z^{\prime}-z)^{A_{L}}=A(z^{\prime}-z)=0$, and $z^{\prime}-z=0$ . This shows that $z\in x_{1}C+x_{2}C+$

$+x_{m}C$. Hence $x_{1},$ $x_{2},\cdots,$ $x_{m}$ form an independent right-basis of $A$ over
$C$. Clearly $V_{\mathfrak{A}}(C_{R})\underline{\supset}\sum\gamma_{i}A_{L}$ . But it is easy to see, from $(x_{j^{i}}^{\gamma})=I$,
that here $V_{\mathfrak{A}}(C_{R})=\sum\gamma_{i}A_{L}$ . The proposition is thus proved.

PROPOSITION 2. Let A possess an independent finite $nght\cdot basis$

over C. Then $V_{\mathfrak{A}}(C_{R})\cdot allowable$ submodules $a$ of $A$ are in 1-1 cor-
respondence with left-ideals 1 of C. according to the correspondence

$\mathfrak{a}\rightarrow \mathfrak{l}=C\rightarrow \mathfrak{a}$ , $\mathfrak{l}\rightarrow \mathfrak{a}=A$ I.

PROOF. Let $(a_{1}, a_{2},\cdots, a_{n})$ be an independent C-right-basis of $A$ , and
let $\alpha_{i}(\in V_{\mathfrak{A}}(C_{R}))$ be such that $a_{j^{i}}^{a}=\delta_{ij}$ . Let $\mathfrak{a}$ be a $V_{\mathfrak{A}}(C_{R})\cdot allowable$

submodule of $A$ . If $a\in \mathfrak{a}$ and $a=a_{1}c_{1}+a_{2}c_{2}+\cdots+a_{u}c_{n}(c_{i}\in C)$ , then
$a^{\alpha_{\oint}}=a_{1}^{\alpha_{j}}c_{1}+a_{2}^{\alpha_{i}}c_{2}+\cdots+a_{n}^{\alpha_{i}}c_{n}=c_{i}$ .

Since $ a^{a_{i}}\in\zeta\ddagger$ we have $c_{i}(=a^{\alpha_{i}})\in(l\wedge C$. This shows that $\mathfrak{a}\underline{\subset}_{a_{1}}\downarrow\oplus$

$a_{2}\mathfrak{l}\oplus\cdots\oplus a_{n}\mathfrak{l}=A\mathfrak{l}$ with $\mathfrak{l}=\mathfrak{c}\iota-C$. As $\mathfrak{l}\underline{\subset}\mathfrak{a}$ , clearly $A\mathfrak{l}=\mathfrak{l}^{A_{L\underline{\subset}}}\mathfrak{a}$ too.
Hence $\mathfrak{a}=A\mathfrak{l}$. Here $I=\mathfrak{a}\leftrightarrow C$ is a left.ideal of $C$, since both $\mathfrak{a},$

$C$ are
$C_{L}\cdot a110$ wable.

Let, conversely, $\mathfrak{l}$ be an arbitrary left-ideal of $C$. Set $\mathfrak{a}=A\mathfrak{l}$. For
every $\alpha\in V_{\mathfrak{A}}(C_{R})$ we have ($\tau^{\alpha}=A^{\alpha}\mathfrak{l}\underline{\subset}A\mathfrak{l}=\mathfrak{a}$ , and $\mathfrak{a}$ is a $V_{\mathfrak{A}}$ $(C_{R})$ -allow-
able submodule of $A$ . Hence, by our above consideration, $\mathfrak{a}=a_{1}(()\leftrightarrow C)$

$\oplus a_{2}(\mathfrak{a}\leftrightarrow C)\oplus\cdots\oplus a_{n}(\mathfrak{a}\leftrightarrow C)$ . On the other hand, clearly $\mathfrak{a}=A\mathfrak{l}=a_{1}\mathfrak{l}\oplus$

$a_{2}\mathfrak{l}\oplus\cdots\oplus a_{n}$ I. Since $a_{1},$ $a_{2},\cdots,$ $a_{u}$ are right-independent, we have $\mathfrak{l}=\mathfrak{a}\leftrightarrow C$.
The proposition is thus proved.

THEOREM 1. Let A possess an independent finite right-basis over
its subring C. Let $M$ be a $ finitel\gamma$ generated right-module of $V_{\mathfrak{A}}(C_{R})$ ,
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possessing the unit element $1_{L}(=1_{R})$ of $V_{\mathfrak{A}}(C_{R})$ as an identity operator.
Let $M_{0}$ be the totality of elements $w$ in $M$ such that

$(wx_{L})^{\alpha}=w(x^{a})_{L}$

for every $xeA$ and $\alpha\in V_{\mathfrak{A}}(C_{R})$ . Then $M$ is, considered as an $A_{L}$

$(\underline{\subset}V_{\mathfrak{A}}(C_{R}))\cdot right$-module, the Kronecker product, over $C_{L}$ , of the $C_{L^{-}}$

$\dot{ng}ht\cdot moduleM_{0}$ and the $C_{L}\cdot A_{L}\cdot moduleA_{L}$ .
PROOF. We have $M=v_{1}V_{\mathfrak{A}}(C_{R})+v_{2}V_{\mathfrak{A}}(C_{R})+\cdots+v_{s}V_{\mathfrak{A}}(C_{R})$ with

some elements $v_{1},$ $v_{2},\cdots,$ $v_{s}$ of $M$. Each $V_{l\mathfrak{l}}$ $(C_{R})$ -right-module $v_{t}V_{\mathfrak{A}}(C_{R})$

is a homomorphic image of $V_{\mathfrak{A}}(C_{R})$ , while $V_{\mathfrak{A}}(C_{R})$ is, as a $V_{\mathfrak{A}}(C_{R})-$

module, isomorphic to the direct sum $A^{n}$ of $n$ copies of $A,$ $n$ being
the C.right-rank of $A$ as before. Thus $M$ is a sum of some $(V_{\mathfrak{A}}(C_{R}))-$

submodules which are homomorphic images of $A$ . Set thus
$M=A^{\varphi 1}+A^{\varphi_{2}}+\cdots+A^{\varphi_{h}}$

with $V_{\mathfrak{A}}(C_{R})\cdot homomorphic$ mappings $\varphi_{k}$ of $A$ onto submodules $A^{\varphi_{k}}$ of
$M$.

Let $M_{0}$ be the submodule of $M$ defined in our theorem. It is a
$C_{L}$-right.module. For, if $w\in M_{0}$ and $c\in C$, then

$(wc_{L}x_{L})^{\alpha}=(w(xc)_{L})^{\alpha}=w((xc)^{\alpha})_{L}=w(x^{\alpha}c)_{L}=wc(x^{\alpha})_{L}$

for every $x\in A$ . Further, for each $i,$ $C^{\varphi_{i}}$ is contained in $M_{0}$ . For, if
$ceC$, we have, on putting $\varphi=\varphi_{j}$ ,

$(c^{\varphi}x_{L})^{\alpha}=((c^{x_{L}})^{\varphi})^{a}=(xc)^{\varphi a}=(xc)^{\alpha\varphi}=(x^{a}c)^{\varphi}=c(x^{\alpha})_{L^{\varphi}}=c^{\varphi}(x^{\alpha})_{L}$ .
Since $A^{\varphi_{j}}=(AC)^{\varphi_{j}}=C^{A_{L^{\varphi}i}}=C^{\varphi_{j}}A_{L}$ , we have

$M=M_{0}A_{L}=M_{0}a_{1L}+M_{0}a_{2L}+\cdots+M_{0}a_{nL}$ ,

where $(a_{1}, a_{2},\cdots, a_{n})$ is an independent C-right.basis of $A$ (whence $(a_{1L}$ ,
$a_{2L},\cdots,$ $a_{nL}$ ) is an independent $C_{L}\cdot 1eft$-basis of $A_{L}$). Moreover, if $w_{1}a_{1L}$

$+w_{2}a_{2L}+\cdots+w_{n}a_{nL}=0$ with some $w_{1},$ $w_{2},\cdots,w_{n}eM$, then

$w(a_{1}^{\alpha})_{L}+w_{2}(a_{2}^{a})_{L}+\cdots+w_{n}(a_{n}^{a})_{L}=0^{\alpha}=0$ .
On setting $\alpha=\alpha_{i}$ (with $a_{J}^{a_{i}}=\delta_{ij}a_{i}$), we have

$w_{i}1_{L}=0$ , or, $w_{i}=0$ .
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This shows that $a_{1L},$ $a_{2L},\cdots,$ $a_{nL}$ are $M_{0}$-left-independent, and $M=M_{0}$

$\times c_{L}^{A_{L}}$ .
Remark. As $(wx_{L})y_{L}=w(x_{L}y_{L})=w(yx)_{L}=w(x^{y_{L}})_{L}$ for every

$w\in M$ and $x,$ $yeA$ , our $M_{0}$ is characterized also as the totality of
elements $w$ in $M$ such that

$(wx_{L})\gamma_{i}=w(x^{\gamma_{i}})_{L}$ $(i=1,2,\cdots, n)$ ,

where $A_{\mathfrak{A}}(C_{R})=\sum\gamma_{i}A_{L}$ .

\S 2. Weakly normal rings.

Let $A,$ $C$ be as in SS 1. If then an independent right-basis $\gamma_{1},$ $\gamma_{2},$
$\cdot\cdot$ ,

$\gamma_{n}$ of $V_{\mathfrak{A}}(C_{R})$ over $A_{L}$ can be so taken as each $\gamma_{i}$ is an $A_{L}$ -semilinear
endomorphism of $A$ , belonging to a (ring).automorphism $\theta_{i}$ of $A$ , we
say that $C$ is a weakly normal subring of $A$ and that $A$ is weakly
normal over $C$.

PROPOSITION 3. $A$ is weakly normal over $C$ if and only $\iota f$ the
Kronecker product $A\times c^{A}$ over $C$ is a dired sum

$A\times c^{A=u_{1}A}\oplus u_{2}A\oplus\cdots\oplus u_{n}A$ ,

where $u_{1},$ $u_{2},\cdots,$ $u_{n}$ are $A$ .(right-. say) independent over $A$ and satisfy

$au_{i}=u_{i}a^{\tau_{j}}$ $(a\in A)$

with some automorphisms $\tau_{1},$ $\tau_{2},\cdots,$ $\tau_{n}$ of A. In fact, if this is the case,
we can choose $A_{L}$-semilinear endomorphisms $\gamma_{1},$ $\gamma_{2},\cdots,$ $\gamma_{n}$ of A forming
an independent (’ ight-) basis of $V_{9t}(C_{R})$ over $A_{L}$ so that they belong to
the automorphisms $\theta_{1},$ $\theta_{2},\cdots,$ $\theta_{n}$ of $A_{L}$ given by

$(a_{L})^{\theta_{j}}=(a^{\tau_{i}})_{L}$ ,

and conversely.
PROOF. We repeat our proof in [9], for the sake of completeness.

Assume first that $A$ is weakly normal over $C$ and let $\gamma_{i},$
$\theta_{i}$ be as

above. Since $V_{\mathfrak{A}}(C_{R})=\gamma_{1}A_{L}\oplus\gamma_{2}A_{L}\oplus\cdots\oplus\gamma_{n}A_{L}$ is the relation-module
of the A-double-module $A\times c^{A}$ with respect to $u_{0}=1\times 1$ , it follows (cf.
[8]) that there exists an independent A.right-basis $(u_{1}, u_{2},\cdots, u_{n})$ of
$A\times c^{A}$ such that
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$xu_{0}=\sum u_{i}x^{\gamma_{i}}$ $(xeA)$ .
Define the automorphisms $\tau_{j}$ of $A$ by means of the automorphisms $\theta_{i}$

of $A_{L}$ as is indicated in our proposition. We have $\sum u_{i}$ $(a x)^{\gamma_{i}}=\sum u_{i}$

$a^{\tau_{j}}x^{\gamma_{j}}$ . The left.hand side is equal to $axu_{0}=\sum au_{i}x^{\gamma_{i}}=\sum u_{j}\rho_{ji}$

$(a)x^{\gamma_{i}}$ , where we set $au_{j}=\sum u_{j}\rho_{ji}(a)(\rho_{ji}(a)\in A)$ . Thus $a^{\tau_{i}}x^{\gamma_{j}}=$

$\sum\rho_{ji}(a)x^{\gamma_{i}}$ , whence $\gamma_{j}a_{L^{\theta_{j}}}=\sum\gamma_{i}\rho_{ji}(a)_{L}$ . Since $\gamma_{1},$ $\gamma_{2},\cdots,$ $\gamma_{n}$ are in-
dependent over $A_{L}$ , we have $\rho_{ji}(a)_{L}=\delta_{ji}a_{L^{j}}^{\theta}$ , or $\rho_{ji}(a)=\delta_{ji}a^{\tau j}$ . Hence
a $u_{i}=u_{i}a^{\tau_{i}}$ , which proves a one.half of our proposition.

To prove the other half, assume the existence of an independent
right.basis $(u_{1}, u_{2},\cdots, u_{n})$ of $A\times CA$ over $A$ satisfying our condition.
The relation-module $V_{\mathfrak{A}}(C_{R})$ of $A\times CA$ with respect to $u_{0}=1\times 1$ has
a form $\sum\gamma_{i}A_{L}$ with $\gamma_{i}$ satisfying $xu_{0}=\sum u_{i}x^{\gamma_{i}}(xeA)$ . Here $\gamma_{1},$ $\gamma_{2},\cdots$ ,
$\gamma_{n}$ are right-independent over $A_{L}$ , because $A$ $x_{C}A$ has an independent
right-basis over $A$ contained in A $u_{0}=A\times 1$ . derived from an indepen.
dent right-basis of $A$ over $C$ ; cf. [8]. We have $axu_{0}=\sum u_{i}(ax)^{\gamma_{i}}$ .
But also a $xu_{0}=a\sum u_{i}x^{\gamma_{\oint}}=\sum u_{i}a^{\gamma_{j}}x^{\gamma_{i}}$ . Hence $(a x)^{\gamma_{i}}=a^{\tau_{i}}x^{\gamma_{i}}$ and
$a_{L}\gamma_{i}=\gamma_{i}a_{L^{i}}^{\theta}$ . Thus $A$ is weakly normal over $C$, which completes our
proof.

Remark. The set $\{\theta_{1}, \theta_{2},\cdots, \theta_{l}\}$ of automorphisms of $A_{L}$ (or the
set $\{\tau_{1}, \tau_{2},\cdots, \tau_{n}\}$ of automorphisms of $A$ (as in Proposition 3)) is not
at all unique, in general. But it is unique up to inner automorphisms,
$\dot{p}rovided$ that $A$ satisfies the double chain condition for two.sided ideals
(or any other condition which makes the Krull-Remak.Schmidt theorem
applicable to the $A$ double-module A $X_{C}A=\sum u_{i}A$ ).

PROPOSITION 4. Let $A$ be weakly normal over its subring C. If,
and only if, $C$ satisfies the right (left) minimum condition, $A$ satisfies
the right (left) minimum condition, and if, moreover, $C$ is semisimple
(resp. simple), then $A$ is semisimple (resp. semisimple with mutually
isomorphic simple components).

PROOF. We have $V_{\mathfrak{A}}(C_{R})=\sum_{i=1}^{n}\gamma_{i}A_{L}=\sum A_{L}\gamma_{i}$ with $A_{L}\cdot semilinear$

endomorphisms $\gamma_{i}$ of $A$ . On the other hand, $V_{\mathfrak{A}}(C_{R})$ is a matric ring,
of degree $n$ , over a ring inversely isomorphic to $C$. If $A$ satisfies the
right (left) minimum condition then $V_{\mathfrak{A}}(C_{R})$ satisfies the minimum
condition for its $A_{L}\cdot 1eft$ (right) submodules, hence much the more the
left (right) minimum condition. Then we have the left (right) minimum
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condition in the ring inversely isomorphic to $C$, whence the right (left)
minimum condition in C. (The left minimum condition assertion is
indeed an immediate consequence of Proposition 2 and may also be
treated directly by considering $\sum a_{i}\mathfrak{l}$ for left ideals I in $C$ (where $(a_{i})$

is an independent C.right-basis of $A)^{5)})$ . It is clear,6) on the other
hand, that the right minimum condition in $C$ implies the same condition
in $A$ . Further, the left minimum condition in $C$ implies the right
minimum condition in $V_{\mathfrak{A}}(C_{R})$ , which in turn implies the right minimum
condition in $A_{L}$ (or the left minimum condition in $A$); observe that
if $\mathfrak{l}_{L}$ is a right ideal in $A_{L}$ then $\sum \mathfrak{l}_{L}\gamma_{i}$ is a right ideal in $V_{\mathfrak{A}}(C_{R})$ .
Let $N$ be the radical of $A$ . Then $\sum\gamma_{i}N_{L}$ is contained in the radical
of $V_{i\mathfrak{A}}(C_{R})$ . But, if $C$ is semisimple, then $V_{\mathfrak{A}}(C_{R})$ is semisimple too,
whence $\sum\gamma_{i}N_{L}=0$ and we have $N=0$. Take, then, a simple com-
ponent of $A$ and construct the sum $A_{0}$ of all the simple components
which are isomorphic to the chosen one. This sum $A_{0}$ is a two-sided
ideal of $A$ invariant under any automorphism of $A$ , and we see readily
that $\sum\gamma_{i}A_{0L}$ is a two.sided ideal in $V_{\mathfrak{U}}(C_{R})$ . If, on the other hand,
$C$ is simple, then $V_{\mathfrak{A}}(C_{R})$ is so too. Thus $\sum\gamma_{i}A_{0L}=V_{\mathfrak{A}}(C_{R})$ , whence
$A_{0}=A$ , then.

Remark. Minimum conditions may be replaced by maximum con-
ditions throughout in the first half of our Proposition 4. Further, that
the semisimplicity of $C$ implies the semisimplicity of $A$ , in Proposition
4, is valid generally, without the assumption of minimum condition,
semisimplicity being understood in the sense of Jacobson [4]. For, we
have generally, besides that a matric ring (of finite degree) over a semi-
simple ring is semisimple, that7) $\sum\gamma_{i}N_{L}$ is contained in the radical of
$V_{\mathfrak{A}}5(C_{R})=\sum\gamma_{i}A_{L}$ .

\S 3. Innerly weakly normal rings.

If $A$ is weakly normal over its subring $C$ and if the $A_{L}$-semilinear
endomorphisms $\gamma_{1},$ $\gamma_{Z},\cdots,$ $\gamma_{n}$ of $A$ , forming an independent $A_{L}$-right-basis
of $V_{\mathfrak{A}}(C_{R})$ , can be so chosen that the belonging automorphisms $\theta_{1},$ $\theta_{2},\cdots$ ,

5) And has been mentioned in the footnote 1) too.
6) Cf. again the footnote 1).
7) This I owe to Azumaya.
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$\theta_{n}$ of $A_{L}$ are inner automorphisms8) ( $i$ . $e$ . the automorphisms $\tau_{1},$ $\tau_{2},\cdots,$ $\tau_{n}$

of $A$ , as in Proposition 3, are inner automorphisms), then we say that
$A$ is innerly weakly normal over $C$. In this case, we can choose our
elements $\gamma_{1},$ $\gamma_{2},\cdots,$ $\gamma_{n}$ of $V_{\mathfrak{A}}(C_{R})$ , forming an independent $A_{L}\cdot right$ -basis
of $V_{\mathfrak{A}}(C_{R})$ , so as they are $A_{L}$ -linear, $i.e$ . $\theta_{1}=\theta_{2}=\cdots=\theta_{n}=1$ (identity
automorphisms of $A$); multiply the original $\gamma_{1},$ $\gamma_{2},\cdots,$ $\gamma_{n}$ by some regular
elements (inverse to the regular elements effecting the (original) inner
automorphisms $\theta_{1},$ $\theta_{2},\cdots,$ $\theta_{n}$ ). Then $\gamma_{i}\in V_{\mathfrak{A}}(A_{L})=A_{R}$ and $\gamma_{i}=k_{iR}$ with
$k_{i}\in A$ . Let $K$ be the module generated by $k_{1},$ $k_{2},\cdots,$ $k_{n}$ over the center
$Z$ of $A$ . We have thus

$V_{\mathfrak{A}}(C_{R})=\sum\gamma_{i}A_{L}=K_{R}A_{L}$ .
The product $K_{R}A_{L}$ is the Kronecker product over $Z_{R}(=Z_{L})$ , since
$k_{1R},$ $k_{?R},\cdots,$ $k_{nR}$ are independent over $A_{L}$ . Further, $C_{R}=V_{\mathfrak{A}}(V_{\mathfrak{A}}\backslash (C_{R}))$

$=V_{\mathfrak{A}}(K_{R}A_{L})=V_{J_{\backslash })}\iota(K_{R})-A_{R}=V_{A_{R}}(K_{R})$ , or

$C=V_{A}(K)$ .
We have moreover9) $K_{R}=A_{R}\sim K_{R}A_{L}=A_{R}\sim V_{\mathfrak{A}}(C_{R})=V_{A_{R}}(C_{R})$ , or

$K=V_{A}(C)$ .
In particular, $K$ is a ring which possesses $(k_{1}, k_{2},\cdots, k_{n})$ as an in-
dependent basis over $Z$.

PROPOSITION 5. Let $C$ be a subring of $A$ such that $C=V_{A}(V_{A}(C))$ .
In order that $A$ is innerly weakly normal over $C$, it is necessary and
$su$fi cient that there exist a finite set of elements $k_{1},$ $k_{2},\cdots,$ $k_{n}$ in $V_{A}(C)$

such that $k_{1}Z+k_{2}Z+\cdots+k_{n}Z$ is a ring, where $Z$ is the center of $A$ ,
and that the matrix

$(a_{j}k_{i})=(a_{1}^{1}k_{n}^{1}a^{n}k_{n}^{1}ak\ldots.\cdot..\cdot..\cdot..a_{n}k)$

8) If this is the case, then any other set of $A_{L}$ -semilinear endomorphisms of $A$ form $\cdot$

ing an independent $A_{L\cdot right}$-basis of $V_{\mathfrak{A}}(C_{R})$ consists of $thoS_{\vee}^{a}$ belonging to inner auto.
morphisms of $A$ , provided that $A$ satisfies the double chain condition for two.sided ideals,
for instance.

9) Express $ea^{-}\vee h$ element of $K_{R}A_{L}$ as a linear combination of $k_{1R},$ $k_{2R},\cdots,$ $k_{nR}$ with
coefficients from $A_{L}$ , and observe that if it is ( $eA_{R}$ whence) commutative $v.\cdot ith$ all ele-
ments of $A_{L}$ then the coefficients must be in the center $Z_{L}=Z_{R}$ of $A_{L}$ .
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with suitable $n$ elements $a_{1}.a_{2},\cdots,$ $a_{n}$ in $A$ is regular.
PROOF. We get the sufficiency from Proposition 1 on putting

$\gamma_{i}=k_{iR}$ . The necessity follows from the same proposition combinedwith the above consideration.
PROPOSITION 6. Let $A$ be innerly weakly normal over $C$, and let$K$ be the commuter $V_{A}(C)$ of $C$ in A. Then, A-left and K-ri $h$$r\iota g$ t-submodules $\mathfrak{a}$ of $A$ are in 1-1 correspondence wilh $left\cdot ideals\mathfrak{l}$ of $C$

according to the correspondence

$\mathfrak{a}-\neg(=C\rightarrow \mathfrak{a},$ $\mathfrak{l}\rightarrow \mathfrak{a}=A1$ .
PROOF. As $V_{9\mathfrak{l}}(C_{R})=K_{R}A_{L}$ . the assertion follows from Proposi-tion 2.
THEOREM 2. $\cdot$ Let $A$ be innerly weakly normal over $C$, and let

$K=V_{A}(C)$ . With any finitely generated righl.module $M$ of the ring
$K_{R}A_{L}$ , which possesses the unit $e/ement$ of $K_{R}A_{L}$ as an identity operator,we have

$M=M_{0^{\times}c_{L}}A_{L}$ ,

where $M_{0}$ is the totality of elements $w$ in $M$ such that $wk_{R}=wk_{L}$ forevery $k\in K$.
PROOF. Immediate from Theorem 1 and the accompanying Re-mark, for $wk_{R}=wk_{L}$ gives $wa_{L}k_{R}=wk_{R}a_{L}=wk_{L}a_{L}=w(ak)_{L}$ forevery $a\in A$ (and conversely, since 1 $eA$ ).
THEOREM 3. Let $A,$ $K$ be as in Theorem 2. $IfSis$ a ring whichcontains $A$ as its subring, whose center conlains the center $Z$ of $A$ andwhich possesses the unit elemenl of $A$ as its unil elemenl, lhen

$S=A\times cV_{S}(K)$ .
PROOF. We consider $S$ as a $K_{R}A_{L}- right\cdot module$ on $defining^{1)}$

$vk_{R}=vk$ , $va_{L}=av$ $(v\in S, keK, a\in A)$ .
The module $M_{0}$ , in Theorem 2, with $M=S$ is the totality of elements
$w$ in $S$ such that $wk_{R}=wk_{L}$ , or $wk=kw$ , for every $k\in K$ Thus
$M_{0}=V_{S}(K)$ , and $S=V_{s}(K)\times c^{A_{L}}$ .

10) This is allowed, as $K_{R}\rightarrow L_{L}=Z_{R}(=Z_{L})$ and $Z$ is contained in the center of $S$ .
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PROPOSITION 7. Let $A,$ $K$ and $S$ be as in Theorem 3. Then $S$

is innerly weakly normal over its subring $V_{S}(f)$ .
PROOF. $K$ possesses an independent basis $(k_{1}, k_{2},\cdots, k_{n})$ over the

center $Z$ of $A$ . There exists a system of $n$ elements $a_{1},$ $a_{2},\cdots,$ $a_{n}$ in $A$ ,
forming in fact an independent right.basis of $A$ over $C$, such that the
matrix $(a_{j}k_{i})_{ij}$ in $A$ is regular. It is regular also as an matrix in $S$.
Hence, by Proposition 5, $S$ is innerly weakly normal over its subring
$V_{S}(K)$ .

PROPOSITION 8. Let $A$ be innerly weakly normal over its subring
C. If $C$ is simple, both $A$ and $K$ are simple. If $C$ satisfies the right
(or left) minimum condition and is primary, both $A$ and $K$ are primary.

PROOF. We have $V_{\mathfrak{A}}(C_{R})=K_{R}\times z_{R}A_{L}=\sum k_{iR}A_{L}$ , where $Z$ is the
center of $A$ and $k_{1R},$ $k_{?R},\cdots,$ $k_{nR}$ are independent over $A_{L}$ . If $\mathfrak{a}i^{\backslash }$, a
proper ideal of $A,$ $K_{R}\mathfrak{a}_{L}$ is a proper ideal of $V_{\mathfrak{A}}(C_{R})$ . Now, if $C$ is
simple, then $V_{\mathfrak{A}}(C_{R})$, a matric ring (of finite degree n) over a ring in-
versely isomorphic to $C$, is simple too. It follows that $A$ is simple too.
Its center $Z$ is a field then, and $A$ possesses an independent (possibly
infinite) basis over $Z$. We see, similarly as above, that $K$ is simple
too. Suppose next that $C$ satisfies the right (left) minimum condition
and is primary. Then $V_{\mathfrak{A}}(C_{R})$ (satisfies the left (right) minimum con.
dition and) is primary. Let $N$ be the radical of $A$ . If $A/N$ were (two.
sided) directly decomposable, then $V_{\mathfrak{A}}(C_{R})/K_{R}A^{\gamma_{L}}=K_{R}A_{L}/K_{R}N_{L}$ would
be directly decomposable. So $A$ must be primary. Further, $K$ is
semi-primary, as the endomorphism ring of a module with composition-
series. A proper direct decomposition of its residue-ring $K/Q$ module
its radical $Q$ would entail a such of $V_{\mathfrak{A}}(C_{R})/Q_{R}A_{L}=K_{R}A_{L}/Q_{R}A_{L}$ ;
consider orthogonal central idempotent elements in $K/Q$ . Thus $K$

must be primary too.
PROPOSITION 9. Let $A$ satisfy the minimum condition and be

primary and innerly weakly normal over its subring C. Let $B$ be a
subring of A which contains $C$ and over which A possesses an in-
dependent right-basis. Then $A$ is innerly weakly normal over $B$.

This was proved in [5], Theorem (3. 2).
THEOREM 4. Let $A$ , and $B$ be as in Proposition 9, and assume

that $B$ is primary (together with $A$ ). If $\alpha$ is an isomorphism of $B$

into A leaving $C$ elementwise fiexd, and if $A$ has an independent
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r$i_{g}ht- basis$ over $B^{\alpha}$ too, then $\alpha$ can be extended to an inner automor-
phism $ofA$ . In particular, every automorphism of A leaving $C$ element-
wise fixed is inner.

This is a generalization of [7], Theorem 1. We shall not prove
the theorem here, since we shall give, and prove, a further generaliza.
tion in a paper sequel to [6].

\S 4. Inner weak normality over (a subring
contained in) the center.

We now consider the case where the subring $C$ (containing the
unit element 1 of $A$ ) is contained in the center $Z$ of $A$ . We again
assume that $A$ has an independent finite basis over $C$. On generalizing
the notion of maximally central algebras introduced in the joint paper
Azumaya-Nakayama [2], the former author called, in [1], $A$ to be proper
maximally central over $C$ when the $C_{R}(=C_{L})$ -endomorphism ring
$V_{\mathfrak{A}}(C_{R})$ of $A$ is the Kronecker product $A_{R}\times A_{L}$ over $C_{R}$ . This is
nothing but the present case $C\underline{\subset}Z$ of our inner weak normality. For,
the proper maximal centrality of $A$ over $C$ evidently implies that $A$ is
innerly weakly normal over $C$. The converse follows from our Pro-
position 5 and Azumaya’s [1] Theorem 12.

We observe that $K=V_{A}(C)=A$ for $C\underline{\subset}Z$, and we see, when $A$

is innerly weakly normal (i. e. proper maximally central) over $C$, that
$C=V_{A}(K)=V_{A}(A)=Z$, that is, $C$ coincides with the center $Z$. Further,
submodules of $A$ allowable with respect to $V_{\mathfrak{A}}(C)=A_{R}A_{L}$ are nothing
but two-sided ideals of $A$ . Thus our Proposition 6 is a generalization
of Azumaya’s [1] Theorem 13. Our Theorem 2 generalizes his Theorem
16, whence it (or its corollary Theorem 3) forms a generalization of a
well-known theorem of Wedderburn alluded to in the introduction (that
if, a central simple finite-dimensional algebra $A$ , over a field $C$, is
contained, as a subalgebra, in an algebra $S$, over $C$, and contains the
unit element of $S$, then $S$ is the Kronecker product $V_{S}(A)\times A$ . On
the other hand, our Theorem 4 is of a nature rather different from
Theorem 18 of Azumaya [1] (though it has also as a corollary the
Corollary to Azumaya [1], Theorem 18).
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\S 5. Semigroup of weakly normal rings over
a commutative ring.

In this section we again consider the case where the underlying
subring is (commutative and) contained in the center.

PROPOSITION 10. $1f$ two rings $A,$ $B$ are weakly normal over their
ccmmon subring $C$ contained in their centers, then the Kronecker pro-
duct ring $A\times CB$ over $C$ is weakly normal over C. If $A,$ $B$ are innerly
weakly normal cver C. then $A\times c^{B}$ is innerly weakly normal over $C$

too.
PROOF. We have $V_{\mathfrak{A}}(C_{R})=\gamma_{1}A_{L}C+\gamma_{2}A_{L}^{\Gamma_{\vee^{1}}\wedge}|+\cdots+y\gamma_{n}A_{L}$ with $A_{L}$ .

semilinear endomorphisms $\gamma_{1},$ $\gamma_{2},\cdots\gamma_{\hslash}$ of $A$ . Similary

$V_{\mathfrak{B}}(C_{R(B)})=\delta_{1}B_{L(B)}\cup\overline{+}\delta_{2}B_{L(B)}\overline{v+}\cdots\oplus\delta_{m}B_{L(B)}$

with $B_{L(B)}$ -semilinear endomorphisms $\delta_{1},$ $\delta_{2},\cdots,$ $\delta_{m}$ of $B$ , where $\backslash f\backslash ^{\backslash }$ is the
absolute endomorphism ring of $B$ and $C_{R(B)},$ $B_{L(B)}$ denote the right (or

left) and left multiplication rings of $C$ and $B$ , respectively, onto $B$ .
Identifying $C$ with $C_{R}$ and $C_{R(B)}$ , we may consider $C$ as a common
subring of $\backslash $)$\backslash l$ and $\mathfrak{V}$ . Then the C-endomorphism ring of $A\times c^{B}$ is the
Kronecker product of $V_{\mathfrak{A}}(C_{R})$ and $V_{\mathfrak{B}}(C_{R(B)})$ over $C$, and is thus

$\sum\gamma_{l}\delta_{j}(A_{L}x_{C}B_{L^{(}B)})$ .

Here $\gamma_{i}\delta_{j}$ are $A_{L}\times c^{B_{L(B)}}$-semilinear endomorphisms of $A\times c^{B}$ . Fur-
thermore, $A_{L}\times c^{B_{L(B)}}$ may be identified with the left-multiplication ring
of $A\times c^{B}$ . Thus $A\times CB$ is weakly normal over $C$. If moreover $A,$ $B$

are innerly weakly normal over $C$ , then $\gamma_{i}$ and $\delta_{j}$ may be chosen to
be $A_{L^{-}}$ and $B_{L(B)}\cdot 1inear$ , respectively. Then $\gamma_{i}\delta_{j}$ are $A_{L}\times c^{B_{I^{(}B)}}$.-linear
and $A$ $x_{C}B$ is innerly weakly normal $ov\underline{\circ}rC$.

$CoROLLARY$ . Let $A$ be (innerly) weakly normal over a subnng
$C$ contained in the center. Then a matric ring $(A)_{k}$ of a finite degree
$k$ is (innerly) weakly normal over $C(C\backslash $ being considered as a subring

of $(A)_{k})^{11)}$

11) As a matteramatter of fact, the converse is true too, provided that we assume that $A$

possesses an independent basis over $C$ ; see Theorem 5 below. Moreover, this last pre-
assumption is unnecessary if $C$ satisfies the minimum condition (or if the $residue\cdot ring$ of
$C$ modulo its radical satisfies the minimum condition; cf. Corollary to Theorem 3 in
Azumaya [ $ 1\neg$ ).
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For, the matric ring $(C)_{k}$ is innerly weakly normal over $C$, as one
readily sees by means of Proposition 5, for instance.

Clearly the Kronecker product over $C$ of the matric rings $(C)_{k}$

and $(C)_{l}$ is the matric ring $(C)_{kl}$ . Azumaya [1] classified rings innerly
weakly normal over $C$ and possessing $C$ as their center ( $i$ . $e$ . proper
maximally central over $C$ ) by means of the semigroup of matric rings
over $C$, to the effect to have a generalization of the celebrated Brauer
group of algebra.classes (of central simple algebras over a field). We
are led, by the above observations, to consider, more generally, the
following semigroups of rings.

Let, namely, $C$ be a commutative ring, with unit element. We
denote by $\backslash $}$\dagger_{1}(C)$ the semigroJp of all rings containing $C$ in their
center, possessing the unit element of $C$ as their unit element and
possessing independent finite bases over $C$ ; the multiplication being the
Kronecker product multiplication over $C$, and rings isomorphic over $C$

being considered as identical. Let $\backslash R_{2}(C)$ and $\backslash $}$\dagger_{3}(C)$ be the subsemi-
groups of $\backslash )_{\grave{1}_{1}}(C)$ consisting of those rings which are weakly normal
and innerly weakly normal over $C$, respectively. Let, further, $\backslash h_{4}^{\iota}(C)$

be the semigroup of matric rings, of finite degrees, over $C$ ; $\backslash $}$\{1(C)$

$\underline{\approx}\backslash t\grave{\iota}_{2}(C)\underline{\tilde{-}}\backslash )_{\grave{\backslash }3}(C)\underline{\approx}\backslash \}\}_{4}(C)$ .
Then the $factor\cdot semigroup^{I2)}\backslash 1\grave{\iota}_{3}(C)/\backslash )\grave{\iota}_{4}(C)$ is actually a group (cf.

Azumaya [1]). For, if $A_{\in}^{\backslash }h_{3}^{\iota}(C)$ then $A_{R}\times c^{A_{L}}$ is $V_{\mathfrak{A}}(C_{R})$ and is a
matric ring (of finite degree) over $C$. Here $A_{R}$ is isomorphic, over $C$,
to $A$ (and $A_{L}$ is inversely isomorphic to $A$ ). Now we have

THEOREM 5. Let $C$ be a commutative ring with unit element
whose residue.ringmodule the radical satisfies the minimum condilion.
Then, $\backslash )_{\grave{1}_{3}}(C)/\backslash $}$\dagger_{4}(C)$ is the largest subgroup of the semigroup $\backslash h_{1}^{\iota}(C)/$

$\backslash l\dagger_{4}(C)$ . In fact, in the semigroup $\backslash J_{\grave{t}_{1}}(C)/\backslash )_{13}^{\backslash }(C)$ the unit element
$\backslash 1\dagger_{3}(C)/\backslash h_{3}^{\backslash }(C)$ is the largest subgroup. More precisely, $lfA,$ $Be^{\backslash }\dagger\grave{\iota}_{1}(C)$

and A $x_{C}B\in\backslash $}$\}_{3}(C)$ , then necessarily $A,$ $B\in \mathfrak{R}_{3}(C)$ .
PROOF. Let $A,$ $B\in\backslash ’$)$\dagger_{1}(C)$ , and let

$V_{\mathfrak{A}}(c_{R})\eta+\gamma_{2L^{\wedge}}$ ,

$V_{\mathfrak{B}}(C_{R(B)})=\delta_{1}B_{L(B)}\oplus\delta_{2}B_{L(B)}\oplus\cdots \mathfrak{O}+\delta_{m}B_{L(B)}$ ,

12) Two elements $A,$ $B$ in $\mathfrak{N}_{3}(C)$ are set to be equivalent when there are $A_{1},$ $B_{1}$ in
$\mathfrak{R}_{4}(C)$ such that $A\times A_{1}=BxB_{1}$ .
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where $\gamma_{i}$ and $\delta_{j}$ are some elementg of the absolute endomorphism rings
$\mathfrak{A}$ and $\mathfrak{V}$ of $A$ and $B$ , respectively, and $C_{R(B)}(=C_{L(B)}),$ $B_{L(B)}$ are the
right and left multiplication rings of $C,$ $B$ onto $B$, Then the C-endo-
morphism ring of $A$ $x_{C}B$ is $V_{\mathfrak{A}}(C_{R})x_{C}V_{\mathfrak{B}}(C_{R(B)})$ , as before. Considered
as an $A_{L}(\subseteq V_{\mathfrak{A}}(C_{R}))$ -two.sided module, it is thus isomorphic to the
direct sum of $m^{2}$ isomorphic copies of $V_{\mathfrak{A}}(C_{R})$ . Now, suppose that
$A\times CB$ is innerly weakly normal over $C,$ $i.e$ . $A\times c^{B}\in \mathfrak{R}_{3}(C)$ . Then the
C-endomorphism ring of $A\times c^{B}$ is a direct sum of submodules of form
$\omega_{k}$ $(A x_{C}B)_{L(A\times B)}$ , with $\omega_{k}$ elementwise commutative with $(A\times c^{B)_{L(A\times B)}}$

$=A_{L}\times c^{B_{L(B)}}$, the left multiplication ring of $A\times c^{B}$. Thus it is, con-
sidered as an $A_{L}$-two.sided module, isomorphic to a direct sum of
isomorphic copies of $A_{L}$ . It followsi3) that the $A_{L}$-two-sided module
$V_{\mathfrak{A}}(C_{R})$ is isomorphic to a direct sum of isomorphic copies of $A_{L}$ .
This means however that $A$ is innerly weakly normal over $C$. Simil-
arly $B\in \mathfrak{R}_{3}(C)$ . Our theorem is thus proved.

Let, next $D$ be a commutative ring which contains $C$ as its sub-
ring and possesses the unit element of $C$ as its unit element. As the
usual coefficient field extension for algebras, we may form from each
ring $A$ in $\mathfrak{R}_{1}(C)$ a ring $Ax_{C}D\in \mathfrak{R}_{1}(D)$ . In this way we obtain a
natural homomorphic mapping of $\mathfrak{R}_{1}(C)$ into $\mathfrak{R}_{1}(D)$ , and it is clear
that $\mathfrak{R}_{2}(C),$ $\mathfrak{R}_{3}(C)$ and $\mathfrak{R}_{4}(C)$ are mapped into $\mathfrak{R}_{2}(D),$ $\mathfrak{R}_{3}(D)$ and $\mathfrak{R}_{4}(D)$,
respectively, by this homomorphism. Now, provided that $C$ satisfies the
same condition as in Theorem 5 and that $D$ possesses an independent
finite14) basis over $C$, the mapping of $\mathfrak{R}_{1}(C)/\mathfrak{R}_{3}(C)$ into $\mathfrak{R}_{1}(D)/\mathfrak{R}_{3}(D)$ is
an (into-) isomorphic mapping. This we can see in similar manner as
above, considering that the D.endomorphism ring of. $A\times c^{D}$ is the ring
$V_{\mathfrak{A}}(C_{R})\times c^{D_{R(D)}}$ , where $D_{R(D)}$ is the right multiplication ring of $D$ (onto
$D)$ .

Note that $A\times c^{D}$ can belong to $\mathfrak{R}_{2}(D)$ even when $A\not\in \mathfrak{R}_{2}(C)$ ; let
for example $A$ be a non-normal (but separable) finite extension of a
field $C$ and $D$ be the splitting Galois field of $A$ over $C$ ; or, we may
take as $C,$ $A,$ $D$ respectively the rational number field, $C$ $(\sqrt[3]{2})$ , and

13) Azumaya [1], Corollary to Theorem 4.
14) If $C$ satisfies the minimum condition, tbe finiteness assumption is unnecessary.
15) If $A\times cD=e_{1}D\oplus e_{2}D\oplus\cdots\oplus e_{n}D$ with mutually orthogonal (primitive) indepen $\cdot$

dent elements $ei$ , then the cyclic permutations of $(e1, e_{2},\cdots, e_{n})$ over $D$ generate over
$(A xcD)_{L(A\times D)}$ the endomorphism ring of $A\times c^{l}D$.
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$C(\omega),$ $\omega$ being a primitive 3rd root of unity.16) The same examples
serve to show,i7) in connection of Theorem 5, that $A$ $x_{C}B$ can belong
to $\mathfrak{R}_{2}(C)$ even when at least one of $A,$ $B$ does not belong to $\mathfrak{R}_{2}(C)$ ;
let $B=D$ . Moreover, $A$ $x_{C}B$ may belong to $\mathfrak{R}_{2}(C)$ even when both $A$ ,
and $B$ fail to belong to $\mathfrak{N}_{2}(C)$ . Consider for example a Galois extension
over a field $C$ whose Galois group is a product of two mutually disjoint,
mutually permutable, non-normal subgroups, and let $A,$ $B$ be the fields
belonging to these subgroups.

Appendix. Inverse of Wedderburn’s theorem.

The following inverse of Wedderburn’s theorem has been com-
municated to the writer by N. Jacobson:

Let $A$ be a (finite- or infinite.dimensional) algebra with unit ele-
ment 1 over a field $C$, and suppose that every algebra $S$ over $C$ contain-
ing $A$ , as a subalgebra, and having as its unit element the unit ele-
ment 1 of $A$ is decomposed into a Kronecker product, over $C$, of $A$

and a second subalgebra. Then $A$ is simple, central and finite-dimen-
sional ( $i$. $e$ . innerly weakly normal) over $C$.

We shall give here a simple proof to this theorem. Let, to do $so_{r}$

$\backslash )\backslash 1_{0}$ be the ring of all C-endomorphisms of $A$ . The right and left
multiplication rings $A_{R}$ and $A_{L}$ of $A$ are subrings of $\mathfrak{A}_{0}$ and they are
the commuters of each other. As $A_{R}$ is isomorphic to $A$ $($over $C)_{r}$

$5)\backslash t_{0}$ must be decomposable into a Kronecker product, over $C$, of $A_{R}$ and
a second subalgebra, say $\mathfrak{B}:\mathfrak{A}_{0}=A_{R^{\times}C}\mathfrak{B}$ . Here $\mathfrak{B}\underline{\subset}V_{\mathfrak{A}0}(A_{R})=A_{L}$ .
So $(_{\backslash }^{\backslash )}\mathfrak{l}_{0} : C),=(A_{R} : C)(\mathfrak{V} : C)\underline{\subset}(A_{R} : C)(A_{L} : C)=(A:C)^{2}$ . We assert
that the rank $(A:C)$ is finite. For, if $(A:C)$ were infinite, then the
(infinite) rank $(_{\backslash }^{\backslash )}t_{0} : C)$ (of the full column-finite matric ring $\mathfrak{A}_{0}$) of di-
mension $(A:C)$ over $C$ ) would be greater than $(A:C)^{2}=(A:C)$ (in
virtue of the fact that $2^{\alpha}>\mathfrak{a}$ for every cardinal $\mathfrak{a}$ ). Thus $(A:C)$ is
finite, and (the full matric ring of dimension $(A:C)$ over $C$ ) $\mathfrak{A}_{0}$ is a

16) Observe that $t\}_{1e}$ field $C$ ( $\omega,$
$\mu_{\overline{2})}$ is the Kronecker product of $C(\circ)$). $ C(3^{\prime}\nu\overline{2}\rangle$

over $C$ and is normal over $C$ (while $C(\Gamma 2)$ is not normal over $C$).

17) In the first example, consider the automorphism group of $A\times c^{D}$ over $C$ generated

by the cyclic permutations of $(e_{1}, e_{2},\cdots, 0_{n})$ and the Galois group of $D/C$. In $\infty nstructing$

these examples I owe a kind remark to G. Hochschild.
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central simple algebra, over $C$. Hence its Kronecker factor $A_{R}$ is a
central simple algebra too. As $A_{R}$ is isomorphic to $A$ , this proves our
theorem.
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