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Introduction.

Let $p^{jj}$ be the Pl\"ucker coordinates of a line $p$ in projective three
dimensional space $R_{3}$ . If $p(p^{1)1}, p^{\alpha z}, p^{\mathfrak{B}}, p^{12}, p^{13}, p^{\mathfrak{B}})$ is a function of
two parameters $u^{1}$ and $u^{2}$, the line $p$ describes a rectilinear congruence
$K$ when $u^{1}$ and $u^{2}$ vary. Now put1)

$p^{i}=\frac{\partial p}{\partial u^{i}}(i=1,2),$ $-((p_{i}p_{j}))=H_{ij}(i,j=1,2)$ .

If the determinant determined by the elements $H_{ij}(i, j=1,2)$ does not
vanish identically, the congruence $K$ has two focal surfaces $S_{0}$ and $S_{1}$ .
We restrict ourselves in this case.

Let us consider the image of a line $p$ in the projective five
dimensional space $R_{5}$ , the plane $S_{2}$ determined by the three points $p$ ,
$p_{1}$ and $p_{2}$ is the tangential plane of the image $V$ of $K$ at $p$, and the
plane $S_{4}$ determined by $S_{2}$ and its conjugate $S_{2}^{\prime}$ with respect to the
quadric of Pl\"ucker $Q_{4}$ is the polar plane of $Q_{4}$ at $p$ , that is, the
tangential plane of $Q_{4}$ at $p$ . Let $p_{5}$ be a point which does not lie in
this tangential hyperplane $S_{4}$ , the plane $pp_{1}p_{2}p_{\overline{b}}$ has no common point
with the conjugate $S_{1}^{\prime}$ with respect to $Q_{4},$ $S_{1}^{\prime}$ intersects with $Q_{4}$ at two
different points $p_{3}$ and $p_{4}$ . Then $p_{3}$ and $p_{4}$ lie on the tangential
hyperplane $pp_{1}p_{2}p_{3}p_{4}$ , and the lines $pp_{k},$ $p_{k}p_{5}$ $(k=3, 4)$ are not con-
jugate to each other. Moreover, to determine uniquely the point $p_{5}$ ,
we select $p_{5}$ as the intersection of $Q_{4}$ and the line joining the point $p$

and $\frac{1}{2}H^{\sigma\tau}\frac{\overline{\partial}^{2}p}{\partial u^{\sigma}\partial u^{\tau}}$ ( $\overline{\overline{d}}$ denotes absolute differentiation). Then we

have the fundamental equations for the given congruence $K$ as fol-
lows :
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(I) $\left\{\begin{array}{lll} & & dp=du^{\sigma}p_{\sigma},\\ & & \overline{d}p_{i}=E_{i\sigma}du^{\sigma}p+F_{i\sigma}du^{\sigma}p_{3}+G_{i\sigma}du^{\sigma}p_{4}+H_{i\sigma}du^{\sigma}p_{5}\\ & & dp_{3}=M_{\sigma}du^{\sigma}p+G_{\sigma}^{\rho}du^{\sigma}p_{\rho}+L_{\sigma}du^{\sigma}p_{3},\\ & & dp_{4}=N_{\sigma}du^{\sigma}p+F_{\sigma}^{\rho}du^{\sigma}p_{\rho}-L_{\sigma}du^{\sigma}p_{4},\\ & & dp_{5}=E_{\sigma}^{\rho}du^{\sigma}p_{\rho}-N_{\sigma}du^{\sigma}p_{3}-M_{\sigma}du^{\sigma}p_{4}.\end{array}\right.$

$(i=1,2)$ ,

The frame of tetrahedron thus constructed by $p,$ $p_{1},$ $p_{2},$ $p_{3},$ $p_{4}$ and $p_{5}$

in $R_{5}$ is called the fundamental coordinate tetrahedron $R_{0}$ .
Now let the curves $u^{1}=const$ . and $u^{2}=const$ . on the image $V$ in

$R_{5}$ represent the developable surfaces of $K$ in $R_{3}$ , then the equations
(I) become3)

$-(M_{1}du+M_{2}dv)p_{4}$ .
Such a specialization of the frame of coordinate tetrahedron $R_{0}$ to $R_{a}$

enables us to obtain one of the suitable methods for the interpretation
of the relation between $R_{5}$ and $R_{3}$ , consequently the properties of a
rectilinear congruence $K$ in $R_{3}$ is easily considered and calculated as
the special variety $in^{2)}R_{5}$ .

The conditions of integrability are given by

(II) $\{E^{11v}-E^{12u}E_{22u}-E_{12v}I_{E_{12}^{12}\theta_{v}^{u}+F_{2^{1}}G^{22}m+F^{2^{1}}Gn^{1_{2}}=0}^{E\theta+F_{1^{2}}G_{11}m_{2^{1}}+F_{1^{2}}G_{2^{1}2^{1}}n=0}’$

,

(III) $E_{12}=\frac{1}{2}(F_{1}^{2}G_{22}+F_{\dot{4}}^{1}G_{11}+\theta_{uv})$ ,

(IV) $n_{1}=-(\log F_{22})_{u}-L_{1}$, $n_{2}=-(\log F_{11})_{v}-L_{2}$ ,

(V) $m_{1}=-(\log G_{22})_{u}+L_{1}$, $m_{2}=-(\log G_{11})_{v}+L_{2}$ ,

(VI) $\frac{a_{11}}{F_{11}}=\frac{a_{22}}{F_{22}}$ ,
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(VII) $\frac{b_{11}}{G_{11}}=\frac{b_{2Z}}{G_{2}}$ ,

(VIII) $L_{1v}-L_{2u}=w$ $(w=H_{12}W=H_{12}(F_{1}^{2}G_{l}^{1}-F_{2}^{1}G_{1}^{2}))$ ,

with respect to $R_{a}$ , where

(IX) $\{a_{11}=Eb_{11}=E_{11}^{11}I_{m_{1u}^{1u}-m_{1}^{1}\theta_{u}-(m^{2_{1}}’)^{2},b_{22}=E_{i2}+m_{2v}-m_{2}^{v}\theta_{v}-(m_{2})^{2}}^{n-n\theta_{u}-(n_{1})a_{2}=E_{Zi}+n_{2v}-n_{2}\theta-(n_{2})^{2}}$

.
The congruence $K$ in question is also expressed by the form2)

(X)
$|\partial_{\partial}F_{\sigma\tau}u^{\rho}-$

$|=\frac{1}{6}\partial_{\partial}G_{u^{\rho}}--G_{\sigma\tau}L_{\rho}-H_{\sigma\tau}M_{\rho})z^{\sigma}z^{\tau}z^{\rho}+\cdots\cdots$ ,

with respect to $R_{0}$ which is also written in the form

(X) $\left\{\begin{array}{l}z^{3}=\frac{1}{2}[F_{1l}f_{1}(z^{1})^{2}+F_{\ae}(z^{2})^{2}]\\+\frac{1}{6}[2F_{11}f_{1}(z_{1})^{3}-3F_{11}n_{2}(z^{1})^{2}z^{2}-3F_{22}n_{1}z^{1}(z^{2})^{2}+2F_{\mathfrak{B}}f_{2}(z^{2})^{3}]+\cdots,\\z^{4}=\frac{1}{2}[G_{11}(z^{l})^{2}+G_{22}(z^{2})^{2}]\\+\frac{1}{6}[2G_{1l}g_{1}(z^{l})^{3}-3G_{11}m_{2}(z^{l})_{Z^{2}}^{2}-3G_{2}m_{1}z^{1}(z^{2})^{2}+2G_{2}g_{2}(z^{2})^{3}]+\cdots,\end{array}\right.$

with respect to $R_{a}$ .
1. Principal ruled surfaces of a rectilinear congruence.

The tangential plane of the image $V$ (of a rectilinear congruence $K$)

in $R_{5}$ is determined by three points $p,$ $p_{1}$ and $p_{2}$ . The intersection of
this tangential plane and $Q_{4}$ is the two generators $pp_{u},$ $pp_{v}$ on $Q_{4}$

with respect to $R_{a}$ , which represent the focal pencils of the congruence
$K$ in $R_{3}$ . Now consider the space $S(2)$ determined by $p,$ $p_{i},$ $p_{ij}$

$(i, i=1,2)$ , where $p_{ij}=-\partial u^{\partial_{i}^{2}p_{-}}\partial u^{j}$ If these six points are independent

$[S(2)=S_{5}]$ , that is, if

(1.1) $\Delta=|pp_{1}p_{2}p_{11}p_{12}p_{\mathfrak{B}}|\neq 0$
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is satisfied, the image $V$ (consequently the congruence $K$) is called
normal. This equation can be also written, by means of (I), in the
form

$\Delta=\left|\begin{array}{lll}F_{11} & G_{11} & H_{11}\\F_{12} & G_{l2} & H_{12}\\F_{22} & G_{\mathfrak{B}} & H_{22}\end{array}\right|$

with respect to $R_{0}$ . It can be also rewritten

(1.1’) $w\neq 0$

with respect to $R_{a}$ , where $w$ is given by (VIII). It is easy to see2) that
$w=0$ is the necessary and sufficient condition that the congruence $K$

is reduced to $w$ congruence, hence we have the
THEOREM 1. A rectilinear congruence $K$ is a $W$ congruence if

and only if $K$ is not normal4).

In this sense, the theory of $W$ congruence is trivial in the general
theory of a rectilinear congruence, consequently we exclude hereafter
the $W$ congruence, and consider the normal congruence only.

The quadric complex $G_{2}$ having the contact of fourth order with
$K$ along $p$ is given, by means of (IX‘), by the form

$G_{11}G_{22}(z^{3})^{2}-(F_{11}G_{22}+F_{22}G_{11})z^{3}z^{4}+F_{11}F_{\mathfrak{B}}(z^{4})^{2}+\frac{1}{4}(F_{1}^{2}G_{2}-F_{2}^{1}G_{11})^{2}(z^{5})^{2}=0$

with respect to $R_{a}$ . Hence we have the
THEOREM 2. Consider the osculating quadric complex $C_{2}$ having

the contact of fourth order with a rectilinear congruence $K$ along a
line $p$ of K. Then $K$ has the five ruled surfaces having the contact
of fith order with $Gz$ along $p$, defined by the equation

(1.2) $ak_{1}du^{5}-\frac{3}{2}as_{2}du^{4}dv-\pi_{1}du^{3}dv^{2}+\pi_{2}du^{2}dv^{3}+\frac{3}{2}bs_{1}dudv^{4}-bk_{2}dv^{5}=0$ ,

where

$a=F_{1}^{2}G_{11},$ $b=F_{2}^{1}G_{\mathfrak{B}}$ ,

$k_{1}=f_{1}-g_{1}=\frac{1}{2}(\log F_{11} : G_{11})_{a}+L_{I}$ ,
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$k_{2}=f_{2}-g_{2}=\frac{1}{2}(\log F_{2} : G_{x})_{v}+L_{2}$ ,

$s_{1}=n_{1}-m_{1}=-$ $(\log F_{\mathfrak{B}} : G_{\mathfrak{B}})_{u}-2L_{1}$ ,
$s_{2}=n_{2}-m_{2}=-(\log F_{11} : G_{11})_{v}-2L_{2}$ ,

$\pi_{1}=F_{1}^{2}G_{z}(f_{1}-\frac{3}{2}m_{1})-F_{2}^{1}G_{11}(g_{1}-\frac{3}{2}n_{1})$ ,

$\pi_{2}=F_{2}^{1}G_{u}(f_{2}-\frac{3}{2}m_{2})-F_{1}^{2}G_{2\ell}(g_{2}-\frac{3}{2}n_{2})$ .

These five ruled surfaces are called the principal ruled surfaces of the
congruene $K$. The principal ruled surfaces play the fundamental r\^ole
on the general theory of a rectilinear congruence.

Now we introduce the relation between the principal line, which
is the well known curve on the hypersurface in $R_{5}$ , and the principal
ruled surface given above.

THEOREM 3. The images of the princzpal ruled surfaces of a recti-
linear congmence $K$ defined by Theorem 2 coincide with the principal
lines of the image $V$ of the congruence.

PROOF. The principal line of $V$ at a point $p$ is defined by

$|pp_{1}p_{2}p_{1\sigma}du^{\sigma}$ $p_{2\sigma}du^{\sigma}$ $p_{\sigma\tau\rho}du^{\sigma}du^{\tau}du^{\rho}|=0$ $(p_{ijk}=\frac{\partial^{3}p}{\partial u^{i}\partial u^{j}\partial u^{k}})$ ,

which is also written, by means of (X’), in the form

(1.3) $|_{*}^{1}*00*$

$***010$ $***001$

$F_{11}du\frac{F_{x}}{\tau^{3}}0_{dv}00G^{11}uc_{\frac{Zid}{\tau^{4}}}^{0}0_{du}0H_{\frac{12d}{\tau^{5}}}uH_{12}^{0}0_{dv}0|=0$

with respect to $R_{a}$, where

$\left\{\begin{array}{l}\tau^{3}=F_{11}(2f_{1}+3\theta_{u})du^{3}-3F_{11}n_{2}du^{2}dv-3F_{2}n_{1}dudr^{9}+F_{2}(2f_{2}+3\theta_{v})dv^{3},\\\overline{\tau^{4}}=G_{11}(2g_{1}+3\theta_{l})du^{3}-3G_{11}m_{2}du^{2}dv-3G_{22}m_{l}dudv^{2}+G_{\mathfrak{B}}(2g_{2}+3\theta_{v})dv^{3},\\\overline{\tau^{5}}=3H_{12}(\theta_{u}du^{2}dv+\theta_{v}dudv^{2}).\end{array}\right.-$
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It is easy to see that the equation (1.3) is equivalent to (1.2), which
proves the theorem.

Now we introduce two important special rectilinear congruences
$k$ and $s$ obtained directly from the principal ruled surfaces and state
several properties on them.

2. $s$ congruence.
Definition. A rectilinear congruence $K$ whose principal ruled sur-

faces along a line $p$ have the directions:
1. Two of them are harmonic with respect to the directions of

developable surfaces of $K$ along $p$ ;
2. The remaining three are apolar to the two directions of deve.

lopable surfaces of $K$ ,
is called $s$ congruence, which is characterized by the conditions

(2.1) $s_{1}=s_{2}=0$ .
THEOREM 4. The characteristic property of $s$ congruence is that

it has the sequence of Laplace of period four.
To demonstrate this property, we shall give some preliminary

notes.
Consider the sequence of Laplace of a given congruence K. tThe

first sequence of Laplace is given by the congruence $\{p_{4}\}$ or $\{p_{3}\}$ .
Let the second sequences of $K$ be

$\{p_{6}\}$ : (in the direction of $p_{4}$),
$\{p_{7}\}$ : (in the direction of $p_{3}$),

and let the focal surface of $\{p_{4}\}$ (different from $S_{0}$) be $S_{4}$ (cf. fig) and
the focal point of $p_{4}$ on $S_{4}$ be $P_{1}$ . The
tangential plane of $S_{4}$ at $P_{1}$ is given by
$A_{0}P_{1}P_{2}$, where $P_{2}$ is the intersection of
this tangential plane and the line $p_{3}$ . The
point of Laplace $P_{1}$ has the coordinates
$(-n_{2},0,0, H_{12})$ , while the asymptotic
tangents of $S_{4}$ at $P_{1}$ are given by

(2.2) $F_{11}n_{21}du^{2}-F_{22}n_{12}dv^{2}=0$ ,

where $n_{21}=E_{12}+n_{2u},$ $n_{12}=E_{12}+n_{1v}$ . And
the generator $p_{6}$ has the form
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(2.3) $F_{2}^{1}n_{1}n_{2}p+F_{2}^{1}n_{2}p_{u}+F_{2}^{1}n_{1}p_{v}-a_{x}p_{4}+F_{22}p_{5}$ ,

Then we have the
LEMMA. The generator $p_{6}$ coincides with the line $P_{1}P_{2}$ if and

only $lf$

(2.4) $aae=0$ .
This condition is equivalent to $a_{11}=0$, owing to the existence of the

condition of integrability (VI).
Similarly, let $S_{3}$ be the focal surface of $\{p_{3}\}$ (different from $S_{1}$),

and the focal point of $p_{3}$ on $S_{3}$ be $Q_{2}$ . Then the tangential plane of
the focal surface $S_{3}$ at $Q_{2}$ is given by $A_{1}Q_{1}Q_{2}$ , where $Q_{1}$ is the intersec-
tion of this tangential plane and the line $p_{4}$ , and the asymptotic curves
on $S_{3}$ are determined by

(2.5) $G_{11}m_{21}du^{2}-G_{2}m_{12}dv^{2}=0$ ,

where $m_{21}=E_{12}+m_{2u},$ $m_{12}=E_{12}+m_{1v}$ . The generator $p_{7}$ has the form

(2.6) $G_{1}^{2}m_{1}m_{2}p+G_{1}^{2}m_{2}p_{u}+G_{1}^{2}m_{1}p_{v}-b_{11}p_{3}+G_{11}p_{5}$ ,

and it coincides with the line $Q_{1}Q_{2}$ if and only if

(2.7) $b_{11}=0$

or
$b_{\mathfrak{B}}=0$ .

PROOF OF THEOREM 4. If $p_{6}$ and $p_{7}$ coincide with $P_{1}P_{2}$ and $Q_{1}Q_{2}$

simultaneously, we have

(2.8) $a_{11}=a_{22}=b_{11}=b_{\mathfrak{B}}=0$ ,

and then $P_{1}$ and $Q_{2}$ coincide with $Q_{1}$ and $P_{2}$ respectively. Then by
the conditions (2.2), (2.5) and the conditions of integrability, we see
that the congruence $K$ has the Laplace sequence of period four. On
the other hand, the conditions of $s$ congruence (2.1) we obtain at once
the equations (2.8), which demonstrates the theorem.

$Note:-we$ state without demonstration the fact that the $scon$ .
gruence satisfying the condition $(U/a)_{u}=(V/b)_{v}$ permits the projective
deformation of a rectilinear congruence, where $U$ and $V$ are functions
of $u$ and $v$ respectively.
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3. $k$ congruence.
Definition. If two directions of the principal ruled surfaces of

a rectilinear congruence coincide with those of the developable sur-
faces, the congruence is called $k$ congruence. This condition is given
by the equations

(3.1) $k_{1}=k_{2}=0$

From the definitions of (2.1) and (3.1), we have immediately the
THEOREM 5. If a rectilinear congruence $K$ has the property of

$k$ and $s$ congruence, then $K$ is not normal, that is, $K$ is reduced to $W$

congruence.
Among the several properties concerning to $k$ congruence, we in-

troduce the most simple one in this paper.
THEOREM 6. A rectilinear congruence is reduced to $k$ congruence

if and only if a pair of the osculating linear complexes of the deve-
lopable surfaces along a line $p$ is reduced to a pair of satellite com-
plexes.

PROOF. The image of the osculating linear complex $b_{1}$ of the
developable surface $\mathfrak{L}_{1}$ ; $u=const$ . $(u^{1}=const.)$ is determined by the
intersection of $Q_{4}$ and the hyperplane determined by the five points

$p,$ $p_{u},$ $F_{11}p_{3}+G_{11}p_{4}$ , $F_{11}k_{1}p_{3}+ap_{v}$ , $k_{1}p_{3}+G_{1}^{2}p_{v}$ .
Consequently the pole of $b_{1}$ is given by

(3.2) $k_{1}\Phi_{1u}p-k_{1}p_{u}+F_{11}p_{3}-G_{11}p_{4}$ ,

where $\Phi_{I}=[\log(k_{1}/\sqrt F_{1}^{2}G_{1}^{2})]_{u}$ . Similarly the pole of the osculating linear
complex $b_{2}$ of the developable surface $\mathfrak{L}_{2}$ ; $v=const$ . $(u^{2}=const.)$ is de-
termined by

(3.3) $k_{2}\Phi_{L}\circ vp-k_{2}p_{v}+F_{22}p_{3}-G_{22}p_{4}$ ,

where $\Phi_{2}=[\log(k_{2}/\sqrt F_{2}^{\rceil}G_{2}^{1})]_{v}$ . On the other hand, the poles of the satel-
lite complexes $K$ of are given by $F_{11}p_{3}-G_{11}p_{4},$ $F_{Z2}p_{3}-G_{22}p_{4}$ , which
demonstrates the theorem.

4. Quasi asymptotic ruled surfaces of a congrence. Now
we use the concept of quasi asymptotic $\gamma_{\lrcorner 3}$ introduced by E. Bompiani5),
which is defined by the matrix
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(4.1) $||pp_{1}p_{2}p_{\sigma\tau\rho}du^{\sigma}du^{\tau}p_{\sigma\tau\rho}du^{\sigma}du^{\tau}du^{\rho}+3p_{\sigma\tau}du^{\sigma}d^{2}u^{\tau}||=0$ ,

where $p_{ijl}$ is given in \S 1. The equation (4.1) is equivalent to

(4.2) $\varphi^{3}=0$ , $\varphi^{4}=0$ ,

where

$\varphi^{3}=\frac{3}{2}(dvd^{2}u-dud^{2}v)(F_{11}du^{2}-F_{22}dv^{2})+F_{11}(2f_{1}+\frac{3}{2}\theta_{u})du^{3}$

$-3F_{11}(n_{2}+\frac{1}{2}\theta_{v})du^{2}dv-3F_{x}(n_{1}+\frac{1}{2}\theta_{u})dudv^{2}+F_{22}(2f_{2}+\frac{3}{2}\theta_{v})dv^{3}$,

$\varphi^{4}=\frac{3}{2}(dvd^{2}u-dud^{2}v)(G_{11}du^{2}-G_{22}dv^{2})+G_{11}(2g_{1}+\frac{3}{2}\theta_{v})du^{3}$

$-3G_{11}(m_{2}+\frac{1}{2}\theta_{v})du^{2}dv-3G_{Z}(m_{1}+\frac{1}{2}\theta_{u})dudv^{2}+G_{22}(2g_{2}+\frac{3}{2}\theta_{v})dv^{3}$,

and the condition of compatibility of these two equations is represent-
ed by (1.2). Hence if we define the ruled surface of a given con-
gruence $K$, whose image is the quasi asymptotic curve in $R_{5}$ , the quasi
asymptotic ruled surface of $K$, then the quasi asymptotic ruled surface
has the direction defined by the principal ruled surfaces of $K$.

Now we know, by the equations (I), that the osculating linear
congruence $\mathfrak{K}$ of the asymptotic ruled surface is determined by the
intersection of $Q_{4}$ and the plane determined by $p,p_{u},p_{v}$ and

$(F_{11}du^{2}+F_{x}dv^{2})p_{3}+(G_{11}du^{2}+G_{22}dv^{2})p_{4}+2H_{12}dudv$ ,

hence $\mathfrak{K}$ contains the focal pencils $pp_{u}$ and $pp_{v}$ of $K$ along $p$ . And
this property holds only when (4.2) are satisfied. Hence we have the

THEOREM 7. The quasi asymptotic ruled surface of a congruence
$K$ is charactenzed by the fact that its osculating linear congruence
contains the focal pencils of $K$.

In this paper we eliminate further considerations concerning to
this item.

I dedicate my hearty thanks to Prof. Sasaki (T\^ohoku University)
for his kind advices for the publication of this paper.

Nihon University.
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Notes.
1) $((pq))=p^{01}q^{23}-p^{02}q^{13}+p^{03}q^{12}+p^{12}q^{03}-p^{13}q^{02}+p^{23}q^{01}$ .
2) As for the details, reference is to be made to our paper: Takeda, K., On line

congruence, I, T\^ohoku, 44 (1938), 356-69.
3) As for the details and notations, references are to be made to our paper: Takeda,

K., On line congruence, II, T\^ohoku, 45 (1938), 103-110.
4) Here we exclude the trivial cases, where the focal surfaces are reduced to special

forms, that is, the cases $F_{11}=G_{11}=0,$ $F_{11}F_{22}=0$ and $G_{11}=G_{22}=0$ .
5) Bompiani, E., Propriet\‘a differenziale caratteristica delle superficie che rappresentano

la totalit\‘a delle curve piane algebriche di dato ordine, Lincei, 30 (1921), 248-51.
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