Note on Betti numbers of Riemannian manifolds I.

By Yasuro Tomonaga.

(Received Nov. 25, 1952)

In this paper, we give some applications of a theorem of Bochner—Lichnerowicz on the Betti numbers of a Riemannian manifold. We consider a Riemannian manifold R_n whose fundamental tensor g_{ij} is positive definite and assume that R_n is compact and orientable.

THEOREM I. (BOCHNER-LICHNEROWICZ)

In R_n , if the quadratic form

(1)
$$\left(\frac{p-1}{2}R_{ijkl}+R_{ik}g_{jl}\right)f^{ij}f_{kl} \quad (f^{ij}=-f^{ji})$$

is everywhere positive semi-definite, then, for any harmonic tensor $X_{i(1)\cdots i(p)}$ of degree p, it holds that

$$X_{i(1)\cdots i(p);r}=0$$
,

and hence we have

$$B_{p} \leq \binom{n}{p}$$

where B_p denotes the p-th Betti number and $p \ge 2$. When p=1, the quadratic form (1) can be replaced by

$$(2) R_{ij}f^if^j,$$

and if this form is everywhere positive semi-definite, then the covariant derivative of any harmonic vector vanishes, and hence we have

$$B_1 \leq n$$
.

If the quadratic form (1) or (2) is everywhere positive definite, then the harmonic vector or tensor should be identically zero, and hence we have

$$B_p = 0$$
 or $B_1 = 0$.

We put

(3)
$$R_{ij} = \frac{1}{n} R \mathcal{G}_{ij} + S_{ij}.$$

If S_{ij} is zero, our manifold is an Einstein space. The quadratic form (2) becomes

(4)
$$Q = R_{ij} f^{i} f^{j} = \frac{1}{n} R f_{i} f^{j} + S_{ij} f^{i} f^{j}.$$

Let t be any real number, then we have

$$(S_{ij}+tf_if_j) (S^{ij}+tf^if^j) \ge 0,$$

that is

(6)
$$t^2 (f_i f^i)^2 + 2t S_{ij} f^i f^j + S_{ij} S^{ij} \ge 0.$$

Hence we have

(7)
$$(S_{ij}f^if^j)^2 \leq (f_af^a)^2 S_{ij} S^{ij}.$$

From (4) and (7) we have

(8)
$$Q \ge \frac{1}{n} R f_i f^i - \sqrt{S_{ij} S^{ij}} f_a f^a$$
$$= \left(\frac{R}{n} - \sqrt{S_{ab} S^{ab}}\right) f_i f^i = \left(\frac{R}{n} - \sqrt{R_{ab} R^{ab} - \frac{R^2}{n}}\right) f_i f^i.$$

Hence we have the

THEOREM 2. Let

$$Q = \frac{R}{n} - \sqrt{R_{ij} R^{ij} - \frac{R^2}{n}}.$$

If Q is everywhere non-negative, the covariant derivative of any harmonic vector should vanish and hence, $B_1 \leq n$. If Q is everywhere positive, the first Betti number B_1 is zero.

Next we consider the case where p > 1. We put

(9)
$$R_{ijkl} = \frac{R}{n(n-1)} \left(g_{jk} g_{il} - g_{jl} g_{ik} \right) + S_{ijkl}.$$

If S_{ijkl} is zero, our manifold becomes the space of constant curvature.

It follows from (9) that

$$(10) R_{jk} = \frac{R}{n} g_{jk} + S_{jk},$$

where

$$S_{jk} = S^{i}_{jki}.$$

The quadratic form (1) becomes

$$(12) Q' = \frac{p-1}{2} \left\{ \frac{R}{n(n-1)} (g_{jk} g_{il} - g_{jl} g_{ik}) + S_{ijkl} \right\} X^{ij} X^{kl}$$

$$+ \left(\frac{R}{n} g_{ik} + S_{ik} \right) g_{jl} X^{ij} X^{kl}$$

$$= \frac{R(n-p)}{n(n-1)} X_{ij} X^{ij} + \left(\frac{p-1}{2} S_{ijkl} + S_{ik} g_{jl} \right) X^{ij} X^{kl}$$

$$= \frac{R(n-p)}{n(n-1)} X_{ij} X^{ij}$$

$$+ \left[\frac{p-1}{2} S_{ijkl} + \frac{1}{4} (S_{ik} g_{jl} - S_{jk} g_{il} + S_{jl} g_{ik} - S_{il} g_{jk}) \right] X^{ij} X^{kl}$$

$$= \frac{R(n-p)}{n(n-1)} X_{ij} X^{ij} + M_{ijkl} X^{ij} X^{kl} ,$$

where

(13)
$$M_{ijkl} = \frac{p-1}{2} S_{ijkl} + \frac{1}{4} \left(S_{ik} g_{jl} - S_{jk} g_{il} + S_{jl} g_{ik} - S_{il} g_{jk} \right)$$
$$= \frac{p-1}{2} R_{ijkl} + \frac{1}{4} \left(R_{ik} g_{jl} - R_{jk} g_{il} + R_{jl} g_{ik} - R_{il} g_{jk} \right)$$
$$+ \frac{R(n-p)}{2n(n-1)} \left(g_{jk} g_{il} - g_{ik} g_{jl} \right).$$

On the other hand, we have, for an arbitrary real number t,

$$(14) (M_{ijkl} + t X_{ij} X_{kl}) (M^{ijkl} + t X^{ij} X^{kl})$$

$$= t^2 (X_{ij} X^{ij})^2 + 2 t M_{ijkl} X^{ij} X^{kl} + M_{ijkl} M^{ijkl} \ge 0$$
.

Hence we have

$$(15) (M_{ijkl} X^{ij} X^{kl})^2 \leq M_{ijkl} M^{ijkl} (X_{ab} X^{ab})^2,$$

that is

$$(16) |M_{ijkl} X^{ij} X^{kl}| \leq \sqrt{M_{ijkl} M^{ijkl}} X_{ab} X^{ab}.$$

From (12) and (16) we have

(17)
$$Q' \ge \frac{R(n-p)}{n(n-1)} X_{ij} X^{ij} - \sqrt{M_{ijkl} M^{ijkl}} X_{ab} X^{ab}.$$

Since

(18)
$$M_{ijkl} M^{ijkl} = \frac{(p-1)^2}{4} R_{ijkl} R^{ijkl} + \frac{n-4p+2}{4} R_{ij} R^{ij} + \left(\frac{1}{4} - \frac{(n-p)^2}{2n(n-1)}\right) R^2$$

we have

THEOREM 3. Let

$$T = \frac{n-p}{n(n-1)} R$$

$$-\sqrt{\frac{(p-1)^2}{4}R_{ijkl}R^{ijkl}+\frac{n-4p+2}{4}R_{ij}R^{ij}+\left(\frac{1}{4}-\frac{(n-p)^2}{2n(n-1)}\right)R^2}\ (p\geq 2).$$

If T is everywhere non-negative, the covariant derivative of any harmonic tensor of degree p should vanish, and hence

$$B_{\mathfrak{p}} \leq \binom{n}{\mathfrak{p}}.$$

If T is everywhere positive, then

$$B_{\nu}=0$$
.

Next we have

(19)
$$Q' = R_{ik} g_{jl} X^{ij} X^{kl} + \frac{p-1}{2} R_{ijkl} X^{ij} X^{kl}$$

$$\geq R_{ik} g_{jl} X^{ij} X^{kl} - \frac{p-1}{2} \sqrt{R_{ijkl} R^{ijkl}} X_{ab} X^{ab}$$

$$= \left(\frac{R_{ik} g_{jl} X^{ij} X^{kl}}{X_{ab} X^{ab}} - \frac{p-1}{2} \sqrt{R_{ijkl} R^{ijkl}}\right) X_{ab} X^{ab}.$$

Hence we have

THEOREM 4. If

$$\frac{R_{ik} g_{jl} X^{ij} X^{kl}}{X_{ab} X^{ab}} \ge \frac{p-1}{2} \sqrt{R_{ijkl} R^{ijkl}} (X_{ij} = -X_{ji})$$

holds everywhere, we have the same result as in Theorem 3. If the inequality sign holds everywhere, then B_p is zero.

Moreover we have

$$(20) \quad Q' = \frac{p-1}{2} R_{ijkl} X^{ij} X^{kl} + \frac{1}{4} (R_{ik} g_{jl} - R_{jk} g_{il} - R_{il} g_{jk} + R_{jl} g_{ik}) X^{ij} X^{kl}$$

$$\geq \frac{p-1}{2} R_{ijkl} X^{ij} X^{kl} - \sqrt{Q_{ijkl} Q^{ijkl}} X_{ab} X^{ab},$$

where

(21)
$$Q_{ijkl} = \frac{1}{4} \left(R_{ik} g_{jl} - R_{jk} g_{il} - R_{il} g_{jk} + R_{jl} g_{ik} \right).$$

Since

(20)
$$Q_{ijkl} Q^{ijkl} = \frac{(n-2) R_{ij} R^{ij} + R^2}{4},$$

we have

THEOREM 5. If the curvature tensor satisfies the inequality

$$rac{R_{ijkl} \, X^{ij} \, X^{kl}}{X_{ab} \, X^{ab}} \! \geq \! \sqrt{\frac{(n-2) \, R_{ij} \, R^{ij} \! + \! R^2}{p\! -\! 1}}$$
 ,

then we have the same result as in Theorem 3. If the inequality sign holds everywhere, then B_p is zero.

Utunomiya University.

Bibliography

- [1] Bochner, S., Curvature and Betti numbers. Ann. of Math., 49 (1948), 379-390.
- [2] Lichnerowicz, A, Courbure et nombres de Betti d'une variété riemannienne compacte, C.R. Acad. Sci. Paris, 226 (1943), 1678-1680.