Myrberg's approximation theorem on Fuchsian groups.

By Masatsugu Tsujı

(Received September 10, 1952)

Let G be a Fuchsian group of linear transformations, which make $|z|<1$ invariant and D_{0} be its fundamental domain. We assume that D_{0} has a finite number of sides, such that D_{0} lies entirely in $|z|<1$, or has a finite number of parabolic vertices on $|z|=1$. It can be proved that this is equivalent to that the non-euclidean area of D_{0} is finite ${ }^{1)}$. Then Myrberg ${ }^{2}$ proved the following approximation theorem.

THEOREM. There exists a set E of measure 2π on $|z|=1$, which satisfies the following condition. Let $L=L(\theta)$ be a diameter of $|z|=1$ through $e^{i \theta}$ and $L_{\nu}(\nu=0,1,2, \cdots)$ be its equivalents by G. Let C be any orthogonal circle to $|z|=1$. If $e^{i \theta} \in E$, then we can find ν_{k}, such that $L_{\nu_{k}} \rightarrow C(k \rightarrow \infty)$.

We shall prove this theorem simply by means of Hopf's ergodic theorem.

Proof. We denote an orthogonal circle to $|z|=1$, whose end points on $|z|=1$ are $e^{i \theta}, e^{i \varphi}$ by $C(\theta, \varphi)$. Now ($\left.\theta, \varphi\right)$ can be considered as a point on a torus Ω : $0 \leqq \theta \leqq 2 \pi, 0 \leqq \varphi \leqq 2 \pi$ and the measure $m E$ of a measurable set E on Ω is defined by

$$
\begin{equation*}
m E=\iint_{E} d \theta d \boldsymbol{q} \tag{1}
\end{equation*}
$$

so that $m \Omega=4 \pi^{2}$.

[^0]Let S be a transformation of G, then (θ, φ) is transformed into ($\theta^{\prime}, \varphi^{\prime}$) by

$$
\begin{equation*}
e^{i \theta^{\prime}}=S\left(e^{i \theta}\right), e^{i \varphi \prime}=S\left(e^{i \varphi}\right) . \tag{2}
\end{equation*}
$$

We denote this transformation also by S and let $\left(\theta_{\nu}, \varphi_{\nu}\right)(\nu=0,1,2, \cdots)$ be equivalents of (θ, ϕ).

Let E be a measurable set on Ω, which is invariant by G. If $m E>0$, then Hopf ${ }^{3)}$ proved that $m E=4 \pi^{2}$.

Let M be the set of (θ, φ), such that $\left(\theta_{\nu}, \varphi_{\nu}\right)(\nu=0,1,2, \cdots)$ are not everywhere dense on Ω, then we shall prove that $m M=0$.

First we shall prove that M is measurable. Let $r_{\nu}(\nu=1,2, \cdots)$ be all rational numbers in $[0,2 \pi]$ and

$$
\begin{equation*}
\Delta_{i j}, k l: r_{i} \leqq \theta \leqq r_{j}, r_{k} \leqq \varphi \leqq \boldsymbol{r}_{l} \tag{3}
\end{equation*}
$$

be an interval on Ω and $M_{i j, k l}^{s}$ be the set of (θ, φ), such that ($\theta_{v}, \boldsymbol{q}_{v}$) $(\nu=0,1,2, \cdots, s)$ lie outside of $\Delta_{i j}, k l$. Then $M_{i j}^{s}, k l$ is an open set, so that $M_{i j}, k l=\prod_{s=0}^{\infty} M_{i j}^{s}, k l$ is a G_{δ}-set, hence $N=\sum_{i, j, k, l} M_{i j}, k l$ is measurable. We see easily that $N=M$, hence M is measurable.

Now we shall prove that $m M=0$. Suppose that $m M>0$, then $m M_{i j, k l}>0$ for some i, j, k, l. Let $\tilde{M}_{i j, k l}$ be the sum of all equivalents of $M_{i j}, k l$, then $\tilde{M}_{i j}, k l$ is invariant by G and $m \tilde{M}_{i j}, k l>0$, so that by Hopf's theorem, $m \tilde{M}_{i j, k l}=4 \pi^{2}$. But by definition, $\tilde{M}_{i j}, k l$ has no points in $\Delta_{i j}, k l$, so that $m \tilde{M}_{i j}, k l<4 \pi^{2}$, which is absurd. Hence $m M=0$.

Let $C\left(\theta_{0}, \varphi_{0}\right)$ be any orthogonal circle to $|z|=1$. We shall prove that there exists a set E of measure 2π on $|z|=1$, which depends on (θ_{0}, φ_{0}), such that if $\epsilon^{i \theta} \in E$, then a suitable sequence from the equivalents of a diameter $L(\theta)$ tends to $C\left(\theta_{0}, \varphi_{0}\right)$.

Since $m M=0$, there exists a set e_{1} on the θ-axis, which is of measure 2π, such that if $\theta \in e_{1}$, then the line through $(\theta, 0)$ and parallel

[^1]to the $\boldsymbol{\varphi}$-axis meets M in a null set $e_{2}(\theta)$.
Let $(\theta, \varphi) \bar{\in} M(\theta \neq \varphi)$, then $\left(\theta_{\nu}, \varphi_{\nu}\right)(\nu=0,1,2, \cdots)$ are everywhere dense on Ω, so that we can find ν_{k}, such that $\left(\theta_{\nu_{k}}, \varphi_{\nu_{k}}\right) \rightarrow\left(\theta_{0}, \varphi_{0}\right)$ $(k \rightarrow \infty)$, or the orthogonal circles
\[

$$
\begin{equation*}
C\left(\theta_{\nu_{k}} ; \varphi_{\nu_{k}}\right) \rightarrow C\left(\theta_{0}, \varphi_{0}\right)(k \rightarrow \infty) . \tag{4}
\end{equation*}
$$

\]

Let κ be a small orthogonal circle to $|z|=1$, which contains $e^{i \theta}$ in its inside and z be the point of intersection of κ with $C(\theta, \phi)$. Similarly we define $\kappa^{\prime}, z^{\prime}$ for $e^{i \varphi}$. We take κ, κ^{\prime} so small that they lie outside each other. Let $z_{\nu}, z_{\nu}{ }^{\prime}$ be equivalent of \dot{z}, z^{\prime} respectively, then

If

$$
\begin{gather*}
z_{\nu_{k}}, z_{\nu_{k}}^{\prime} \rightarrow e^{i \theta_{0}} \text { or } e^{i \varphi_{0}} . \\
z_{\nu_{k}} \rightarrow e^{i \varphi_{0}}, \tag{5}
\end{gather*}
$$

then the equivalents of κ and hence the equivalents of the outside of κ tend to $e^{i \varphi_{0}}$, so that the equivalents of a diameter $L(\theta)$ tend to $C\left(\theta_{0}, \varphi_{0}\right)$.

If $\quad z_{\nu_{k}} \rightarrow e^{i \theta_{0}}$, then $z_{\nu_{k}}^{\prime} \rightarrow e^{i \theta_{0}}$.
For, if otherwise, $z_{\nu_{k}}^{\prime} \rightarrow e^{i \varphi_{0}}$, then the non-euclidean distance of $z_{\nu_{k}}, z_{\nu_{k}}^{\prime}$ tends to ∞, while it is equal to that of z, z^{\prime}, which is finite. Hence $z_{\nu_{k}}^{\prime} \rightarrow e^{i \theta_{0}}$, so that the equivalents of a diameter $L(\varphi)$ tend to $C\left(\theta_{0}, \varphi_{0}\right)$.

Suppose that for every $\theta \in e_{1}$, (5) holds for at least one $\varphi \in[0,2 \pi]$ $-e_{2}(\theta)$, then we put $E=e_{1}$.

If this is not the case, there exists $\theta_{1} \in e_{1}$, such that for $\theta=\theta_{1}$, (6) holds for all $\boldsymbol{\rho} \in[0,2 \pi]-e_{2}\left(\theta_{1}\right)$, then we put $E=[0,2 \pi]-e_{2}\left(\theta_{1}\right)$.

In each case, E is of measure 2π and if $\epsilon^{i \theta} \in E$, then a suitable sequence from the equivalents of $L(\theta)$ tends to $C\left(\theta_{0}, \varphi_{0}\right)$, q. e.d.

Now we take a countable set of points $\left(\theta_{n}, \varphi_{n}\right)(n=1,2, \cdots)$ on Ω, which is everywhere dense on Ω and let E_{n} be the corresponding set of measure 2π on $|z|=1$ and put $E=\prod_{n=1}^{\infty} E_{n}$, then E is of measure 2π. If $e^{i \theta} \in E$, then for any n, a suitable sequence from the equivalents of a diameter $L(\theta)$ tends to $C\left(\theta_{n}, \varphi_{n}\right)$. Since $\left(\theta_{n}, \varphi_{n}\right)$ are everywhere dense on Ω, a suitable sequence from the equivalents of $L(\theta)$ tends to any orthogonal circle $C\left(\theta_{0}, \varphi_{0}\right)$. Hence our theorem is proved.

Mathematical Institute.

Tokyo University.

[^0]: 1) C. L. Siegel: Some remarks on discontinuous groups. Ann. of Math. 46 (1945).
 M. Tsuji: Theory of Fuchsian groups. Jap. Journ. Math. 20 (1952).
 2) P. J. Myrberg: Ein Approximationssatz für die Fuchsschen Gruppen. Acta Math. 57 (1931).
[^1]: 3) E. Hopf : Ergodentheorie. Berlin (1937).
 M. Tsuji : Hopf's ergodic theorem. Jap. Journ Math. 19 (1945). In this paper, I have proved that Hopf's result holds, if $\lim _{r \rightarrow 1} n(r)(1-r)>0$, where $n(r)$ is the number of equivalents of $z=0$, which lie in $|z|<r$. Hence Myrberg's theorem holds for such a Fucksian group.
