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Conformal rigidity of Riemann surfaces.
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1. The following theorem of T. Rad6 [3] is well-known:
Let $G$ be a planar region bounded by $n(\geqq 2)$ Jordan curves $C_{1}$ ,

$C_{n}$ , and $G^{\prime}$ be a proper subregion of $Gboun\underline{d}ed$ by $n$ Jordan curves
$C_{1}^{\prime},$

$\cdots,$
$C_{n}^{\prime}$ , such that $C_{k}^{\prime}$ is homotopic to $C_{k}$ in $G(k=1, \cdots, n)$ . Then,

$G$ admits no one-to-one conformal mapping onto $G^{\prime}$ .
In the present paper we shall consider, instead of a planar region

of finite connectivity, a Riemann surface $G$ (of finite or infinite con-
nectivity and genus) bounded partly by a finite number of Jordan
curves. Under the assumption that $G$ admits a one-to-one conformal
mapping onto a proper subregion of itself satisfying some topological
conditions, we shall prove that $G$ must be of some particularly simple
structure (Theorem 2), a result which constitutes a generalization of
Rad\’o’s theorem.

First, in \S 2, we prove a general selection theorem on single.valued
(not necessarily one.to-one) analytic mappings of a Riemann surface
into another Riemann surface. In \S 3, the above mentioned Theorem
2 is stated and proved, to which a remark is added in 84. Finally, in
$\xi_{l}5$ , we prove a rigidity theorem without any topological restrictions
on the subregion.

2. THEOREM 1. Let $F,$ $F^{*}$ be two Riemann surfaces whose
universal covering surfaces are of hyperbolic $type^{1)}$ , and $\{f_{\nu}\}_{\nu=1}^{\infty}$ be a
sequence of single-valued analytic mappings of $F$ into $F^{*}$ . Then, either

i) there exists a subsequence $\{f_{\nu_{k}}\}_{k=1}^{\infty}$ which converges, uniformly
in the wider sense in $F$ (with respect to the uniform topology of $F^{*}$

defined by means of Poincar\’e’s hyperbolic metric), to a limit analytic
mapping $f$ of $F$ into $F^{*}$; or else

ii) for any point $p$ on $F$ the point sequence $\{f_{\nu}(p)\}$ on $F^{*}$ tends
to the ideal boundary of $F^{*}$ uniformly in the wider sense in $F$.

$*)$ $*\varpi F\ovalbox{\tt\small REJECT} Offlffl=++\yen\not\in Xffl\ovalbox{\tt\small REJECT} k$} $Et\pi ae\ddagger!0\mathbb{R}\overline{t}\mathfrak{F}\mathfrak{M}\&(_{|1}^{=}=\mathbb{R}\Phi\#\Leftrightarrow 1207)$ rc ffi 6 $\S_{)}q2^{\leftarrow\zeta\cdot ae)}6_{o}$

1) In point of fact, it $su\Phi ces$ merely to assume that the universal covering surface of
$F^{*}$ is of hyperbolic type.
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The statement ii) means: if $K,$ $K^{*}$ are compact point sets on $F$,
$F^{*}$ respectively, then $ f_{v}(K)\cap K^{*}=\phi$ for sufficiently large $\nu$ . Further,
in the case ii), it is easily proved that a suitable subsequence $\{f_{\nu}(p)\}$

tends, uniformly in the wider sense in $F$, to a single ideal boundary
component2) of $F^{*}$ . It suffices for this purpose to take a subsequence
$\{f_{\nu_{k}}\}$ , such that, for a point $p_{0}$ on $F$, the point sequence $\{f_{v}(p_{0})\}$ tends

$k$

to a single ideal boundary component of $F^{*}$ .
PROOF. Suppose that ii) does not hold. Then, there exist a sub-

sequence of $\{f_{\nu}\}$ (which we denote also by $\{f_{\nu}\}$ ) and a point sequence
$\{p_{\nu}\}$ on $F$, such that $\{p_{\nu}\}$ tends to a point $q$ on $F$ and $\{f_{\nu}(p_{v})\}$ tends
to a point $q^{*}$ on $F^{*}$ .

We map the universal covering surfaces of $F$ and $F^{*}$ one-to.one
conformally onto the discs $|z|<1$ and $|z^{*}|<1$ respectively, so that
$z=0$ corresponds to $q$ on $F$ and $z^{*}=0$ to $q^{*}$ on $F^{*}$ , and let $\mathfrak{G},$

$\mathfrak{G}^{*}$ be
the corresponding Fuchsian or Fuchsoid groups. We denote by $\{z_{\nu}\}$

the image of $\{p_{\nu}\}$ in a neighbourhood of $z=0$ , so that $z_{\nu}\rightarrow 0$ for $\nu\rightarrow\infty$ .
In a neighbourhood of $z=0$ the composed mapping $z\rightarrow p\rightarrow f_{\nu}(p)$

$=p^{*}\rightarrow z^{*}$ defines an analytic function element, which can be analytically
continued along any path in $|z|<1$ and defines a single-valued function
$z^{*}=\varphi_{\nu}(z)$ analytic in $|z|<1$ . Obviously $|\varphi_{\nu}(z)|<1$ in $|z|<1$ . While
choosing a suitable branch of the mapping $p^{*}\rightarrow z^{*}$ for each $\nu$ , we can
assume that $\varphi_{\nu}(z_{\nu})\rightarrow 0$ for $\nu\rightarrow\infty$ .

The functions $\varphi_{v}(z)$ have the following property: if $z,$ $z^{\prime}(|z|$ ,
$|z^{\prime}|<1)$ are equivalent to each other with respect to $\mathfrak{G}$ , then $\varphi_{\nu}(z)$ ,
$\varphi_{\nu}(z^{\prime})$ are equivalent with respect to $\mathfrak{G}^{*}$ . $f_{\nu}$ is interpreted as the com-
posed mapping $p\rightarrow z\rightarrow\varphi_{\nu}(z)=z^{*}\rightarrow p*$ .

Since $\{\varphi_{\nu}(z)\}$ is uniformly bounded, a suitable subsequence $\{\varphi_{\nu_{k}}(z)\}$

converges, uniformly in the wider sense in $|z|<1$ , to a limit function
$\varphi(z)$ . Since $z_{\nu_{k}}\rightarrow 0$ and $\varphi_{v_{k}}(z_{\nu_{k}})\rightarrow 0,$

$\varphi(z)$ can not be a constant of modulus
one, so that $\varphi(z)$ is analytic and of modulus less than one in $|z|<1$
( $\varphi$ may be $\equiv 0$).

Let $z_{J}z^{t}$ be a pair of points in $|z||<1$ equivalent with respect to
$\mathfrak{G}$ . Suppose that $\varphi(z),$ $\varphi(z^{\prime})$ were not equivalent with respect to $\mathfrak{G}^{*}$ .
Then there would exist neighbourhoods $U,$ $U^{\prime}$ of $\varphi(z),$ $\varphi(z^{\prime})$ respectively,
such that any point of $U$ would have no equivalent in $U$‘ with respect

2) As for the precise definition of ideal boundary components (\’el\’ements.fronti\‘eres),
cf. S. Stoilow [4], M. Ohtsuka [2].
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to $\mathfrak{G}^{*}$ . This contradicts the fact that $\varphi_{\nu_{k}}(z),$ $\varphi_{\nu_{k}}(z^{\prime})$ are equivalent

with respect to $\mathfrak{G}^{*}$ and tend to $\varphi(z),$ $\varphi(z^{\prime})$ respectively for $ k\rightarrow\infty$ .
Hence, if $z,$

$z^{\prime}$ are equivalent with respect to $\mathfrak{G}$, then $\varphi(z),$ $\varphi(z^{\prime})$ are
equivalent with respect to $\mathfrak{G}^{*}$ .

Now consider the composed mapping $f;p\rightarrow z\rightarrow\varphi(z)=z^{*}\rightarrow p*$ . $f$ is
a single-valued analytic mapping of $F$ into $F^{*}$ . Since $\{\varphi_{\nu_{k}}(z)\}$ con-
verges to $\varphi(z)$ uniformly in the wider sense in $|z|<1$ , we see that
$\{f_{v_{k}}\}$ converges to $f$ uniformly in the wider sense in $F$ with respect
to the mentioned uniform topology of $F^{*},$ $q$ . $e$ . $d$ .

3. Let $G$ be a Riemann surface bounded partly by a finite number
of Jordan curves $C$. More precisely stated: let $G$ be a subregion of a
Riemann surface, such that the relative boundary of $G$ with respect
to the surface consists of a finite number of Jordan curves $C$.

For simplicity, we use the following terminology in the sequel:
for a subregion $\Delta$ of $G$, we shall understand by the “ exterior comple-
ment ” of $\Delta$ (with respect to the region $G$ and the boundary part $C$)

the connected components of the complement $ G\cup C-\Delta$ containing some
points of $C$, and by the “ exterior boundary “ of $\Delta$ the boundary com-
ponents of $\Delta$ belonging to the exterior complement of $\Delta$ .

We remark that, if $\Delta$ is contained in a simply connected subregion
of $G$, the exterior boundary of $\Delta$ consists of a single connected com-
ponent.

Our main theorem is now formulated in the following form:
THEOREM 2. Let $G$ be a Riemann surface bounded partly by a

finite number of Jordan curves C. Let $G^{\prime}$ be a proper subregion of $G$

with the exterior boundary $C^{\prime}$ , such that the exterior complement of $G^{\prime}$

is compact. Suppose that $G$ admits $a$ one $\cdot$ to-one conformal mapping
$p\rightarrow\psi(p)$ onto $G^{\prime}$ in such a manner that $C$ corresponds to $C^{\prime}$ . Then,
either

a) $G$ is simply connected; or else
b) $G$ is conformally equivalent to a simply connected region

pricked at a single point; or else
c) $G$ is of infinite genus and has precisely one ideal boundary

component3) of harmonic measure zero, and there exists an exhaustion

3) I. $e.$ , among the connected components of the complement of any compact point set
in $G$ , there is precisely one component with non.compact clcsure.
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$\{G_{k}\}_{k=0}^{\infty}$ of $G$ such that $C\subset\overline{G}_{0}$ and $G_{k}-G_{k-1}$ admits $a$ one-to-one con-
formal mapping onto $G_{k\cdot 1}-G_{k}(k=1,2, \cdots)$ .

Let $\Delta$ be a subregion of $G$ . For later use, we shall make here
some obvious remarks on the region $\psi(\Delta)$ and the mapping $\Delta\rightarrow\psi(\Delta)$ :

i) if the exterior complement of $\Delta$ is compact, the exterior com-
plement of $\psi(\Delta)$ is also compact;

ii) the exterior boundary of $\Delta$ corresponds by $\psi$ to the exterior
boundary of $\psi(\Delta)$ .

PROOF OF THEOREM 2. Let $\{\psi_{\nu}\}_{\nu\Leftarrow 1}^{\infty}$ be the sequence of iterates
of the mapping $\psi$ :

$\psi_{1}=\psi$, $\psi_{v+1}=\psi(\psi_{v})$ $(\nu=1,2, \cdots)$ .
Applying Theorem 1 to $\{\psi_{v}\}$ with $G$ as $F$ and with a Riemann surface
containing $GUC$ as $F^{*}$, we see that either (A): a suitable subsequence
$\{\psi_{\nu_{k}}\}$ converges uniformly in the wider sense in $G$ to a mapping $\Psi$

which either maps $G$ one-to.one conformally onto a subregion of $G$ or
transforms $G$ into a single point $p_{0}$ on $G\cup C$ ; or else (B): $\{\psi_{\nu}(p)\}$ tends
to the ideal boundary of $G$ uniformly in the wider sense in $G$.

Suppose that (A) is the case. We shall first show that $\Psi(G)$ re-
duces really to a single point.

The image $\psi_{v}(G)$ of $G$ decreases monotonously for $\nu\rightarrow\infty$ . We
put $E=\cap 1\infty\psi_{\nu}(G)$ . Then $\psi(E)=\bigcap_{1}^{\infty}\psi_{\nu+1}(G)=E,$ $i$ . $e$ . $E$ is invariant under
the mapping $\psi^{4)}$ .

Suppose now that $\Psi(G)$ were a subregion of $G$ . Let $p$ denote a
generic point in $G$ and $U$ be a neighbourhood of $p$ contained wholly
in G. $\Psi(U)$ would then be a neighbourhood of the point $\Psi(p)$. Since
$\psi_{\nu_{k}}\rightarrow\Psi$ uniformly in $U$, we should have $\Psi(p)\in\psi_{v_{k}}(U)\subset\psi_{\nu_{k}}(G)$ for
sufficiently large $k$ . Then, since $\psi_{\nu}(G)$ decreases for $\nu\rightarrow\infty,$ $\Psi(p)\in\psi_{\nu}(G)$

must remain valid for $\nu=1,2,$ -, so that $\Psi(p)\in E$ . Hence $\Psi(G)\subset E$ .
Since $\psi_{v_{k}}(p)\rightarrow\Psi(p)$, we should have $\psi_{\nu_{k}}(p)\in\Psi(U)\subset\Psi(G)\subset E$ for some
sufficiently large $k$ . Since the mapping $\psi_{\nu_{k}}$ is one.to.one and $\psi_{\nu_{k}}(E)=E$,
it would follow that $p\in E$ . Hence $G\subset E$, so that $G=E$ . This con.
tradicts the hypothesis that $G^{\prime}=\psi(G)$ is a proper subregion of $G$.
Hence $\Psi(G)$ must reduce to a single point $p_{0}$ on G U $C$.

4) $E$ is the maximal invariant set in $G$. In some cases, $E$ contains almost all points
of $G,$ $e.g$. : if $G$ is a region on the z-plane star.shaped with respect to the origin and
$\psi(z)\equiv kz(0<k<1)$ , any half straight-line $\arg z=const$ . contained in $G$ belongs to $E$.
(Also cf. J. Wolff [5].)



306 Y. KOMATU and A. MORI

Next, let $\Delta$ be a subregion of $G$ contained wholly in $G$, and $\gamma$ be
the exterior boundary of $\Delta$ . Since $\psi_{\nu_{k}}(p)\rightarrow p_{0}$ for $ k\rightarrow\infty$ uniformly
in $\Delta,$ $\psi_{\nu_{k}}(\Delta)$ is contained in a simply connected subregion of $G$ for
sufficiently large $k$, regardless of whether $p_{0}$ lies in $G$ or on $C$. Hence
$\psi_{\nu_{k}}(\Delta)$ must be of genus zero and the exterior boundary $\psi_{\nu_{k}}(\gamma)$ of
$\psi_{\nu_{k}}(\Delta)$ must consist of a single connected component, so that $\Delta$ is of
genus zero and $\gamma$ consists of a single connected component. Since
this is true for any such $\Delta$ , we see that $G$ is of genus zero and $C$

consists of a single connected component.

Further, if we take a $\Delta$ with a compact exterior complement, the
exterior complement of $\psi_{\nu}(\Delta)$ is also compact for any $\nu$ by the remark
i). Since, for sufficiently large $k$, the exterior complement of $\psi_{\nu_{k}}(\Delta)$

contains all points of $G$ except those cf a neighbourhood of the point
$p_{0}$, we see that $G\cup C$ itself is compact.

Thus, in the case (A), $G$ is a simply connected region.
Next, suppose that (B) is the case.
Let $\gamma_{0}$ be a Jordan curve in $G$ separating $C$ from the ideal boundary

of $G,$ $G_{0}$ be the part of $G$ bounded by $C$ and $\gamma_{0}$, and $\Delta_{0}$ be the part
of $G$ separated from $C$ by $\gamma_{0}$. $\gamma_{0}$ is the cxterior boundary of $\Delta_{0}$ .

Since $\psi_{\nu}(\gamma_{0})$ tends to the ideal boundary of $G$ for $\nu\rightarrow\infty$ , we have
$\psi_{N}(\gamma_{0})=\gamma_{1}\subset\Delta_{0}$ for a sufficiently large integer $N$. We put $\psi_{kN}(\gamma_{0})=\gamma_{k}$,
$\psi_{kN}(\Delta_{0})=\Delta_{k}$, for $k=1,2,$ $\cdots$ Since $\gamma_{1}$ is the exterior boundary of $\Delta_{1}$

and $\gamma_{1}\subset\Delta_{0}$, we have $\Delta_{1}\cup\gamma_{1}c\Delta_{0}$, so that $\Delta_{k}\cup\gamma_{k}\subset\Delta_{k-1}$ for $k=1,2,$ $\cdots$ .
Let $\sigma_{1}$ be the exterior complement of $\Delta_{1}$ with respect to the region

$\Delta_{0}$ and the boundary part $\gamma_{0}$ . $\sigma_{1}$ is compact and is bounded by $\gamma_{0}$ and
$\gamma_{1}$ only, and $C\cup G_{0}\bigcup_{\sigma_{1}}$ is the exterior complement of $\Delta_{1}$ with respect
to $G$ and $C$.

Since, by the mapping $\psi_{N},$ $\Delta_{0}$ is mapped onto $\Delta_{1}$ and $\Delta_{1}$ onto $\Delta_{2}$ ,
$\sigma_{1}$ must be mapped onto the exterior complement $\sigma_{2}$ of $\Delta_{2}$ with respect
to the region $\Delta_{1}$ and the boundary part $\gamma_{1}$ . $\sigma_{2}$ is compact and is
bounded by $\gamma_{1}$ and $\gamma_{2}$ only, and $C\cup G_{0}\cup\sigma_{1}\bigcup_{\sigma_{2}}$ is the exterior comple-
ment of $\Delta_{2}$ with respect to $G$ and $C$.

Similarly, denoting by $\sigma_{k}$ the exterior complement of $\Delta_{k}$ with re-
spect to the region $\Delta_{k-1}$ and the boundary part $\gamma_{k-1}$ , we see successively
that $\sigma_{k}=\psi_{N}(\sigma_{k-1})$ and that $C\cup G_{0}\cup\sigma_{1}\cup\cdots\cup\sigma_{k}$ is compact and constitutes
the exterior complement of $\Delta_{k}$ with respect to $G$ and $C$.
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We put $G_{k}=G_{0}\cup\sigma_{1^{\cup}}\cdots\cup\sigma_{k}-\gamma_{k}$ , so that $G_{k-1}\subset C_{J^{\prime}}k$ and $G_{k}-G_{k-1}$

$=\sigma_{k}-’\gamma_{k}$ . Hence we have $\psi_{N}(G_{k}-G_{k-1})=G_{k+1}-G_{k}$ . On the other hand,
since $\overline{G}_{k}$ is the exterior complement of $\Delta_{k}$ with respect to $G$ and $C$,

and since the exterior boundary $\gamma_{k}$ of $\Delta_{k}$ tends to the ideal boundary
of $G$, we see that $\cup 0k\infty c=G$ .

Thus the existence of an exhaustion $\{G_{k}\}_{0}^{\infty}$ of $G$ as mentioned in
c) is proved. Since $G_{k}-G_{k-1}^{-}$ is connected and has one and the same
modulus for $k=1,2,$ $\cdots$ , it follows easily that $G$ has precisely one ideal
boundary component of harmonic measure zero.

It remains to be proved that, if especially $G$ is of finite genus, $G$

is conformally equivalent to a simply connected region pricked at a
single point.

If $G$ is of finite genus, there exists a Riemann surface $\tilde{G}$ bounded
by a finite number of Jordan curves $\tilde{C}$ such that $\tilde{G}\cup\tilde{C}$ is compact and
$G$ is conformally equivalent to $\tilde{G}$ less a single point $\tilde{p}_{0}$ . Correspon-
dingly, $\psi$ is transformed into a one.to.one conformal mapping $\tilde{\psi}$ of
$\tilde{G}-\{\tilde{p}_{0}\}$ onto its proper subregion. $\tilde{\psi}$ admits analytic continuation
also at $\tilde{p}_{0}$ and maps $\tilde{G}$ onto a proper subregion $\tilde{G}^{\prime}$ of $\tilde{G}$. For $\tilde{G},\tilde{G}^{\prime}$

and $\tilde{\psi}$, the conditions of Theorem 2 are satisfied, and, since $\tilde{G}\cup\tilde{C}$ is
compact, the case (B) can not occur. Hence, as is already proved, $\tilde{G}$

must be simply connected.
Thus Theorem 2 is proved.
4. The exhaustion $\{G_{k}\}_{0}^{\infty}$ of $G$ constructed above in the case (B)

satisfies $\psi_{N}(G_{k}-G_{k-1})=G_{k+1}-G_{k}$ . We can also construct an exhaustion
$\{G_{k}^{\star}\}_{0}^{\infty}$ of $G$ with the property $\psi(G_{k}^{\star}-G_{k-1}^{*})=G_{k+1}^{*}-G_{k}^{*}$ .

Let $\gamma$ be a system of a finite number of Jordan curves in $G$ sepa-
rating $C$ from the ideal boundary of $G$ , and $\Delta$ be the part of $G$ separated
from $C$ by $\gamma$. As is seen from the above construction, it suffices for
our purpose to find a system $\gamma$ such that $\psi(\gamma)\subset\Delta$ .

We remark that the reiative boundary of $G^{\prime}$ with respect to $G\cup C$

consists only of the exterior boundary $C^{\prime}$ . In fact, if $G$‘ had a relative
boundary component $C^{\prime\prime}$ other than $C^{\prime}$ , the component of G U $C-G^{\prime}$

containing $C^{\prime}$ would not be compact, since $G^{\prime}$ has only one (ideal)
boundary component other than $C^{\prime}$ . Hence $C^{\prime\prime}$ would contain a con-
tinuum, so that $C^{r/}$ would have a positive harmonic measure with re-
spect to $c/$ . This contradicts that the ideal boundary of $G$ is of
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harmonic measure zero. Since $G^{\prime}$ is a proper subregion of $G$, it follows
in particular that $C^{\prime}$ is not coincident with $C$.

For the exhaustion $\{G_{k}\}_{0}^{\infty}$ constructed above, each $G_{k}-G_{k-1}$ is a
connected region and is conformally equivalent to $G_{1}-\overline{G}_{0}$ . Hence it
follows, by a result in [1] (Theorem 13.1), that the ideal boundary of
$G$ is of harmonic dimension one in the sense of M. Heins [1]. In
other words, there exists one and only one positive harmonic function
$u(p)$ (normalized minimal) in $G$ vanishing continuously on $C$, such that
its conjugate harmonic function has the modulus of periodicity $ 2\pi$

around the ideal boundary, $i$ . $e$ . $\int_{\alpha}(\partial u/\partial n)ds=2\pi$ for any simple curve
$\alpha$ in $G$ separating $C$ from the ideal boundary of $G$ where $n$ denotes
the inner normal with respect to the subregion of $G$ separated from
$C$ by $\alpha$ .

It is known that $\lim u(p)=+\infty$ for $p$ tending to the ideal boundary,
and that, if $v(p)$ is a positive harmonic function in $G$ continuous on
$G\cup C$ whose conjugate harmonic function has the modulus of periodicity
$ 2\pi$ around the ideal boundary, $v(p)-u(p)$ is bounded, and hence remains
non-negative on $G\cup C$ (cf. [1]).

We put $u^{\prime}(p)=u(\psi^{-1}(p))$ in $G^{\prime}=\psi(G)$ . Since $u^{\prime}(p)$ is the norma-
lized minimal positive harmonic function of $G^{\prime}$ vanishing continuously
on $C^{\prime}$, we have $u(p)-u^{\prime}(p)\geqq 0$ on $G^{\prime}\cup C^{\prime}$ . Since, at the points of $C^{\prime}$

lying in $G,$ $u(p)>0$ and $u^{\prime}(p)=0$, we have $u(p)>u^{\prime}(p)$ in $G^{\prime}$ .
Let $\delta$ be a positive number, $\Delta$ be the part of $G$ where $ u(p)>\delta$ ,

and $\gamma$ be the niveau curve $ u(p)=\delta$ . Since $\lim u(p)=+\infty$ at the ideal
boundary, $\gamma$ is compact and constitutes the exterior boundary of $\Delta$ .
On $\psi(\gamma)$ we have $ u(p)>u^{\prime}(p)=\delta$ . Hence $\psi(\gamma)\subset\Delta$ , as was desired.

5. Finally we remark that, without any topological restrictions
on the subregion, the following theorem holds good.

THEOREM 3. A Riemann surface $G$ offinite positive genus admits
no one-to.one conformal mapping $\psi$ onto any proper subregion of
itself.

PROOF. If $G$ is closed, the theorem is trivial. If $G$ is open, let
it be represented as a proper subregion of a closed Riemann surface
$\tilde{G}$ . Suppose that such a mapping $\psi$ did exist, and denote by $\{\psi_{\nu}\}$ the
sequence of iterates of $\psi$ .

Let $q$ be a point of $\tilde{G}-G$ . Since $\tilde{G}$ is of positive genus, the
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universal covering surface of $\tilde{G}-\{q\}$ is of hyperbolic type. Applying
Theorem 1 to $\{\psi_{\nu}\}$ with $G$ as $F$ and with $\tilde{G}-\{q\}$ as $F^{*}$, we see that
either a suitable subsequence $\{\psi_{v_{k}}\}$ would converge to an analytic

mappi.ng $\Psi$ of $G$ into $\tilde{G}-\{q\}$ , or else $\{\psi_{\nu}(p)\}$ would tend to the point
$q$, both uniformly in the wider sense in $G$ . In the former case. $\Psi$

must transform $G$ into a single point on $\tilde{G}-\{q\}$ , as was proved in the
case (A) of the proof of Theorem 2.

Hence, in any case, a suitable subsequence $\{\psi_{\nu_{k}}(p)\}$ would con-
verge, uniformly in the wider sense in $G$, to a single point $p_{0}$ on $\tilde{G}$ . Let
$\Delta$ be a subregion of $G$ of positive genus contained wholly in $G$. Then,
for sufficiently large $k,$ $\psi_{\nu_{k}}(\Delta)$ would be contained in a neighbourhood
of $p_{0}$ , so that it would be of genus zero, which is a contradiction.

Department of Mathematics, Tokyo Institute of Technology;
Mathematical Institute, Tokyo University.
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