
Journal of the Mathematical Society of Japan Vol. 4, Nos. 3\sim 4, December, 1952.

On the perturbation theory of closed
linear operators.
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The perturbation theory of linear operators has been developed by
several authors. The most complete results heretofore obtained by
Rellich and others1) are mainly concerned with the “ regular” pertur-
bation of self-adjoint operators of a Hilbert space, while some $attempts^{?)}$

have also been made towards the treatment of $t$ non-regular ” cases
which are no less important in applications.

Recently another generalization of the theory was given by Sz.-
Nagy3). By his elegant and powerful method of contour integration,
he has been able to transfer most of the theorems for self-adjoint
operators to a wider class of closed linear operators of a general
Banach space.

In the meantime the present writer was studying the same problem
independently and published his main results in Japanese language4).
It now turned out5) that there are considerable coincidences between
the results as well as methods of Sz.-Nagy and those of the writer.

The purpose of the present paper is to give a further development
of the theory based on the fundamental results of Sz.-Nagy and the
writer. An important part will also be played in \S 2 by a generaliza-
tion of a method which the writer6) used in the proof of the adiabatic
theorem of quantum mechanics.

It will be pointed out that the perturbation theory of general
closed linear operators is not only a generalization of that of self-
adjoint operators, but the full significance of the latter is realized only
in the light of the former. This is due to the fact that, whereas the
function-theoretical behaviour of the eigenvalues and eigenvectors is
completely revealed only when we consider the parameter $e$ as a
complex variable, an operator $T(e)$ regular in $e$ cannot in general be
self-adjoint or even normal for all values of $e$ of a complex domain.
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We shall see in particular that an essential improvement of the
estimation of the convergence radii for eigenvalues and eigenvectors
is attained through these considerations.

\S 1. Regularity of the subspace.

Throughout the present paper we follow the definitions and nota-
tions of Sz.-Nagy3). According to him we consider a closed linear
operator $T_{0}$ with domain $\mathfrak{D}$ dense in a complex Banach space $\mathfrak{B}$ and
with range in $\mathfrak{B}$. We assume that its spectrum $\sigma(T_{0})$ consists of two
parts $\sigma_{0},$

$\sigma_{0^{\prime}}$ such that a closed rectifiable curve $C$ can be drawn in
the resolvent set $\rho(T_{0})$ with $\sigma_{0}$ in its interior and $\sigma_{0^{\prime}}$ in its exterior.
We now consider the $lt$ perturbed ‘’ operator

(1.1) $ T(e)=T_{0}+eT_{1}+e^{2}T_{2}+\cdots$ ,

where $T_{k}^{\prime}s$ are linear operators with the same domain $\mathfrak{D}$ as $T_{0}$ and
with ranges in $\mathfrak{B}$ . They are assumed to satisfy the inequalities

(1.2) $||T_{k}f||\leqq pk-t\sim(a||f||+b||T_{0}f||)$ $(k=1,2,\cdots)$ .
The parameter $e$ is assumed to be either real or complex. But

as $\mathfrak{B}$ is a complex Banach space, we can always extend (1.1) to
complex values of $e$ even if it is initially defined only for real $e$ .
Thus we may hereafter assume $e$ to be complex without loss of
generality. This enables us to make use of various theorems of func-
tion theory and leads to considerable simplifications and improvements
of the results.

It has been shown3) that the resolvent $R_{z}(e)=[T(e)-zI]^{-1}$ with $z$

on $C$ is expressible as a power series of $e$ absolutely convergent in
the circle

(1.3) $|e|<(p+\alpha)^{-1}$ ,

where
(1.4) $\alpha=aM+bN$, $M={\rm Max}\cdot.||R_{z}(0)z\epsilon C||$ , $N=Maxz\epsilon C||T_{0}R_{z}(0)||$ .
In what follows the set (1.3) will be called the fundamental demain
of e-plane and denoted by $D_{0}$. $e$ is assumed to belong to $D_{0}$ unless
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the contrary is positively stated.
It has also been shown3) that the resolvent set of $T(e)$ contains

the curve $C$ if $e$ lies in $D_{0}$ and that the spectrum of $T(e)$ is separated
by $C$ into the interior and exterior parts with the corresponding sub-
spaces $\mathfrak{M}(e)$ and $\mathfrak{M}^{\prime}(e)$ respectively. The corresponding projection $P(e)$

onto $\mathfrak{M}(e)$ is also expressible as a power series of $e$ convergent in $D_{0}$ :

(1.5) $P(e)=\sum_{n=0}^{\infty}e^{n}P_{n}$ .

Thus $P(e)$ is a regular analytic function7) of $e$ in the fundamental
domain $D_{0}$ . In particular it is continuous in $D_{0}$, and it follows that
the dimension $m$ of $\mathfrak{M}(e)$ is constant throughout $D_{0}$ . For, by virtue
of the uniform continuity of $P(e)$ in each closed subset of $D_{0}$, any two
points $e^{\prime},$

$e^{\prime\prime}$ of $D_{0}$ can be joined by a chain $e^{\prime}=e_{0},$
$e_{1},\cdots$ , $e_{n}=e^{\prime\prime}$ such

that $||P(e_{k-1})-P(e_{k})_{1}^{\dagger}|<1(k=1,2, \cdots, n)$ and hence $\dim \mathfrak{M}(e_{0})=\dim$

$\mathfrak{M}(e_{1})=\cdots=\dim \mathfrak{M}(e_{n})$ by a lemma of Sz.-Nagy3).

\S 2. A regular mapping of $\mathfrak{M}(0)$ onto $\mathfrak{M}(\epsilon)$ .
THEOREM 1. There is an operator $U(\epsilon)$ defined for each $\epsilon$ of $D_{0}$

with the following properties:
i) $U(\epsilon)$ and its inverse $U^{-- 1}(\epsilon)$ are bounded linear operators with

domain $\mathfrak{B}$ and range $\mathfrak{B}$ ;
ii) $U(\epsilon)$ and $U^{-1}(\epsilon)$ are regular analytic in $D_{0}$ ;
iii) $P(\epsilon)=U(\epsilon)P(O)U^{-1}(\epsilon)$ , $P(O)=U^{-1}(\epsilon)P(\epsilon)U(\epsilon)$ .

Thus $U(\epsilon)$ maps $\mathfrak{M}(0)$ onto $\mathfrak{M}(\epsilon)$ in $a$ one-lo-one fashion.
PROOF. I. Since $P(\epsilon)$ is a projection, we have $P^{2}(\epsilon)=P(\epsilon)$ and

hence by differentiation

(2.1) $P(\epsilon)P^{\prime}(\epsilon)+P^{\prime}(\epsilon)P(\epsilon)=P^{\prime}(\epsilon)$ ,

where ‘ means $ d/d\epsilon$ . Multiplication by $P(\epsilon)$ from left and right yields

(2.2) $P(\epsilon)P^{\prime}(\epsilon)P(\epsilon)=0$ .
We now define the operator

(2.3) $Q(\epsilon)=P^{\prime}(\epsilon)P(\epsilon)-P(\epsilon)P^{\prime}(e)$ .
$Q(\epsilon)$ as well as $P(\epsilon)$ and $P^{\prime}(\epsilon)$ is a bounded linear operator and regular
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analytic in $e$ . We note the following relations which are direct con-
sequences of (2.1), (2.2) and (2.3):

(2.4) $P(e)Q(e)=-P(e)P^{\prime}(e)$ , $Q(e)P(e)=P^{\prime}(e)P(e)$ ,
$Q(e)P(e)-P(e)Q(e)=P^{\prime}(e)$ .

II. Next consider the differential equations

(2.5) $X^{\prime}(e)=Q(e)X(e),$ $Y^{\prime}(e)=-Y(e)Q(e)$

for unknown operators $X(e)$ and $Y(e)$ . Since these are ’‘ linear”
differential equations with regular analytic coefficients, they have
regular analytic solutions uniquely determined by the initial values
$X(O)$ , $Y(O)^{8)}$ . Let $X(e)=U(e)$, $Y(e)=V(e)$ be the solutions with the
initial values $U(O)=V(O)=I$. Then it follows from the uniqueness
property that arbitrary solutions of (2.5) are given by
(2.6) $X(e)=U(e)X(0)$ , $Y(e)=Y(0)V(e)$ .
Now we have

$[V(e)U(e)]^{\prime}=V^{\prime}(e)U(e)+V(e)U^{\prime}(e)=-V(e)Q(e)U(e)$

$+V(e)Q(e)U(e)=0$

so that $V(e)U(e)=I$ identically. Similarly we have

$[U(e)V(e)]^{\prime}=Q(e)[U(e)V(e)]-[U(e)V(e)]Q(e)$ .
This shows that $U(e)V(e)$ also satisfies a “ linear “ differential equation
with the initial value $U(O)V(O)=I$. But as the constant operator $I$

satisfies the same equation, we must have $U(e)V(e)=I$ by virtue of
the uniqueness of the solution. Thus we have shown

(2.7) $U(e)V(e)=V(e)U(e)=I$ .
This implies that the inverse $U^{-1}(e)$ of $U(e)$ exists and coincides with
$V(e)$ , proving the assertions i) and ii).

III. Next we consider the operator $P(e)U(e)$ . We have

(2.8) $[P(e)U(e)]^{\prime}=P^{\prime}(e)U(e)+P(e)U^{\prime}(e)$

$=[P^{\prime}(e)+P(e)Q(e)]U(e)=Q(e)P(e)U(e)$

by (2.5) and (2.4). This shows that $X(e)=P(e)U(e)$ is also a solution
of the first equation of (2.5) with the initial value $X(O)=P(O)$ . There $\cdot$
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fore we must have $P(e)U(e)=U(e)P(0)$ by (2.6). In the same way
we can show that $V(e)P(e)=P(0)V(e)$, thus completing the proof of
iii). Incidentally we note the following relation obtained by taking the
adjoint of the last equation:

(2.9) $P^{\{\epsilon}(e)V^{*}(e)=V^{*}(e)P^{k}(O)$ ,

where $V^{*}(e)$ as well as $P^{*}(e)$ is a regular analytic function of 6 in
the fundamental domain $\overline{D_{0}}=D_{0}.-$

For later use we shall obtain a majorant of $U(e)P(O)f$ where $f$

is an arbitrary element of $\mathfrak{B}$ . Since $Q(e)P(e)=P^{\prime}(e)P(e)$ by (2.4), $Q(e)$

in the right side of (2.8) can be replaced by $P^{t}(e)$ . Then we can
replace $P(e)U(e)$ of both sides by $U(e)P(0)$ according to iii), Theorem
1. In this way we obtain

$[U(e)P(0)f]^{\prime}=P^{\prime}(e)[U(e)P(0)f]$ ,

where
$P^{\prime}(e)=\sum_{n\approx 1}^{\infty}$ ne$n-1P_{n}$ .

It follows easily that the power series of $U(e)P(O)f$ is majorized by
the expression

$||P(0)f||\exp(\sum_{n\Leftrightarrow 1}^{\infty}\int_{0}^{e}ne^{n-1}||P_{n}|_{1}^{1}de)=||P(0)f||\exp(\sum_{n=1}^{\infty}e$“ $||P_{n}||)$ .
Putting the inequality9)

$||P_{n}||\leqq(2\pi)^{-1}|C|M\alpha(p+\alpha)^{n-1}$ $(n=1,2,\cdots)$

where $|C|$ is the length of $C$, we obtain a majorant of $U(e)P(O)f$ in
the following form

(2.10) $||P(0)f||\exp\frac{(2\pi)^{-1}|C|M\alpha e}{1-(p+\alpha)e}$ .

Finally it will be remarked that $U(e)$ is unitary for real $e$ if $\mathfrak{B}$ is
a Hilbert space and $T(e)$ is self.adjoint or normal for real $e$ . To see
this we have only to note that $P^{*}(e)=P(e)$ and hence that $P^{*}(e)=P^{\prime}(e)$,

$Q^{*}(e)=-Q(e)$ for real $e$ . An inspection of the equations (2.5) and
their adjoints shows that we must have $U^{*}(e)=V(e)$ for real $e$ . Since
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$V(e)=U^{-1}(e)$, this proves the assertion.

\S 3. Perturbation of the spectrum for finite $m$ .
In what follows we assume that the dimension $m$ of $\mathfrak{M}(0)$ is finite,

and choose a base $\{\psi_{I}, \psi_{2}, \cdots, \psi_{m}\}$ of $\mathfrak{M}(0)$ . Then there is a base
$\{\psi_{1}^{*}, \psi_{2}*,\cdots\cdots , \psi_{m}^{*}\}$ of $\mathfrak{M}^{*}(0)$ such $that^{1\ovalbox{\tt\small REJECT})}$

(3.1) $(\psi_{k}, \psi_{j}^{*})=\delta_{jk}=\left\{01 (j\neq k)(j=k).\right.$

If we set
(3.2) $\psi_{k}(e)=U(e)\psi_{k},$ $\psi_{j}^{*}(e)=V^{k}(e)\psi_{j}^{*}$ $(j, k=1,2, \cdots, m)$ ,

we have by Theorem 1, iii)

$P(e)\psi_{k}(e)=P(e)U(e)\psi_{k}=U(e)P(O)\psi_{k}=U(e)\psi_{k}=\psi_{k}(e)$

and similarly $P^{*}(e)\psi_{j}^{*}(e)=\psi_{j}^{*}(e)$ by (2.9). Hence $\psi_{k}(e)\in \mathfrak{M}(e)$ and
$\psi_{j}^{*}(e)\in \mathfrak{M}^{*}(e)$ . Moreover we have

(3.3) $(\psi_{k}(e), \psi_{j}^{*}(e))=(U(e)\psi_{k}, V^{*}(e)\psi_{j}^{*})=(V(e)U(e)\psi_{k}, \psi_{i}^{*})$

$=(\psi_{k}, \psi_{j}^{*})=\delta_{jk}$

by (2.7) and (3.1). Since we know that the dimensions of $\mathfrak{M}(e)$ and
$\mathfrak{M}^{*}(e)$ are equal to $m$ (See \S 1), these results show that { $\psi_{1}(e),$ $\psi_{2}(e),\cdots$

$\psi_{m}(e)\}$ and $\{\psi_{1}^{*}(e),\cdots, \psi_{m}^{*}(e)\}$ are bases of $\mathfrak{M}(e)$ and $\mathfrak{M}^{*}(e)$ respectively.
As has been shown by Sz. $- Nagy^{3)}$ , the spectrum of $T(e)$ contains

only a finite number of points inside the curve $C$. These points are
eigenvalues of $T(\epsilon)$ with the corresponding eigenvectors belonging to
the subspace $\mathfrak{M}(e)$ , and the sum of their principal multiplicities3) is
just equal to $m$ . At first we do not know whether or not the number
of these points is independent of $e$ . In any case, however, let us
choose one of them and denote it by $\lambda(e)$ , and let $\varphi(e)$ be one of the
eigenvectors associated with $\lambda(e)$ . Then we have

(3.4) $T_{0}(e)\varphi(e)=\lambda(e)\varphi(e)$ ,

where $T_{0}(e)\equiv T(e)P(e)$ is a regular analytic function of $e$ in $D_{0^{3)}}$.
Since we know that $\varphi(e)\in \mathfrak{M}(e)$ , we can write

(3.5) $\varphi(e)=\sum_{k-1}^{m}c_{k}(e)\psi_{k}(e)$ , $c_{k}(e)=(\varphi(e), \psi_{k}^{*}(e))$ ,
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by virtue of (3.3). Putting (3.5) into (3.4) and taking the inner product
of the resulting equation with $\psi_{j}^{+}(e)$ , we obtain

(3.6) $\sum_{k=1}^{m}c_{k}(e)(T_{0}(e)\psi_{k}(e), \psi_{j}^{*}(e))=\lambda(e)c_{j}(e)$ $(j=1,2, \cdots, m)$ .

Conversely (3.6) is also a sufficient condition for $\varphi(e)$ and $\lambda(e)$ to be a
solution of (3.4). For (3.6) implies that the vector $[T_{0}(e)-\lambda(e)]\varphi(e)$

is orthogonal to $\psi_{j}^{*}(e)(j=1, \cdots, m)$ ; but as $[T_{0}(e)-\lambda(e)]\varphi(e)$ belongs to
$\mathfrak{M}(e)^{3)}$, it must be zero.

(3.6) is an ordinary eigenvalue problem for the m-dimensional
vector $\{c_{1}(e), \cdots, c_{m}(e)\}$ . Hence the eigenvalues $\lambda(e)$ under considera-
tion are identical with the roots of the secular equation

(3.7) $\det[(T_{0}(e)\psi_{k}(e), \psi_{j}^{*}(e))-\lambda\delta_{jk}]=0$ .

Since $T_{0}(e)$ is regular analytic in $D_{0}$ , the coefficients $(T_{0}(e)\psi_{k}(e), \psi_{j}^{*}(e))$

are also regular analytic in $D_{0}$. Therefore the eigenvalues $\lambda(e)$ consist
of branches of one or several analytic functions of $e$ which have only
a finite number of algebraic singularities in each closed subset of $D_{0}$ .
Furthermore, these analytic functions are continuous and bounded
throughout $D_{0}$, for the coefficient of the highest power $\lambda^{m}$ of (3.7) is
equal to the constant $(-1)^{m}$ and, moreover, we know that $\lambda(e)S$ lie
inside the curve $C$ for $e\in D_{0}$ .

Now it is clear that the number $s$ of different eigenvalues is
independent of $e$ except at those exceptional values of $e$ which are
either singular points of the analytic functions $\lambda(e)$ or for which some
of the values of $\lambda(e)$ are coincident. Of course there are only a finite
number of such exceptional points in each closed subset of $D_{0}$. Thus
we can denote by $\lambda_{1}(e),$ $\lambda_{2}(e),$

$\cdots,$
$\lambda_{s}(e)$ these different eigenvalues of $T(e)$

situated in the interior of $C$.
The behaviour of the operator $T(e)$ in the subspace $\mathfrak{M}(e)$ is com-

pletely described by the resolvent $R_{z}(e)$ . Since the only singular points
(as a function of z) of $R_{z}(e)$ inside the curve $C$ are $\lambda_{1}(e),$

$\cdots,$
$\lambda_{s}(e)$ , we

obtain the expansion of $R_{z}(e)$ into partial fractions in the following
form :
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(3.8) $ R_{z}(e)=S_{z}(e)+\sum_{k\rightarrow 1}^{s}\{-\lambda_{k}(e)^{\frac{e)}{-z}}P_{k}(+\frac{A_{k}(e)}{[\lambda_{k}(e)-z]^{2}}+\cdots$

$+\frac{A_{k}^{m-1}(e)}{[\lambda_{k}(e)-z]^{m}}\}$

at least except.at the exceptional points of $e$ stated above. Here $S_{z}(e)$

is given by

(3.9) $S_{z}(e)=\frac{1}{2_{\pi}i}\int_{C}\frac{R_{z^{\prime}}(e)}{z^{\prime}-z}dz^{\prime}$

and is regular analytic for $z$ inside $C$ and $e\in D_{0}$. $P_{k}(e)$ is the projec-
tion associated12) with the eigenvalue $\lambda_{k}(e)$ and the following relations
hold:

(3.10) $P_{k}(e)P_{j}(e)=\delta_{jk}P_{k}(e)$ , $\sum_{k=1}^{s}P_{k}(e)=P(e)$ .

If we denote by $\mathfrak{M}_{k}(e)$ the range of $P_{k}(e)$ and by $m_{k}$ its dimension,
we have
(3.11) $\mathfrak{M}(e)=\mathfrak{M}_{1}(e)+\cdots\cdots+\mathfrak{M}_{s}(\epsilon)$ (direct sum),

$m=m_{1}+\cdots\cdots+m_{s}$ .
That $m_{k}$ are independent of $e$ will be shown soon below. $A_{k}(e)$ have
the following properties:

(3.12) $A_{k}(e)=-[T_{0}(e)-\lambda_{k}(e)]P_{k}(e)$ , $A_{k}^{m_{k}}(e)=0$ .
Hence the expression in $\{$ $\}$ of (3.8) $ha_{3}^{\backslash }$ actually not more than $m_{k}$

terms.
Let us consider the properties of $P_{k}(e)$ and $A_{k}(e)$ as functions of

$e$ . We first note that $P_{k}(e)$ is regular analytic at each point $e_{0}$ which
is not an exceptional point described above. For, since $\lambda_{k}(e)$ is then
an isolated eigenvalue of $T(e)$ for every $e$ of a small neighbourhood
of $e_{0}$ , we can apply to it our results heretofore obtained; we have only
to replace $T_{0}$ by $T(e_{0}),$

$\sigma_{0}$ by the set composed of a single point $\lambda_{k}(e_{0})$ ,
the fundamental domain $D_{0}$ by a small neighbourhood $D(e_{0})$ of $e_{0}$.
Then $P(e)$ is replaced by $P_{k}(e)$ , thus proving that $P_{k}(e)$ is regular
analytic in $D(e_{0})$ and that $m_{k}$ is constant there. (3.12) then shows
that $A_{k}(e)$ is also regular analytic in $D(e_{0})$ . By the process of analytic
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continuation, it is seen that all $P_{k}(e)$ and $A_{k}(e)$ are branches of re-
spective analytic functions with branch points in common with $\lambda_{k}(e)$ .
This follows from the fact that $R_{z}(e)$ and $S_{z}(e)$ in (3.8) are regular
throughout $D_{0}$ . By analytic continuation it is also seen that $m_{k}$ is
constant throughout $D_{0}$ except for the exceptional values of $e$ stated
above.

To investigate more completely the behaviour of $P_{k}(e)$ and $A_{k}(e)$

in the neighbourhood of an exceptional point $e_{0}$, we shall determine a
base of $\mathfrak{M}_{k}(e)$ . We first note that a necessary and sufficient condition
that a $f\in \mathfrak{M}(e)$ belong to $\mathfrak{M}_{k}(e)$ is $g$iven $by^{3)}$

(3.13) $[T_{0}(e)-\lambda_{k}(e)]^{m}f=0$ .
On setting

(3.14) $f=\sum_{l=1}^{m}c_{l}\psi_{l}(e)$

and proceeding in the same way as we deduced (3.6), we obtain

(3.15) $\sum_{l=1}^{m}c_{\iota}([T_{0}(e)-\lambda_{h}(e)]^{m}\psi_{l}(e), \psi_{j}^{*}(e))=0$ $(j=1,2, \cdots, m)$ .

By what is just stated, these linear equations for $c_{1},$ $c_{2},$ $\cdots,$ $c_{m}$ must
have the rank $m-m_{k}$ at least for sufficiently small $|e-e_{0}|$ and $e\neq e_{0}$ ,
for $e$ is then certainly not an exceptional point. The coefficients of
$c_{l}$ in (3.15) are analytic there with at most an algebraic singularity
at $e=e_{0}$ ; hence we can determine a set of $m_{k}$ independent13) solutions
in such a way that all components $c_{\iota}$ are analytic with at most an
algebraic singularity at $e=e_{0}$ . On putting these $c_{t}$ into (3.14), we
obtain a base $\{f_{1}(e), \cdots, f_{m_{k}}(e)\}$ of $\mathfrak{M}_{k}(e)$ , each $f_{l}(e)$ being analytic with
at most an algebraic singularity at $e=e_{0}$ .

In quite the same way we can determine a base $\{f_{1}^{*}(\overline{e}), \cdots, f_{m_{k}}^{*}(e)\}$

of $\mathfrak{M}_{k}^{*}(e)$ , the range of $P_{k}^{*}(e)$, such that each $f_{l}^{*}(e)$ is analytic in $\overline{e}$ with
at most an algebraic singularity at $\overline{e}=\overline{e}_{0}$ . Moreover we may assume
that

(3.16) ( $fi(e),$ f$(e))=\mbox{\boldmath $\delta$}\mbox{\boldmath $\iota$}p $(l,P=1,2, \cdots, m_{k})$ ,

for the algebraic nature of the singularity is not lost in the process
of biorthogonalization.
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We can now express $P_{k}(e)$ in terms of these bases $f_{l}(e)$ and $f_{p}^{*}(e)$ .
For any $f\in \mathfrak{B}$ we have

$P_{k}(e)f=\sum_{l=1}^{m_{k}}(f,f_{l}^{*}(e))f_{l}(e)$

by virtue of (3.16), and this shows that $P_{\lambda}(e)$ has at most an algebraic
singularity at $e=e_{0}$. Then it follows from (3.12) that the same is also
true for $A_{k}(e)$ .

We summarize our results as
THEOREM 2. Let the dimension $m$ of $\mathfrak{M}(0)$ be finite. Then the

spectrum of $T(e)i$nside the curve $C$ consists of a finite number $s$ of
eigenvalues $\lambda_{1}(e),$ $\lambda_{2}(\epsilon),$

$\cdots,$
$\lambda_{s}(e)$ . The set of functions $\lambda_{1}(e),$

$\cdots,$
$\lambda_{s}(e)$

comprise the total branches of one or several analytic functions which
are continuous and bounded in the fundamental damain $D_{0}$ and which
possess only a finite number of algebraic singularities in each closed
subset of $D_{0}$. Except at the values of $e$ which are either branch points
of $\lambda_{k}(e)$ or at which the value of $\lambda_{k}(\epsilon)$ coinctdes with some other ones
$\lambda_{j}(e)$ , the principal multiplicity $m_{k}$ of each $\lambda_{k}(e)$ is constant, and we
have the decomposition (3.8) of the resolvent $R_{z}(e)$ , where $S_{z}(e)$ is $e_{\mathscr{X}}$ .
$lar$ analytic for $eeD_{0},$ $P_{k}(e)$ and $A_{k}(e)$ are branches of analytic func-
tions with only algebraic singularities at most at the exceptional points
iust described. $P_{k}(e)$ are proiections with ranges $\mathfrak{M}_{k}(e)$ which are the
principal subspaces corresponding to the respective eigenvalues $\lambda_{k}(e)$ ,
and the relations (3.10), (3.11) and (3.12) hold.

Remark 1. Whereas $\lambda_{k}(e)$ have no other singularities than branch
points and are continuous even at such points, $P_{k}(e)$ and $A_{k}(e)$ are not
necessarily continuous there and, moreover, may have other singularities
at points where $\lambda_{k}(e)$ are regular but some of their values are coincid-
ent. This is seen from the examples given below.

Remark 2. If $s=1$ (no splitting of eigenvalue !) $\lambda_{1}(e)$ has no branch
point and hence must be regular throughout $D_{0}$. Since we know that
the same is true for $P_{1}(e)=P(e),$ $A_{1}(e)$ is also regular by (3.12).

Remark 3. If $\mathfrak{B}$ is a Hilbert space and $T(e)$ is self-adjoint or
normal for real $e$ , all $P_{k}(e)$ are orthogonal projections for real $e$ . Hence
follows that $P_{k}(e)$ have no branch point on the real axis, for it is
easily seen14) that $P_{k}^{\star}(e)=P_{k}(e)$ cannot hold for both positive and nega-
tive values of $e-e_{0}$ if $e_{0}$ is a real algebraic branch point of $P_{k}(e)$ .
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Moreover, since $||P_{k}(e)||=1$ holds for real $e,$ $P_{k}(e)$ cannot have a pole
on the real axis. Hence $P_{k}(e)$ must be regular for real values of $e$ .
Then $\lambda_{k}(e)$ too must be regular for real $e$ , for a branch point of $\lambda_{k}(e)$

should be also a branch point of $P_{k}(e)$ . Finally $A_{k}(e)$ vanish15) for a
normal operator $T(e)$ . Thus we have

$R_{z}(e)=S_{z}(e)+\sum_{k=1}^{s}[\lambda_{k}(e)-z]^{-1}P_{k}(e)$

where $\lambda_{k}(e),$ $P_{k}(e)$ and $S_{z}(e)$ are regular for real $e$ . In this way we
have obtained again the main results of the perturbation theory of
self-adjoint operators due to Rellich and $others^{I)}$ . It will be noted that
$\lambda_{k}(e)$ may well have non-real singularities.

Example $1^{16)}$ . Let $\mathfrak{B}$ be two-dimensional and let

$T(e)=\left(\begin{array}{llll} & & & 01\\ & & & 0e\end{array}\right)$ .
Then we have

$R_{z}(e)=\frac{P_{1}(e)}{\lambda_{1}(e)-Z}+\frac{P_{2}(e)}{\lambda_{2}(e)-Z}$
$\lambda_{1}(e)=e^{\frac{1}{2}}$ , $\lambda_{2}(e)=-e^{\frac{1}{2}}$ ,

$P_{1}(e)=\frac{1}{2}(_{e1}^{1_{k}e^{-\#^{\backslash }}})$ , $P_{2}(e)=\frac{1}{2}\left(\begin{array}{lllll} & & & 1 & -e^{-1}2\\ & & & -e^{1}2 & 1\end{array}\right)$

for $e\neq 0$ and

$R_{z}(0)=\frac{P}{\lambda_{0}-z}+\frac{A}{(\lambda_{0}-z)^{2}}$ $\lambda_{0}=0,$ $P=I,$ $A=-\left(\begin{array}{llll} & & & 01\\ & & & 00\end{array}\right)$

for $e=0$ . Thus $R_{z}(e)$ takes on quite different forms for $e\neq 0$ and $e=0$ .
Example 2. Let $\mathfrak{B}$ be as above and let

$T(e)=\left(\begin{array}{llll} & & & 10\\ & & & e^{2}0\end{array}\right)$ .
Then we have the same expression for $R_{z}(e)$ with

$\lambda_{1}(e)=e$ ,
$P_{1}(e)=\frac{1}{2}\left(\begin{array}{lllll} & & & 1 & -e1\\ & & & e & 1\end{array}\right)$ , $P_{2}(e)=\frac{1}{2}\left(\begin{array}{lllll} & & & 1 & -e^{-1}\\ & & & -e & 1\end{array}\right)$ .

$\lambda_{2}(\epsilon)=-e$ ,

Thus $P_{1}(e),$ $P_{2}(e)$ are single-valued and yet have a pole at $e=0$ where
$\lambda_{1}(e),$ $\lambda_{2}(e)$ are regular.

Example $3^{17)}$. Let $\mathfrak{B}$ be as above and let

$T(e)=\left(\begin{array}{lllll} & & & 0 & e\\ & & & 00 & \end{array}\right)$ .
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Th en we have

$R_{z}(e)=\frac{P(}{\lambda(e)}e\frac{)}{-z}+\frac{A(e)}{[\lambda(e)-z]^{2}}$ $\lambda(e)=0,$ $P(e)=I,$ $A(e)=-T(e)$ .

Here we have $A(e)\neq 0$ for $e\neq 0$ and $A(O)=0$ , in contrast to Example 1.

\S 4. Estimation of convergence radii and
coefficients.

In this section we shall obtain some estimates18) of the convergence
radii and the coefficients of the eigenvalues and eigenvectors of $T(e)$

as power series of $e$ . For simplicity we restrict ourselves to the case
$m=1$ . Then we have $s=1$ a fortiori, and it follows from Remark 2
of the preceding section that $\lambda_{1}(e)\equiv\lambda(e)$ and $P_{1}(e)=P(e)$ are regular
analytic throughout the fundamental domain $D_{0}$ . Thus the power
series

(4.1) $\lambda(e)=\sum_{n\rightarrow 0}^{\infty}e^{n}\lambda_{n}$ , $P(e)=\sum_{n\leftarrow 0}^{\sim}e^{n}P_{n}$

are convergent in $D_{0}$, that is, $for^{19)\Re)}|e|<(p+\alpha)^{-1}$ .
Furthermore, since $\lambda(e)$ lies in the interior of $C$ for $eeD_{0}$ , we

have $|\lambda(e)-\lambda_{0}|<\delta$ , where $\delta={\rm Max}|z-\lambda_{0}|$ for $zeC$. It follows from
Cauchy’s inequality in function theory that21)

(4.2) $|\lambda_{n}|\leq-\delta(p+\alpha)^{n}$ $(n=1,2, \cdots)$ .
The vectors $\psi_{1}(e)\equiv\psi(e)$ and $\psi_{1}^{*}(e)\equiv\psi^{\star}(e)$ constructed in \S 3 are

respectively the eigenvectors of $T(e)$ and $T^{\star}(e)$ associated with $\lambda(e)$

and $\overline{\lambda(\epsilon).}$ Since we have

(4.3) $(\psi(e), \psi^{*}(e))=1$

by (3.3), $\psi(e)$ is regular analytic and $\neq 0$ throughout $D_{0}$ . Hence the
expansion of the eigenvector $\psi(e)$ :

(4.4) $\psi(e)=\sum_{n=0}^{\infty}e^{n}\psi^{()}n$

is convergent also $for^{\Re)22)}|e|<(p+\alpha)^{-1}$ .
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On setting $f=\psi^{(0)}$ in (2.10), we obtain a majorant of (4.4) and
therefrom we can derive an estimate of $||\psi^{(n)}||$ . Without aiming at
the utmost accuracy, we note the following simple estimate obtained
by further replacing (2.10) by its majorant

$\omega(1-\frac{rM\alpha e}{1-(p+\alpha)e})^{-1}=\omega\frac{1-(p+\alpha)e}{1-(p+\alpha+rM\alpha)e}$

(where we have set $\omega=||P(0)\psi^{(0)}||=||\psi^{(0)}|1|$ and $|C|=2\pi\gamma$):

(4.5) $||\psi^{(n)}||\leqq\omega rM\alpha(p+\alpha+rM\alpha)^{n-1}$ $(n=1,2, \cdots)^{23)}$.
In conclusion we note that the estimate of the convergence radius

for $\lambda(e)$ as given above is the best possible one. This is shown by
the following

Example 4. Let $\mathfrak{B}$ be a two.dimensional unitary space and let

$T(e)=\left(\begin{array}{ll}1 & e\\e & -1\end{array}\right)$ , $T_{0}=\left(\begin{array}{ll}1 & 0\\0 & -1\end{array}\right)$ , $T_{1}=\left(\begin{array}{l}01\\10\end{array}\right)$ , $T_{2}=T_{3}=\cdots=0$ .

Then we have (we consider the eigenvalue $\lambda_{0}=1$ of $T_{0}$)

$p=0$, $a=1$ , $b=0_{J}$ $\lambda_{0}=1$ , $r=1$ ,

$M=1$ , $N=1$ , $\alpha=1$ , $(p+\alpha)^{-1}=1$

( $C$ is chosen as a circle with center $\lambda_{0}=1$ and radius $r=1$ ). The exact
eigenvalue is $\lambda(e)=(1+e^{2})^{\not\in}$ , for which the convergence radius is just
equal to $1=(p+\alpha)^{-1}$ .

\S 5. General regular perturbation.

In the foregoing sections we started from the assumptions (1.1)

and (1.2) for $T(e)$ . But this is only a special case of $t$ ‘ regular”
perturbations. Following the definition of Rellich24) in the case of
self.adjoint operators, we can define a non-bounded regular operator
$T(e)$ as follows. Let $T(e)$ be a linear operator, depending on a $com$ .
plex parameter $e$, with domain $\mathfrak{D}(e)$ dense in a Banach space $\mathfrak{B}$ and
with range in $\mathfrak{B}$. $T(e)$ is said to be regular in a neighbourhood of
$e=0$ if the following conditions are fulfilled:

i) there is a bounded operator $W(e)$ with domain $\mathfrak{B}$ and range
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$\mathfrak{D}(e)$ and which is regular analytic in a neighbourhood of $e=0$ ;
ii) the operator $T(e)W(e)$ with domain $\mathfrak{B}$ is bounded and regular

analytic in $e$ .
If we further assume that $T(O)$ is closed and has a non-empty

resolvent set $\rho(T(O))$, we can show by the method of Rellich24) that
$T(e)$ is also closed and that every point of $\rho(T(O))$ belongs to $\rho(n_{e}))$,
provided $e$ is sufficiently small. Then the argument of Sz.-Nagy3) can
be applied without change, and all the results of Sz.-Nagy and ours
are valid for this more general case. It is not necessary to enter into
these details here.

Department of Physics, University of Tokyo.
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Notes

1) Rellich [10]-[14]; Sz.-Nagy [15], [16]; Heinz [1]; Kato [3], [7].

2) Titchmarsh $[18]-[20\rfloor$ ; Kato [4], [7\rfloor ,$ $[8].
3) Sz..Nagy [17].

4) Kato [5].

5) The writer is indebted to Prof. Rellich for a chance of seeing the paper of Prof.
Sz.Nagy.

6) Kato [6].

7) Except $T(s)$ we have no occasion of considering a non.bounded operators. So all
operators of the form $A(\in)$ are assumed to be bounded and have domain $\mathfrak{B}$ , unless the
contrary is positively stated.

8) This is proved by the method of successive approximation; there is no difficulty
since the fundamental domain $D_{0}$ is simply connected.

9) See Eq. (20) of Sz..Nagy [171.

10) This is implied by Eq. (11) of Sz..Nagy [17]. $\mathfrak{M}^{*}(e)$ is the range of $P^{*}(\in)$ .
11) Cf. Nagumo [9]; Hille [2\rceil , Chap. V.
12) This means that the range $\mathfrak{M}_{k}(\epsilon)$ of $P_{k}(\in)$ is the principal subspace corresponding

to $)_{k(\epsilon)}$ in the sense of Sz..Nagy [17].

13) Independent at least for sufficiently small $|\in-e_{0}|$ and e $\neq g\circ\cdot$

14) Cf. Rellich [10].
15) $A_{k}(e)=0$ holds at first for real $\in$ ; then it holds identically by analytic continuation.
16) This is the example a) of Sz.-Nagy [17].
17) This is the example c) of Sz..Nagy [17].
18) For the application of these results to practical problems, see Kato [7], \S 5, where

they are applied, in particular, to the Mathieu equation and to the helium wave equation.
19) It should be noted that this result and (4.2) are valid even if m $>1$ , provided

that $s=1$

20) This estimate is simpler and more precise than the corresponding ones of Sz.-
Nagy [16] and [17].

21) There $s\circ.ems$ to be no simple relation between (4.2) and the corresponding esti-
mates of Sz.-Nagy [16] and [17]. However, (4.2) is more favourable at least if p $=0$ .

22) It will be noted that \Vert $\phi(\epsilon)\Vert=1$ for real e if $T(s)$ is self-adjoint or normal for
real g and 1 $\phi(0)\Vert=1$ . This follows frcm the fact that $U(e)$ is unitary as we remarked
at the end of \S 2.

23) This is somewhat more precise than the corresponding estimates of Sz.-Nagy
[16] and [17].

24) Rellich [12].
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