Journal of the Mathematical Society of Japan Vol. 4, Nos. 3~4, December, 1952.

Myrberg's approximation theorem on Fuchsian groups.

By Masatsugu Tsuji

(Received September 10, 1952)

Let G be a Fuchsian group of linear transformations, which make |z| < 1 invariant and D_0 be its fundamental domain. We assume that D_0 has a finite number of sides, such that D_0 lies entirely in |z| < 1, or has a finite number of parabolic vertices on |z| = 1. It can be proved that this is equivalent to that the non-euclidean area of D_0 is finite¹. Then Myrberg² proved the following approximation theorem.

THEOREM. There exists a set E of measure 2π on |z|=1, which satisfies the following condition. Let $L=L(\theta)$ be a diameter of |z|=1through $e^{i\theta}$ and L_{ν} ($\nu=0, 1, 2, \cdots$) be its equivalents by G. Let C be any orthogonal circle to |z|=1. If $e^{i\theta} \in E$, then we can find ν_k , such that $L_{\nu_k} \to C(k \to \infty)$.

We shall prove this theorem simply by means of Hopf's ergodic theorem.

PROOF. We denote an orthogonal circle to |z|=1, whose end points on |z|=1 are $e^{i\theta}$, $e^{i\varphi}$ by $C(\theta, \varphi)$. Now (θ, φ) can be considered as a point on a torus $\mathcal{Q}: 0 \leq \theta \leq 2\pi, 0 \leq \varphi \leq 2\pi$ and the measure mE of a measurable set E on \mathcal{Q} is defined by

$$mE = \iint_E d\theta \, d\varphi, \tag{1}$$

so that $m \mathcal{Q} = 4\pi^2$.

¹⁾ C. L. Siegel: Some remarks on discontinuous groups. Ann. of Math. 46 (1945). M. Tsuji: Theory of Fuchsian groups. Jap. Journ. Math. 20 (1952).

²⁾ P. J. Myrberg: Ein Approximationssatz für die Fuchsschen Gruppen. Acta Math. 57 (1931).

Let S be a transformation of G, then (θ, φ) is transformed into (θ', φ') by

$$e^{i\theta'} = S(e^{i\theta}), \ e^{i\varphi'} = S(e^{i\varphi}).$$
 (2)

We denote this transformation also by S and let $(\theta_{\nu}, \varphi_{\nu})$ $(\nu=0, 1, 2, \cdots)$ be equivalents of (θ, φ) .

Let *E* be a measurable set on \mathcal{Q} , which is invariant by *G*. If mE > 0, then Hopf³⁾ proved that $mE = 4\pi^2$.

Let M be the set of (θ, φ) , such that $(\theta_{\nu}, \varphi_{\nu})$ $(\nu=0, 1, 2, \cdots)$ are not everywhere dense on \mathcal{Q} , then we shall prove that mM=0.

First we shall prove that M is measurable. Let $r_{\nu}(\nu=1, 2, \cdots)$ be all rational numbers in $[0, 2\pi]$ and

$$\Delta_{ij,kl}: r_i \leq \theta \leq r_j, \ r_k \leq \varphi \leq r_l \tag{3}$$

be an interval on \mathcal{Q} and $M_{ij,kl}^s$ be the set of (θ, φ) , such that $(\theta_{\nu}, \varphi_{\nu})$ $(\nu=0, 1, 2, \dots, s)$ lie outside of $\mathcal{A}_{ij,kl}$. Then $M_{ij,kl}^s$ is an open set, so that $M_{ij,kl} = \prod_{s=0}^{\infty} M_{ij,kl}^s$ is a G_{δ} -set, hence $N = \sum_{i,j,k,l} M_{ij,kl}$ is measurable. We see easily that N=M, hence M is measurable.

Now we shall prove that mM=0. Suppose that mM>0, then $mM_{ij,kl}>0$ for some i, j, k, l. Let $\widetilde{M}_{ij,kl}$ be the sum of all equivalents of $M_{ij,kl}$, then $\widetilde{M}_{ij,kl}$ is invariant by G and $m\widetilde{M}_{ij,kl}>0$, so that by Hopf's theorem, $m\widetilde{M}_{ij,kl}=4\pi^2$. But by definition, $\widetilde{M}_{ij,kl}$ has no points in $\Delta_{ij,kl}$, so that $m\widetilde{M}_{ij,kl}<4\pi^2$, which is absurd. Hence mM=0.

Let $C(\theta_0, \varphi_0)$ be any orthogonal circle to |z|=1. We shall prove that there exists a set E of measure 2π on |z|=1, which depends on (θ_0, φ_0) , such that if $e^{i\theta} \in E$, then a suitable sequence from the equivalents of a diameter $L(\theta)$ tends to $C(\theta_0, \varphi_0)$.

Since mM=0, there exists a set e_1 on the θ -axis, which is of measure 2π , such that if $\theta \in e_1$, then the line through $(\theta, 0)$ and parallel

³⁾ E. Hopf: Ergodentheorie. Berlin (1937).

M. Tsuji: Hopf's ergodic theorem. Jap. Journ Math. 19 (1945). In this paper, I have proved that Hopf's result holds, if $\lim_{r\to 1} n(r)(1-r) > 0$, where n(r) is the number of equivalents of z=0, which lie in |z| < r. Hence Myrberg's theorem holds for such a Fuchsian group.

to the φ -axis meets M in a null set $e_2(\theta)$.

Let $(\theta, \varphi) \in M$ $(\theta \neq \varphi)$, then $(\theta_{\nu}, \varphi_{\nu})$ $(\nu = 0, 1, 2, \cdots)$ are everywhere dense on \mathcal{Q} , so that we can find ν_k , such that $(\theta_{\nu_k}, \varphi_{\nu_k}) \rightarrow (\theta_0, \varphi_0)$ $(k \rightarrow \infty)$, or the orthogonal circles

$$C(\theta_{\nu_k}, \varphi_{\nu_k}) \to C(\theta_0, \varphi_0) \ (k \to \infty) \ . \tag{4}$$

Let κ be a small orthogonal circle to |z|=1, which contains $e^{i\theta}$ in its inside and z be the point of intersection of κ with $C(\theta, \varphi)$. Similarly we define κ' , z' for $e^{i\varphi}$. We take κ , κ' so small that they lie outside each other. Let z_{ν} , z_{ν}' be equivalent of z, z' respectively, then

If
$$z_{\nu_k}, z'_{\nu_k} \rightarrow e^{i\theta_0}$$
 or $e^{i\varphi_0}$.
 $z_{\nu_k} \rightarrow e^{i\varphi_0}$, (5)

then the equivalents of κ and hence the equivalents of the outside of κ tend to $e^{i\varphi_0}$, so that the equivalents of a diameter $L(\theta)$ tend to $C(\theta_0, \varphi_0)$.

$$z_{\nu_k} \rightarrow e^{i\theta_0}$$
, then $z'_{\nu_k} \rightarrow e^{i\theta_0}$. (6)

For, if otherwise, $z'_{\nu_k} \rightarrow e^{i\varphi_0}$, then the non-euclidean distance of z_{ν_k} , z'_{ν_k} tends to ∞ , while it is equal to that of z, z', which is finite. Hence $z'_{\nu_k} \rightarrow e^{i\theta_0}$, so that the equivalents of a diameter $L(\varphi)$ tend to $C(\theta_0, \varphi_0)$. Suppose that for every $\theta \in e_1$, (5) holds for at least one $\varphi \in [0, 2\pi] - e_2(\theta)$, then we put $E = e_1$.

If this is not the case, there exists $\theta_1 \in e_1$, such that for $\theta = \theta_1$, (6) holds for all $\varphi \in [0, 2\pi] - e_2(\theta_1)$, then we put $E = [0, 2\pi] - e_2(\theta_1)$.

In each case, E is of measure 2π and if $e^{i\theta} \in E$, then a suitable sequence from the equivalents of $L(\theta)$ tends to $C(\theta_0, \varphi_0)$, q. e. d.

Now we take a countable set of points (θ_n, φ_n) $(n=1, 2, \cdots)$ on \mathcal{Q} , which is everywhere dense on \mathcal{Q} and let E_n be the corresponding set of measure 2π on |z|=1 and put $E=\prod_{n=1}^{n} E_n$, then E is of measure 2π . If $e^{i\theta} \in E$, then for any n, a suitable sequence from the equivalents of a diameter $L(\theta)$ tends to $C(\theta_n, \varphi_n)$. Since (θ_n, φ_n) are everywhere dense on \mathcal{Q} , a suitable sequence from the equivalents of $L(\theta)$ tends to any orthogonal circle $C(\theta_0, \varphi_0)$. Hence our theorem is proved.

Mathematical Institute.

Tokyo University.

312

If