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Myrberg’s approximation theorem on
Fuchsian groups.

By Masatsugu TSUJI

(Received September 10, 1952)

Let $G$ be a Fuchsian group of linear transformations, which make
$|z|<1$ invariant and $D_{0}$ be its fundamental domain. We assume
that $D_{0}$ has a finite number of sides, such that $D_{0}$ lies entirely in
$|z|<1$ , or has a finite number of parabolic vertices on $|z|=1$ . It
can be proved that this is equivalent to that the non-euclidean area
of $D_{0}$ is finitei). Then Myrberg2) proved the following approximation
theorem.

THEOREM. There exists a set $E$ of measure $ 2\pi$ on $|z|=1$ , which
satisfies the following condition. Let $L=L(\theta)$ be a diameter of $|z|=1$

through $e^{i\theta}$ and $I_{\triangleleft}$ $(\nu=0,1,2, -)$ be its equivalents by G. Let $C$ be
any orthogonal circle to $|z|=1$ . If $e^{i\theta}\in E$ , then we can find $\nu_{k}$ , such
that $L_{\nu_{k}}\rightarrow C(k\rightarrow\infty)$ .

We shall prove this theorem simply by means of Hopf’s ergodic
theorem.

PROOF. We denote an orthogonal circle to $|z|=1$ , whose end
points on $|z|=1$ are $e^{i\theta},$ $e^{i\varphi}$ by $C(\theta, \varphi)$ . Now $(\theta, \varphi)$ can be considered
as a point on a torus $\Omega$ ; $0\leqq\theta\leqq 2\pi,$ $0\leqq\varphi\leqq 2_{\pi}$ and the measure
$mE$ of a measurable set $E$ on $\Omega$ is defined by

$ mE=\int\int_{E}d\theta d\varphi$ , (1)

so that $m\Omega=4\pi^{2}$.

1) C. L. Siegel: Some remarks on discontinuous groups. Ann. of Math. 46 (1945).
M. Tsuji: Theory of Fuchsian groups. Jap. Journ. Math. 20 (1952).

2) P. J. Myrberg: Ein Approximationssatz fur die Fuchsschen Gruppen. Acta Math.
57 (1931).
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Let $S$ be a transformation of $G$, then $(\theta, \varphi)$ is transformed into
$(\theta^{t}, \varphi^{\prime})$ by

$e^{i\theta^{\prime}}=S(e^{i\theta}),$ $e^{i\varphi^{\prime}}=S(e^{i\varphi})$ . (2)

We denote this transformation also by $S$ and let $(\theta_{\nu}, \varphi_{v})(\nu=0,1,2, \cdots)$

be equivalents of $(\theta, \varphi)$ .
Let $E$ be a measurable set on $\Omega$, which is invariant by $G$ . If

$mE>0$, then Hopf3) proved that $mE=4\pi^{2}$.
Let $M$ be the set of $(\theta, \varphi)$, such that $(\theta_{\nu}, \varphi_{\nu})(\nu=0,1,2, \cdots)$ are

not everywhere dense on $\Omega$, then we shall prove that $mM=0$ .
First we shall prove that $M$ is measurable. Let $r_{\nu}(\nu=1,2, --)$ be

all rational numbers in $[0,2\pi]$ and

$\Delta_{ij,kl}$ \ddagger $r_{i}\leqq\theta\leqq r_{j\prime}r_{k}\leqq\varphi\leqq r_{l}$ (3)

be an interval on $\Omega$ and $M_{ijkl}^{s}$ be the set of $(\theta, \varphi)$, such that $(\theta_{\nu}, \varphi_{\nu})$

$(\nu=0,1,2, \cdots, s)$ lie outside of $\Delta_{ij,kl}$ . Then $M_{i^{s}j,kl}$ is an open set, so
that $M_{ij,kl}=\prod_{s\Leftarrow 0}^{\infty}M_{i’ kl}^{s_{J}}$ is a $G_{8}$-set, hence $N=\sum M_{ijkl}i.j.k.l$ is measurable.
We see easily that $N=M$, hence $M$ is measurable.

Now we shall prove that $mM=0$ . Suppose that $mM>0$ , then
$mM_{ij,kl}>0$ for some $i,j,$ $k,$ $1$. Let $\tilde{M}_{ij,kl}$ be the sum of all equival-

ents of $M_{ijkl}$ , then $\tilde{M}_{ij,kl}$ is invariant by $G$ and $m\tilde{M}_{ijkl}>0$, so
that by Hopf’s theorem, $m\tilde{M}_{ijkl}=4\pi^{2}$ . But by definition, $\tilde{M}_{ij,kl}$ has
no points in $\Delta_{ijkl}$ , so that $m\tilde{M}_{ij,kl}<4\pi^{2}$, which is absurd. Hence
$mM=0$ .

Let $C(\theta_{0}, \varphi_{0})$ be any orthogonal circle to $|z|=1$ . We shall prove
that there exists a set $E$ of measure $ 2\pi$ on $|z|=1$ , which depends on
$(\theta_{0}, \varphi_{0})$, such that if $e^{i\theta}eE$, then a suitable sequence from the equival-
ents of a diameter $L(\theta)$ tends to $C(\theta_{0}, \varphi_{0})$ .

Since $mM=0$, there exists a set $e_{1}$ on the $\theta$ -axis, which is of me.
asure $ 2\pi$ , such that if $\theta\in e_{1}$ , then the line through $(\theta, 0)$ and parallel

3) E. Hopf: Ergodentheorie. Berlin (1937).
M. Tsuji: Hopf’s ergodic theorem. Jap. Journ Math. 19 (1945). In this paper, I have

proved that Hopf’s result holds, if $\varlimsup n(r)(1-r)>0$ , where $n(r)$ is the number of equival.

ents of $z=0$ , which lie in $|z|<r$ . $r_{\vec{H}_{e}^{1}nce}$ Myrberg’s theorem holds for such a Fucksian
group.
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to the $\varphi\cdot axis$ meets $M$ in a null set $e_{2}(\theta)$ .
Let $(\theta, \varphi)\overline{\in}M(\theta\neq\varphi)$, then $(\theta_{\nu}, \varphi_{\nu})(\nu=0, 1,2, )$ are everywhere

dense on $\Omega$, so that we can find $\nu_{k}$ , such that $(\theta_{\nu_{k}}, \varphi_{\nu_{k}})\rightarrow(\theta_{0}, \varphi_{0})$

$(k\rightarrow\infty)$ , or the orthogonal circles
$C(\theta_{v_{k}}, \varphi_{\nu_{k}})\rightarrow C(\theta_{0}, \varphi_{0})(k\rightarrow\infty)$ . (4)

Let $\kappa$ be a small orthogonal circle to $|z|=1$ , which contains $e^{i\theta}$ in
its inside and $z$ be the point of intersection of $\kappa$ with $C(\theta, \varphi)$ . Sim-
ilarly we define $\kappa^{\prime},$

$z^{\prime}$ for $e^{i\varphi}$ . We take $\kappa,$

$\kappa^{\prime}$ so small that they lie
outside each other. Let $z_{\nu},$

$z_{\nu}^{\prime}$ be equivalent of $z,$ $z$
‘ respectively, then

$z_{\nu_{k}},$
$z_{\acute{\nu}_{k}}\rightarrow e^{i\theta_{0}}$ or $e^{i\varphi_{0}}$ .

If $z_{\nu_{k}}\rightarrow e^{i(t_{0}}$ , (5)

then the equivalents of $\kappa$ and hence the equivalents of the outside of
$\kappa$ tend to $e^{i\varphi_{0}}$, so that the equivalents of a diameter $L(\theta)$ tend to
$C(\theta_{0}, \varphi_{0})$ .

If $z_{\nu_{k}}\rightarrow e^{i\theta 0}$, then $z_{\nu_{k}}^{\prime}\backslash \rightarrow e^{i\theta_{0}}$ . (6)

For, if otherwise, $z_{\acute{\nu}_{k}}\rightarrow e^{i\varphi_{0}}$, then the non-euclidean distance of $z_{v_{k}},$
$z_{\acute{\nu}_{k}}$

tends to $\infty$ , while it is equal to that of $z,$
$z^{\prime}$, which is finite. Hence

$z_{\acute{\nu}_{k}}\rightarrow e^{i\theta_{0}}$, so that the equivalents of a diameter $L(\varphi)$ tend to $C(\theta_{0}, \varphi_{0})$ .
Suppose that for every $\theta\in e_{1},$ (5) holds for at least one $\varphi\in[0,2_{\pi}]$

$-e_{2}(\theta)$ , then we put $E=e_{1}$ .
If this is not the case, there exists $\theta_{1}\in e_{1}$ , such that for $\theta=\theta_{1},$ $(6)$

holds for all $\varphi\in[0,2\pi]-e_{2}(\theta_{1})$, then we put $E=[0,2\pi]-e_{2}(\theta_{1})$ .
In each case, $E$ is of measure $ 2\pi$ and if $e^{i\theta}eE$ , then a suitable

sequence from the equivalents of $L(\theta)$ tends to $C(\theta_{0}, \varphi_{0})$ , $q$ . $e$ . $d$ .
Now we take a countable set of points $(\theta_{n} , \varphi_{n})(n=1,2, \cdots)$ on $\Omega$,

which is everywhere dense on $\Omega$ and let $E_{n}$ be the corresponding set
of measure $ 2\pi$ on $|_{\sim}|=1$ and put $ E=TIE_{n}\infty$ , then $E$ is of measure
$ 2\pi$ . If $e^{i\theta}\in E$, then for any $n$ , a $suitab1e^{1}\Leftarrow$ sequence from the equival-
ents of a diameter $L(\theta)$ tends to $C(\theta_{n}, \varphi_{n})$ . Since $(\theta_{n}, \varphi_{n})$ are
everywhere dense on $\Omega$, a suitable sequence from the equivalents of $L(\theta)$

tends to any orthogonal circle $C(\theta_{0}, \varphi_{0})$ . Hence our theorem is proved.
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