Journal of the Mathematical Society of Japan Vol. 4, Nos. 3~4, December, 1952.

On the multivalency of analytic functions.

By Toshio UMEZAWA

(Received January 10, 1952) (Revised February 18, 1952)

Noshiro's theorems¹⁾ (generalizations of Dieudonné's theorem²⁾) concerning the univalency of regular functions were extended to the case of *p*-valence by E. Sakai³⁾. In the present paper we are going to generalize some of them to meromorphic functions which are defined in a multiply-connected domain. By accomplishing this task we shall also be able to extend Z. Nehari's results⁴⁾ and to make them more sharp.

LEMMA 1. Let $\varphi(z)$ be regular in an n-ply connected domain D and let $\varphi(z) \subset T^{5}$ in D, where T is a given connected domain. Let us denote by u=g(t) an arbitrary branch of a function mapping T conformally on |u| < 1 and suppose that $g(\varphi(z))$ is single-valued in D, and put

(1)
$$\frac{1-|g(\alpha)|^2}{|g'(\alpha)|} \equiv \mathcal{Q}(\alpha, T) \qquad (\alpha \in T)^{6}$$

Then

(2)
$$|\varphi'(z)| \leq 2\pi k(z,z) \mathcal{Q}(\varphi(z),T)$$
 $(z \in D),$

where $k(z,\xi)$ denotes the Szegö kernel function⁷⁾ of D.

PROOF. In order that the integration be permissible we assume that the boundary I' of D consists of smooth curves and that $\varphi(\zeta)$ is continuous on I'; but once the result is obtained, both assumptions can easily be disposed of. Indeed, if D is not smoothly bounded, we may approximate D by a sequence of domains D_n which satisfy $D_n \subset D, D_n$ $\subset D_{n+1}, \lim_{n \to \infty} D_n = D$ and whose boundaries Γ_n are smooth. If we replace D by D_n , the additional assumption under which we prove Lemma 1 are satisfied. The general result then follows by letting $n \to \infty$ and observing that the Szegö kernel function k(z, z) is a continuous domain function. T. UMEZAWA

Now by hypothesis,

$$\frac{g(\varphi(\zeta)) - g(\varphi(z))}{1 - g(\varphi(z))g(\varphi(\zeta))} \qquad (z, \zeta \in D)$$

is regular and single-valued in D, and by using the residue theorem, we obtain

(3)
$$\frac{g'(\varphi(z))\varphi'(z)}{1-|g(\varphi(z))|^2} = \frac{1}{2\pi i} \int_{\Gamma} \frac{g(\varphi(\zeta))-g(\varphi(z))}{1-g(\varphi(z))g(\varphi(\zeta))} Q(\zeta,z) \, d\zeta \,,$$

where $Q(\zeta, z)$ is an arbitrary single-valued function of $\zeta \in D$ which is regular in D+I' except at the point $\zeta = z$ where it has the principal part $1/(\zeta - z)^2$.

According to Garabedian⁸, the particular function $Q(\zeta, z)$ can be chosen so that

(4)
$$\frac{1}{i}F(\zeta,z)Q(\zeta,z)d\zeta > 0, \quad \zeta \in \Gamma,$$

where $F(\zeta, z)$ is the function introduced by Ahlfors⁹⁾, which maps D onto the *n*-times covered unit circle, and $|F(\zeta, z)|=1$ if $\zeta \in \Gamma$. By recalling that $|g(\varphi(z))| < 1$ and remarking the above fact, we obtain from (3),

$$\begin{aligned} \frac{|g'(\varphi(z))|| \varphi'(z)|}{1 - |g(\varphi(z))|^2} &\leq \frac{1}{2\pi} \int_{\Gamma} |Q(\zeta, z)d\zeta| \\ &= \frac{1}{2\pi} \int_{T} \left| \frac{1}{i} F(\zeta, z)Q(\zeta, z)d\zeta \right| \qquad (by (4)) \\ &= \frac{1}{2\pi i} \int_{T} F(\zeta z)Q(\zeta, z)d\zeta \\ &= F'(z, z) \end{aligned}$$

On the other hand it was shown by Garabedian¹⁰⁾ that $F'(z, z)=2\pi k(z, z)$. Therefore we obtain (2). Q. E. D.

Remark. Hereafter, for the sake of convenience we assume that the domain D in which families of functions are defined contains the origin.

THEOREM 1. Under the assumptions of Lemma 1, $f(z)=z^{p}\varphi(z)$,

280

where p is a positive or negative integer and $\varphi(0) \neq 0$, is |p|-valent and starshaped in the largest circle C about the origin all of whose points satisfy

(5)
$$|z|k(z,z) - \frac{\mathcal{Q}(\varphi(z),T)}{|\varphi(z)|} < (2\pi)^{-1} |p|.$$

PROOF. By (2) and (5) we have

(6)
$$|z - \frac{\varphi'(z)}{\varphi(z)}| < |p|.$$

Since $\Re - \frac{zf'(z)}{f(z)} = p + \Re - \frac{z \varphi'(z)}{\varphi(z)}$, by using (6) we obtain $\Re - \frac{zf'(z)}{f(z)} > p - |z - \frac{\varphi'(z)}{\varphi(z)}| > 0$ if p > 0, $\Re - \frac{zf'(z)}{f(z)} if <math>p < 0$.

Hence by Ozaki's theorem¹¹⁾ f(z) is |p|-valent and starshaped in C.

THEOREM 2. Let $\varphi(z)$ be regular and single-valued in D. Further let $\Re \varphi(z) > 0$ in D. Then $f(z) = z^p \varphi(z)$ is |p|-valent and starshaped in the largest circle about the origin all of whose points satisfy

(7)
$$|z| k (z, z) < (4\pi)^{-1} |p|.$$

PROOF. Considering a half-plane $T: \Re t > 0$ and taking a mapping function g(t) = (1-t)/(1+t) in Theorem 1, we can say that f(z) is |p|-valent and starshaped in the largest circle about the origin all of whose points satisfy

(8)
$$|z| k(z,z) - \frac{\Re \varphi(z)}{|\varphi(z)|} < (4\pi)^{-1} |p|$$

or

(9)
$$|z| k(z, z) < (4\pi)^{-1} |p|,$$

since

$$1 > - \frac{\Re \varphi(z)}{|\varphi(z)|} > 0$$
.

T. UMEZAWA

Remark. In the case where D is the unit circle, $k(z, z) = \frac{(2\pi)^{-1}}{1 - |z|^2}$,

whence Theorems 1 and 2 reduce to Noshiro's and Sakai's theorems. THEOREM 3. Let $\log \varphi(z)$ be regular and single-valued in D. Further let $m < |\varphi(z)| < M$ in D. Then $f(z) = z^{\circ}\varphi(z)$ is |p|-valent and starshaped in the largest circle about the origin all of whose points satisfy

(10)
$$|z|k(z,z) \cdot \cos\left[\frac{\pi}{2} - \frac{\log|\varphi(z)|^2 - \log m - \log M}{\log M - \log m}\right] \cdot \log \frac{M}{m} < \frac{|p|}{4}$$

or

(11)
$$|z| k (z, z) \log \frac{M}{m} < \frac{|p|}{4}$$

PROOF. We may consider a ring-domain T: m < |t| < M, which can be mapped on |u| < 1 by the function

(12)
$$g(t) = \left[\exp\left(i\frac{\pi}{2} \cdot \frac{\log - \frac{t}{\sqrt{mM}}}{\log \sqrt{\frac{M}{m}}}\right) - 1 \right] : \left[\exp\left(i\frac{\pi}{2} \cdot \frac{\log - \frac{t}{\sqrt{mM}}}{\log \sqrt{\frac{M}{m}}}\right) + 1 \right].$$

Remark. If we put p=1, $m=e^{-N}$ and $M=e^{N}$, we have Z. Nehari's theorem.⁴⁾ Again in the case where D is the unit circle, we have Noshiro's or Sakai's theorem.³⁾

THEOREM 4. Let $g(\log \psi(z))$ be regular and single-valued in D. Then $f(z)=z^{p}\psi(z)$ is |p|-valent and starshaped in the largest circle C about the origin all of whose points satisfy

(13)
$$|z| k(z, z) \mathcal{Q}(\log \psi(z), T) < (2\pi)^{-1} |p|,$$

where $g(\log \psi(z))$ and $\Omega(\log \psi(z), T)$ are the functions defined in Lemma 1.

PROOF. If we put in Lemma 1 $\varphi(z) = \log \psi(z)$, we have

$$\left|\frac{\psi'(z)}{\psi(z)}\right| \leq 2\pi k(z,z) \mathcal{Q}(\log \psi(z), T).$$

Hence from (13) and the above inequality we obtain

$$\left|z\frac{\psi'(z)}{\psi(z)}\right| < |p|.$$

282

Consequently again by Ozaki's theorem¹¹⁾ f(z) is |p|-valent and starshaped in C, if we have (13).

THEOREM 5. Let $\log \varphi(z)$ be regular and single-valued in D. Further let l.u.b. $|\log \varphi(z)| = M$. Then $f(z) = z^{p} \varphi(z)$ is |p|-valent and starshaped in the largest circle about the origin all of whose points satisfy

(14)
$$|z|k(z,z)(1-\frac{|\log \varphi(z)|^2}{M^2}) < \frac{(2\pi)^{-1}|p|}{M}$$

or

(15)
$$|z|k(z,z) < \frac{(2\pi)^{-1}|p|}{M}.$$

PROOF. We may take, as g(t) in Theorem 4,

$$g(t) = t/M$$
, $T: |t| < M$.

Remark. If we put p=1 and adopt (15), we have Z. Nehari's theorem⁴⁾.

LEMMA 2. A necessary and sufficient condition for a function $f(z)=z^{p}\varphi(z), \varphi(0) \neq 0$, regular for |z| < r, to be p-valently convex¹² in $|z| < \rho$ for every $\rho < r$ is that

(16)
$$1 + \Re - \frac{z f''(z)}{f'(z)} > 0$$
 for $|z| < r$.

PROOF. Evidently (16) is necessary.

If (16) is satisfied, then f(z) maps $|z| < \rho$ onto a locally convex¹² region and by Ozaki's theorem¹³ f(z) is *p*-valent in $|z| < \rho$ for every $\rho < r$. Hence (16) is sufficient. Q. E. D.

Using the above lemma and noticing the relation

$$1 + \Re \frac{zf''(z)}{f'(z)} = \Re \frac{z[zf'(z)]'}{zf'(z)},$$

we obtain the following theorems by a slight modification of the methods of proof used above.

THEOREM 6. Let $g(z^{1-p} f'(z))$ be regular and single-valued in D and let $z^{1-p}f'(z) \neq 0$ at the origin (p: positive integer). Let further r denote the radius of the largest circle about the origin all of whose points satisfy T. UMEZAWA

(17)
$$|z|^{p} k(z,z) \frac{\mathcal{Q}(z^{1-p}f'(z),T)}{|f'(z)|} < (2\pi)^{-1}p,$$

where $g(z^{1-p}f'(z))$ and $\Omega(z^{1-p}f'(z), T)$ are the functions defined in Lemma 1. Then the circle $|z| < \rho$ is mapped by f(z) onto a p-valently convex region for every $\rho < r$.

THEOREM 7. Let $g(\log [z^{1-p}f'(z)])$ be regular and single-valued in D (p: positive integer). Let further r denote the radius of the largest circle about the origin all of whose points satisfy

(18)
$$|z| k(z, z) \mathcal{Q}(\log [z^{1-p} f'(z)], T) < (2\pi)^{-1} p$$
,

where $g(\log [z^{1-p}f'(z)])$ and $\Omega(\log [z^{1-p}f'(z)], T)$ are the functions defined in Lemma 1. Then the circle $|z| < \rho$ is mapped by f(z) onto a *p*-valently convex region for every $\rho < r$.

Remark. If we add, to the assumptions of the above Theorems 6 and 7, $m < |z^{1-p}f'(z)| < M$ and $|\log[z^{1-p}f'(z)]| < M$ respectively, and take the mapping function (12) and g(t)=t/M respectively, then we have a generalization of Z. Nehari's theorem⁴⁾ concerning the radius of convexity to the case of p-valence.

Analogously we have the following

THEOREM 8. Let f'(z) be regular and single-valued in D. Further let $\Re f'(z) > 0$. Then f(z) is univalent and convex in the largest circle about the origin all of whose points satisfy

(19)
$$|z|k(z,z) < (4\pi)^{-1}$$

COROLLARY. Let f'(z) be regular and $\Re f'(z) > 0$ for |z| < 1. Then f(z) is univalent in |z| < 1 and convex for $|z| < \sqrt{2} - 1$.

PROOF. As for the univalency in |z| < 1, Noshiro's theorem¹⁴ can be used. For the convexity we may use Theorem 8.

Remark. Recently the present author has obtained many sufficient conditions for f(z) to be convex in one direction in generalized forms,¹⁵⁾ which are also sufficient for f(z) to be *p*-valent in |z| < r. By using those conditions we can give many theorems analogous to these in the present paper. But we refrain from describing those results.

Gumma University.

284

Notes.

- K. Noshiro, On the univalency of certain analytic functions, Journ. Fac. Sci. Hokkaido Imp. Univ. (1) 2, Nos. 1-2 (1934), pp. 89-101.
- [2] J. Dieudonné, Recherches sur quelques problèmes relatifs aux polynomes et aux fonctions bornées d'une variable complexe, Thèse de Paris, Ann. Sci. Ecole Norm. Sup. vol. 48 (1931), pp. 248-358.
- [3] E. Sakai, On the multivalency of analytic functions, J. Math. Soc. Japan. vol. 2, Nos. 1-2 (1950), pp 105-113.
- [4] Z. Nehari, The radius of univalence of analytic functions, Amer. J. Math. vol. LXXI, No. 4 (1949).
- [5] We mean by $\varphi(z) \subset T$ that the set of values taken by $\varphi(z)$ in D belongs to the domain T.
- [6] The positive quantity $\mathcal{Q}(\alpha, T)$ depends only on α and T, and neither on the selection of the mapping function nor on that of the branch g(t) of the mapping function. See [1], foot-notes at p. 90.
- [7] G. Szegö, Über orthogonale Polynome, die zu einer gegebenen Kurve der komplexen Ebene gehören, Math. Zeit. vol. 9 (1921), pp. 218-270.
- [8] P. R. Garabedian, Schwarz's lemma and the Szegö kernel function, Trans. Amer. Math. Soc. Vol. 67 (1949), pp. 1-35.
- [9] L.V. Ahlfors, Bounded analytic functions, Duke Math. J. vol. 14 (1947), pp. 1-14.
- [10] P. R. Garabedian, loc. cit.
- [11] S. Ozaki, Some remarks on the univalency and multivalency of functions, Sci. Rep. of Tokyo Bunrika Daigaku Nos. 31-32 (1934), p. 49.
- [12] A. W. Goodman, On the Schwarz-Christoffel transformation and p-valent functions, Trans. Amer. Math. Soc. vol. 68 (1950), p. 211.
- [13] S. Ozaki, On the theory of multivalent functions II, Sci. Rep. T.B.D. vol. 4, No. 77 (1941), p. 57.
- [14] K. Noshiro, On the theory of schlicht functions, Journ. Fac. Sci. Hokkaido Imp. Univ. (1) vol. 2, No. 3 (1934), pp. 129-155.
- [15] T. Umezawa, Analytic functions convex in one direction, J. Math. Soc. Japan Vol. 4, No. 2 (1952), pp. 194-202.