Journal of the Mathematical Society of Japan Vol. 4, Nos. 3~4, December, 1952.

Conformal rigidity of Riemann surfaces.

By Yûsaku KOMATU and Akira MORI*).

(Received June 24, 1952.)

1. The following theorem of T. Radó [3] is well-known:

Let G be a planar region bounded by $n \geq 2$ Jordan curves C_1 , ..., C_n , and G' be a proper subregion of G bounded by n Jordan curves C'_1, \dots, C'_n , such that C'_k is homotopic to C_k in \overline{G} $(k=1, \dots, n)$. Then, G admits no one-to-one conformal mapping onto G'.

In the present paper we shall consider, instead of a planar region of finite connectivity, a Riemann surface G (of finite or infinite connectivity and genus) bounded partly by a finite number of Jordan curves. Under the assumption that G admits a one-to-one conformal mapping onto a proper subregion of itself satisfying some topological conditions, we shall prove that G must be of some particularly simple structure (Theorem 2), a result which constitutes a generalization of Radó's theorem.

First, in §2, we prove a general selection theorem on single-valued (not necessarily one-to-one) analytic mappings of a Riemann surface into another Riemann surface. In §3, the above mentioned Theorem 2 is stated and proved, to which a remark is added in §4. Finally, in §5, we prove a rigidity theorem without any topological restrictions on the subregion.

2. THEOREM 1. Let F, F^* be two Riemann surfaces whose universal covering surfaces are of hyperbolic type¹, and $\{f_{\nu}\}_{\nu=1}^{\infty}$ be a sequence of single-valued analytic mappings of F into F^{*}. Then, either

i) there exists a subsequence $\{f_{\nu_k}\}_{k=1}^{\infty}$ which converges, uniformly in the wider sense in F (with respect to the uniform topology of F^* defined by means of Poincaré's hyperbolic metric), to a limit analytic mapping f of F into F^* ; or else

ii) for any point p on F the point sequence $\{f_{\nu}(p)\}$ on F^* tends to the ideal boundary of F^* uniformly in the wider sense in F.

^{*)} 本研究は昭和二十七年度文部省科学研究助成補助金(課題番号1207)に依るものである。

¹⁾ In point of fact, it suffices merely to assume that the universal covering surface of F^* is of hyperbolic type.

The statement ii) means: if K, K^* are compact point sets on F, F^* respectively, then $f_{\nu}(K) \cap K^* = \phi$ for sufficiently large ν . Further, in the case ii), it is easily proved that a suitable subsequence $\{f_{\nu_k}(p)\}$ tends, uniformly in the wider sense in F, to a single ideal boundary component²⁾ of F^* . It suffices for this purpose to take a subsequence $\{f_{\nu_k}\}$, such that, for a point p_0 on F, the point sequence $\{f_{\nu_k}(p_0)\}$ tends to a single ideal boundary component of F^* .

PROOF. Suppose that ii) does not hold. Then, there exist a subsequence of $\{f_{\nu}\}$ (which we denote also by $\{f_{\nu}\}$) and a point sequence $\{p_{\nu}\}$ on *F*, such that $\{p_{\nu}\}$ tends to a point *q* on *F* and $\{f_{\nu}(p_{\nu})\}$ tends to a point q^* on F^* .

We map the universal covering surfaces of F and F^* one-to-one conformally onto the discs |z| < 1 and $|z^*| < 1$ respectively, so that z=0 corresponds to q on F and $z^*=0$ to q^* on F^* , and let \mathfrak{G} , \mathfrak{G}^* be the corresponding Fuchsian or Fuchsoid groups. We denote by $\{z_{\nu}\}$ the image of $\{p_{\nu}\}$ in a neighbourhood of z=0, so that $z_{\nu} \rightarrow 0$ for $\nu \rightarrow \infty$.

In a neighbourhood of z=0 the composed mapping $z \to p \to f_{\nu}(p) = p^* \to z^*$ defines an analytic function element, which can be analytically continued along any path in |z| < 1 and defines a single-valued function $z^* = \varphi_{\nu}(z)$ analytic in |z| < 1. Obviously $|\varphi_{\nu}(z)| < 1$ in |z| < 1. While choosing a suitable branch of the mapping $p^* \to z^*$ for each ν , we can assume that $\varphi_{\nu}(z_{\nu}) \to 0$ for $\nu \to \infty$.

The functions $\varphi_{\nu}(z)$ have the following property: if $z, z' \mid z \mid$, $\mid z' \mid < 1$) are equivalent to each other with respect to \mathfrak{G} , then $\varphi_{\nu}(z)$, $\varphi_{\nu}(z')$ are equivalent with respect to \mathfrak{G}^* . f_{ν} is interpreted as the composed mapping $p \rightarrow z \rightarrow \varphi_{\nu}(z) = z^* \rightarrow p^*$.

Since $\{\varphi_{\nu_k}(z)\}$ is uniformly bounded, a suitable subsequence $\{\varphi_{\nu_k}(z)\}$ converges, uniformly in the wider sense in |z| < 1, to a limit function $\varphi(z)$. Since $z_{\nu_k} \to 0$ and $\varphi_{\nu_k}(z_{\nu_k}) \to 0$, $\varphi(z)$ can not be a constant of modulus one, so that $\varphi(z)$ is analytic and of modulus less than one in |z| < 1 (φ may be $\equiv 0$).

Let z, z' be a pair of points in |z| < 1 equivalent with respect to \mathfrak{G} . Suppose that $\varphi(z), \varphi(z')$ were not equivalent with respect to \mathfrak{G}^* . Then there would exist neighbourhoods U, U' of $\varphi(z), \varphi(z')$ respectively, such that any point of U would have no equivalent in U' with respect

²⁾ As for the precise definition of ideal boundary components (éléments-frontières), cf. S. Stoilow [4], M. Ohtsuka [2].

to \mathfrak{G}^* . This contradicts the fact that $\varphi_{\nu_k}(z)$, $\varphi_{\nu_k}(z')$ are equivalent with respect to \mathfrak{G}^* and tend to $\varphi(z)$, $\varphi(z')$ respectively for $k \to \infty$. Hence, if z, z' are equivalent with respect to \mathfrak{G} , then $\varphi(z)$, $\varphi(z')$ are equivalent with respect to \mathfrak{G}^* .

Now consider the composed mapping $f: p \rightarrow z \rightarrow \varphi(z) = z^* \rightarrow p^*$. f is a single-valued analytic mapping of F into F^* . Since $\{\varphi_{\nu_k}(z)\}$ converges to $\varphi(z)$ uniformly in the wider sense in |z| < 1, we see that $\{f_{\nu_k}\}$ converges to f uniformly in the wider sense in F with respect to the mentioned uniform topology of F^* , q. e. d.

3. Let G be a Riemann surface bounded partly by a finite number of Jordan curves C. More precisely stated: let G be a subregion of a Riemann surface, such that the relative boundary of G with respect to the surface consists of a finite number of Jordan curves C.

For simplicity, we use the following terminology in the sequel: for a subregion \varDelta of G, we shall understand by the "exterior complement" of \varDelta (with respect to the region G and the boundary part C) the connected components of the complement $G \cup C - \varDelta$ containing some points of C, and by the "exterior boundary" of \varDelta the boundary components of \varDelta belonging to the exterior complement of \varDelta .

We remark that, if \varDelta is contained in a simply connected subregion of G, the exterior boundary of \varDelta consists of a single connected component.

Our main theorem is now formulated in the following form:

THEOREM 2. Let G be a Riemann surface bounded partly by a finite number of Jordan curves C. Let G' be a proper subregion of G with the exterior boundary C', such that the exterior complement of G' is compact. Suppose that G admits a one-to-one conformal mapping $p \rightarrow \psi(p)$ onto G' in such a manner that C corresponds to C'. Then, either

a) G is simply connected; or else

b) G is conformally equivalent to a simply connected region pricked at a single point; or else

c) G is of infinite genus and has precisely one ideal boundary component³⁾ of harmonic measure zero, and there exists an exhaustion

³⁾ I.e., among the connected components of the complement of any compact point set in G, there is precisely one component with non-compact closure.

 $\{G_k\}_{k=0}^{\infty}$ of G such that $C \subset \overline{G}_0$ and $G_k - G_{k-1}$ admits a one-to-one conformal mapping onto $G_{k+1} - G_k$ $(k=1, 2, \cdots)$.

Let \varDelta be a subregion of G. For later use, we shall make here some obvious remarks on the region $\psi(\varDelta)$ and the mapping $\varDelta \rightarrow \psi(\varDelta)$:

i) if the exterior complement of Δ is compact, the exterior complement of $\psi(\Delta)$ is also compact;

ii) the exterior boundary of \varDelta corresponds by ψ to the exterior boundary of $\psi(\varDelta)$.

PROOF OF THEOREM 2. Let $\{\psi_{\nu}\}_{\nu=1}^{\infty}$ be the sequence of iterates of the mapping ψ :

$$\psi_1 = \psi, \quad \psi_{\nu+1} = \psi(\psi_{\nu})$$
 ($\nu = 1, 2, \cdots$).

Applying Theorem 1 to $\{\psi_{\nu}\}$ with G as F and with a Riemann surface containing $G \cup C$ as F^* , we see that either (A): a suitable subsequence $\{\psi_{\nu_k}\}$ converges uniformly in the wider sense in G to a mapping Ψ which either maps G one-to-one conformally onto a subregion of G or transforms G into a single point p_0 on $G \cup C$; or else (B): $\{\psi_{\nu}(p)\}$ tends to the ideal boundary of G uniformly in the wider sense in G.

Suppose that (A) is the case. We shall first show that $\Psi(G)$ reduces really to a single point.

The image $\psi_{\nu}(G)$ of G decreases monotonously for $\nu \to \infty$. We put $E = \bigcap_{1}^{\infty} \psi_{\nu}(G)$. Then $\psi(E) = \bigcap_{1}^{\infty} \psi_{\nu+1}(G) = E$, i. e. E is invariant under the mapping ψ^{4} .

Suppose now that $\Psi(G)$ were a subregion of G. Let p denote a generic point in G and U be a neighbourhood of p contained wholly in G. $\Psi(U)$ would then be a neighbourhood of the point $\Psi(p)$. Since $\psi_{\nu_k} \to \Psi$ uniformly in U, we should have $\Psi(p) \in \psi_{\nu_k}(U) \subset \psi_{\nu_k}(G)$ for sufficiently large k. Then, since $\psi_{\nu}(G)$ decreases for $\nu \to \infty$, $\Psi(p) \in \psi_{\nu}(G)$ must remain valid for $\nu = 1, 2, \cdots$, so that $\Psi(p) \in E$. Hence $\Psi(G) \subset E$. Since $\psi_{\nu_k}(p) \to \Psi(p)$, we should have $\psi_{\nu_k}(p) \in \Psi(U) \subset \Psi(G) \subset E$ for some sufficiently large k. Since the mapping ψ_{ν_k} is one-to-one and $\psi_{\nu_k}(E) = E$, it would follow that $p \in E$. Hence $G \subset E$, so that G = E. This contradicts the hypothesis that $G' = \psi(G)$ is a proper subregion of G. Hence $\Psi(G)$ must reduce to a single point p_0 on $G \cup C$.

⁴⁾ E is the maximal invariant set in G. In some cases, E contains almost all points of G, e.g.: if G is a region on the z-plane star-shaped with respect to the origin and $\psi(z) \equiv kz \ (0 < k < 1)$, any half straight-line arg z = const. contained in G belongs to E. (Also cf. J. Wolff [5].)

Next, let Δ be a subregion of G contained wholly in G, and γ be the exterior boundary of Δ . Since $\psi_{\nu_k}(p) \to p_0$ for $k \to \infty$ uniformly in Δ , $\psi_{\nu_k}(\Delta)$ is contained in a simply connected subregion of G for sufficiently large k, regardless of whether p_0 lies in G or on C. Hence $\psi_{\nu_k}(\Delta)$ must be of genus zero and the exterior boundary $\psi_{\nu_k}(\gamma)$ of $\psi_{\nu_k}(\Delta)$ must consist of a single connected component, so that Δ is of genus zero and γ consists of a single connected component. Since this is true for any such Δ , we see that G is of genus zero and Cconsists of a single connected component.

Further, if we take a Δ with a compact exterior complement, the exterior complement of $\psi_{\nu}(\Delta)$ is also compact for any ν by the remark i). Since, for sufficiently large k, the exterior complement of $\psi_{\nu_k}(\Delta)$ contains all points of G except those of a neighbourhood of the point p_{0} , we see that $G \cup C$ itself is compact.

Thus, in the case (A), G is a simply connected region. Next, suppose that (B) is the case.

Let γ_0 be a Jordan curve in G separating C from the ideal boundary of G, G_0 be the part of G bounded by C and γ_0 , and Δ_0 be the part of G separated from C by γ_0 . γ_0 is the exterior boundary of Δ_0 .

Since $\psi_{\nu}(\gamma_0)$ tends to the ideal boundary of G for $\nu \to \infty$, we have $\psi_N(\gamma_0) = \gamma_1 \subset \Delta_0$ for a sufficiently large integer N. We put $\psi_{kN}(\gamma_0) = \gamma_k$, $\psi_{kN}(\Delta_0) = \Delta_k$, for $k = 1, 2, \cdots$. Since γ_1 is the exterior boundary of Δ_1 and $\gamma_1 \subset \Delta_0$, we have $\Delta_1 \cup \gamma_1 \subset \Delta_0$, so that $\Delta_k \cup \gamma_k \subset \Delta_{k-1}$ for $k = 1, 2, \cdots$.

Let σ_1 be the exterior complement of Δ_1 with respect to the region Δ_0 and the boundary part γ_0 . σ_1 is compact and is bounded by γ_0 and γ_1 only, and $C \cup G_0 \cup \sigma_1$ is the exterior complement of Δ_1 with respect to G and C.

Since, by the mapping ψ_N , Δ_0 is mapped onto Δ_1 and Δ_1 onto Δ_2 , σ_1 must be mapped onto the exterior complement σ_2 of Δ_2 with respect to the region Δ_1 and the boundary part γ_1 . σ_2 is compact and is bounded by γ_1 and γ_2 only, and $C \cup G_0 \cup \sigma_1 \cup \sigma_2$ is the exterior complement of Δ_2 with respect to G and C.

Similarly, denoting by σ_k the exterior complement of Δ_k with respect to the region Δ_{k-1} and the boundary part γ_{k-1} , we see successively that $\sigma_k = \psi_N(\sigma_{k-1})$ and that $C \cup G_0 \cup \sigma_1 \cup \cdots \cup \sigma_k$ is compact and constitutes the exterior complement of Δ_k with respect to G and C.

We put $G_k = G_0 \cup \sigma_1 \cup \cdots \cup \sigma_k - \gamma_k$, so that $G_{k-1} \subset G_k$ and $G_k - G_{k-1} = \sigma_k - \gamma_k$. Hence we have $\psi_N(G_k - G_{k-1}) = G_{k+1} - G_k$. On the other hand, since \overline{G}_k is the exterior complement of Δ_k with respect to G and C, and since the exterior boundary γ_k of Δ_k tends to the ideal boundary of G, we see that $\bigcup_{0}^{\infty} G_k = G$.

Thus the existence of an exhaustion $\{G_k\}_0^\infty$ of G as mentioned in c) is proved. Since $G_k - G_{k-1}$ is connected and has one and the same modulus for $k=1, 2, \cdots$, it follows easily that G has precisely one ideal boundary component of harmonic measure zero.

It remains to be proved that, if especially G is of finite genus, G is conformally equivalent to a simply connected region pricked at a single point.

If G is of finite genus, there exists a Riemann surface \tilde{G} bounded by a finite number of Jordan curves \tilde{C} such that $\tilde{G} \cup \tilde{C}$ is compact and G is conformally equivalent to \tilde{G} less a single point \tilde{p}_0 . Correspondingly, ψ is transformed into a one-to-one conformal mapping $\tilde{\psi}$ of $\tilde{G} - \{\tilde{p}_0\}$ onto its proper subregion. $\tilde{\psi}$ admits analytic continuation also at \tilde{p}_0 and maps \tilde{G} onto a proper subregion \tilde{G}' of \tilde{G} . For \tilde{G} , \tilde{G}' and $\tilde{\psi}$, the conditions of Theorem 2 are satisfied, and, since $\tilde{G} \cup \tilde{C}$ is compact, the case (B) can not occur. Hence, as is already proved, \tilde{G} must be simply connected.

Thus Theorem 2 is proved.

4. The exhaustion $\{G_k\}_0^\infty$ of G constructed above in the case (B) satisfies $\psi_N(G_k - G_{k-1}) = G_{k+1} - G_k$. We can also construct an exhaustion $\{G_k^*\}_0^\infty$ of G with the property $\psi(G_k^* - G_{k-1}^*) = G_{k+1}^* - G_k^*$.

Let γ be a system of a finite number of Jordan curves in G separating C from the ideal boundary of G, and \varDelta be the part of G separated from C by γ . As is seen from the above construction, it suffices for our purpose to find a system γ such that $\psi(\gamma) \subset \varDelta$.

We remark that the relative boundary of G' with respect to $G \cup C$ consists only of the exterior boundary C'. In fact, if G' had a relative boundary component C'' other than C', the component of $G \cup C - G'$ containing C'' would not be compact, since G' has only one (ideal) boundary component other than C'. Hence C'' would contain a continuum, so that C'' would have a positive harmonic measure with respect to G'. This contradicts that the ideal boundary of G is of

harmonic measure zero. Since G' is a proper subregion of G, it follows in particular that C' is not coincident with C.

For the exhaustion $\{G_k\}_0^{\infty}$ constructed above, each $G_k - G_{k-1}$ is a connected region and is conformally equivalent to $G_1 - \overline{G_0}$. Hence it follows, by a result in [1] (Theorem 13.1), that the ideal boundary of G is of harmonic dimension one in the sense of M. Heins [1]. In other words, there exists one and only one positive harmonic function u(p) (normalized minimal) in G vanishing continuously on C, such that its conjugate harmonic function has the modulus of periodicity 2π around the ideal boundary, i. e. $\int_{\infty} (\partial u/\partial n) ds = 2\pi$ for any simple curve α in G separating C from the ideal boundary of G where n denotes the inner normal with respect to the subregion of G separated from C by α .

It is known that $\lim u(p) = +\infty$ for p tending to the ideal boundary, and that, if v(p) is a positive harmonic function in G continuous on $G \cup C$ whose conjugate harmonic function has the modulus of periodicity 2π around the ideal boundary, v(p) - u(p) is bounded, and hence remains non-negative on $G \cup C$ (cf. [1]).

We put $u'(p) = u(\psi^{-1}(p))$ in $G' = \psi(G)$. Since u'(p) is the normalized minimal positive harmonic function of G' vanishing continuously on C', we have $u(p) - u'(p) \ge 0$ on $G' \cup C'$. Since, at the points of C'lying in G, u(p) > 0 and u'(p) = 0, we have u(p) > u'(p) in G'.

Let δ be a positive number, Δ be the part of G where $u(p) > \delta$, and γ be the niveau curve $u(p) = \delta$. Since $\lim u(p) = +\infty$ at the ideal boundary, γ is compact and constitutes the exterior boundary of Δ . On $\psi(\gamma)$ we have $u(p) > u'(p) = \delta$. Hence $\psi(\gamma) \subset \Delta$, as was desired.

5. Finally we remark that, without any topological restrictions on the subregion, the following theorem holds good.

THEOREM 3. A Riemann surface G of finite positive genus admits no one-to-one conformal mapping ψ onto any proper subregion of itself.

PROOF. If G is closed, the theorem is trivial. If G is open, let it be represented as a proper subregion of a closed Riemann surface \tilde{G} . Suppose that such a mapping ψ did exist, and denote by $\{\psi_{\nu}\}$ the sequence of iterates of ψ .

Let q be a point of $\widetilde{G}-G$. Since \widetilde{G} is of positive genus, the

universal covering surface of $\tilde{G}-\{q\}$ is of hyperbolic type. Applying Theorem 1 to $\{\psi_{\nu}\}$ with G as F and with $\tilde{G}-\{q\}$ as F^* , we see that either a suitable subsequence $\{\psi_{\nu_k}\}$ would converge to an analytic mapping Ψ of G into $\tilde{G}-\{q\}$, or else $\{\psi_{\nu}(p)\}$ would tend to the point q, both uniformly in the wider sense in G. In the former case, Ψ must transform G into a single point on $\tilde{G}-\{q\}$, as was proved in the case (A) of the proof of Theorem 2.

Hence, in any case, a suitable subsequence $\{\psi_{\nu_k}(p)\}$ would converge, uniformly in the wider sense in G, to a single point p_0 on \widetilde{G} . Let \varDelta be a subregion of G of positive genus contained wholly in G. Then, for sufficiently large k, $\psi_{\nu_k}(\varDelta)$ would be contained in a neighbourhood of p_0 , so that it would be of genus zero, which is a contradiction.

Department of Mathematics, Tokyo Institute of Technology; Mathematical Institute, Tokyo University.

References.

- [1] Heins, M.: Riemann surfaces of infinite genus, Ann. of Math. Vol. 55, No. 2 (1952), pp. 296-317.
- [2] Ohtsuka, M.: Dirichlet problems on Riemann surfaces and conformal mappings, Nagoya Math. Journ. Vol. 3 (1951), pp. 91-137.
- [3] Radó, T.: Über die konformen Abbildungen schlichter Gebiete, Acta Szeged 2 (1926), pp. 47-60.
- [4] Stoïlow, S.: Leçons sur les principes topologiques de la théorie des fonctions analytiques, Paris 1938.
- [5] Wolff, J.: Sur les domaines invariants dans la représentation conforme, C. R. Acad. Sci. Paris t. 204 (1937), p. 1101.