On the multivalency of analytic functions.

By Toshio Umezawa

(Received January 10, 1952)
(Revised February 18, 1952)
Noshiro's theorems ${ }^{1)}$ (generalizations of Dieudonnés theorem ${ }^{2)}$) concerning the univalency of regular functions were extended to the case of p-valence by E. Sakai ${ }^{3}$. In the present paper we are going to generalize some of them to meromorphic functions which are defined in a multiply-connected domain. By accomplishing this task we shall also be able to extend Z. Nehari's results ${ }^{4)}$ and to make them more sharp.

Lemma 1. Let $\phi^{\prime}(z)$ be regular in an n-ply connected domain D and let $\varphi(z) \subset T^{5)}$ in D, where T is a given connected domain. Let us denote by $u=g(t)$ an arbitrary branch of a function mapping T conformally on $|u|<1$ and suppose that $g(\phi(z))$ is single-valued in D, and put

$$
\begin{equation*}
\frac{1-|g(\alpha)|^{2}}{\left|g^{\prime}(\alpha)\right|} \equiv \Omega(\alpha, T) \quad(\alpha \in T)^{6} \tag{1}
\end{equation*}
$$

Then

$$
\begin{equation*}
\left|\varphi^{\prime}(z)\right| \leqq 2 \pi k(z, z) \Omega(\varphi(z), T) \quad(z \in D) \tag{2}
\end{equation*}
$$

where $k(z, \xi)$ denotes the Szegö kernel function ${ }^{7}$ of D.
Proof. In order that the integration be permissible we assume that the boundary I of D consists of smooth curves and that $\varphi(\zeta)$ is continuous on Γ; but once the result is obtained, both assumptions can easily be disposed of. Indeed, if D is not smoothly bounded, we may approximate D by a sequence of domains D_{n} which satisfy $D_{n} \subset D, D_{n}$ $\subset D_{n+1}, \lim _{n \rightarrow \infty} D_{n}=D$ and whose boundaries Γ_{n} are smooth. If we replace D by D_{n}, the additional assumption under which we prove Lemma 1 are satisfied. The general result then follows by letting $n \rightarrow \infty$ and observing that the Szegö kernel function $k(z, z)$ is a continuous domain function.

Now by hypothesis,

$$
\frac{g(\phi(\zeta))-g(\phi(z))}{1-g(\varphi(z)) g(\varphi(\zeta))} \quad(z, \zeta \in D)
$$

is regular and single-valued in D, and by using the residue theorem, we obtain

$$
\begin{align*}
& g^{\prime}(\varphi(z)) \phi^{\prime}(z) \tag{3}\\
& 1-|g(\phi(z))|^{2}
\end{align*}=\frac{1}{2 \pi i} \int_{T} \frac{g(\phi(\zeta))-g(\varphi(z))}{1-g(\phi(z)) g(\varphi(\zeta))} Q(\zeta, z) d \zeta,
$$

where $Q(\zeta, z)$ is an arbitrary single-valued function of $\zeta \in D$ which is regular in $D+I^{\prime}$ except at the point $\zeta=z$ where it has the principal part $1 /(\zeta-z)^{2}$.

According to Garabedian ${ }^{8)}$ the particular function $\left.Q^{\prime} \zeta, z\right)$ can be chosen so that

$$
\begin{equation*}
\frac{1}{i} F(\zeta, z) Q(\zeta, z) d \zeta>0, \quad \zeta \in \Gamma \tag{4}
\end{equation*}
$$

where $F(\zeta, z)$ is the function introduced by Ahlfors ${ }^{9}$, which maps D onto the n-times covered unit circle, and $|F(\zeta, z)|=1$ if $\zeta \in \Gamma$. By recalling that $|g(p(z))|<1$ and remarking the above fact, we obtain from (3),

$$
\begin{align*}
\frac{\left|g^{\prime}(\varphi(z))\right|\left|\phi^{\prime}(z)\right|}{1-|g(\varphi(z))|^{2}} & \leqq \frac{1}{2 \pi} \int_{T}|Q(\zeta, z) d \zeta| \\
& =\frac{1}{2 \pi} \int_{T}\left|\frac{1}{i} F(\zeta, z) Q(\zeta, z) d \zeta\right| \tag{4}\\
& =\frac{1}{2 \pi i} \int_{T} F(\zeta z) Q(\zeta, z) d \zeta \\
& =F^{\prime}(z, z)
\end{align*}
$$

On the other hand it was shown by Garabedian ${ }^{10)}$ that $F^{\prime}(z, z)=2 \pi k(z, z)$.
Therefore we obtain (2). Q. E. D.
Remark. Hereafter, for the sake of convenience we assume that the domain D in which families of functions are defined contains the origin.

THEOREM 1. Under the assumptions of Lemma $1, f(z)=z^{p} \boldsymbol{q}(z)$,
where p is a positive or negative integer and $\varphi(0) \neq 0$, is $|p|$-valent and starshaped in the largest circle C about the origin all of whose points satisfy

$$
\begin{equation*}
|z| k(z, z) \frac{\Omega(\varphi(z), T)}{|\varphi(z)|}<(2 \pi)^{-1}|p| . \tag{5}
\end{equation*}
$$

Proof. By (2) and (5) we have

$$
\begin{equation*}
\left|z \frac{\varphi^{\prime}(z)}{\varphi(z)}\right|<|p| . \tag{6}
\end{equation*}
$$

Since $\Re \frac{z f^{\prime}(z)}{f(z)}=p+\Re \frac{z \varphi^{\prime}(z)}{\varphi(z)}$, by using (6) we obtain

$$
\begin{aligned}
& \Re \frac{z f^{\prime}(z)}{f(z)}>p-\left|z \frac{\varphi^{\prime}(z)}{\varphi(z)}\right|>0 \text { if } p>0, \\
& \Re \frac{z f^{\prime}(z)}{f(z)}<p+\left|z \frac{\varphi^{\prime}(z)}{\varphi(z)}\right|<0 \text { if } p<0 .
\end{aligned}
$$

Hence by Ozaki's theorem ${ }^{11} f(z)$ is $|p|$ valent and starshaped in C.
Theorem 2. Let $\varphi(z)$ be regular and single-valued in D. Further let $\Re \varphi(z)>0$ in D. Then $f(z)=z^{p} \varphi(z)$ is $|p|$ valent and starshaped in the largest circle about the origin all of whose points satisfy

$$
\begin{equation*}
|z| k(z, z)<(4 \pi)^{-1}|p| . \tag{7}
\end{equation*}
$$

Proof. Considering a half-plane $T: \Re t>0$ and taking a mapping function $g(t)=(1-t) /(1+t)$ in Theorem 1 , we can say that $f(z)$ is $|p|$-valent and starshaped in the largest circle about the origin all of whose points satisfy

$$
\begin{equation*}
|z| k(z, z) \frac{\Re \varphi(z)}{|\varphi(z)|}<(4 \pi)^{-1}|p| \tag{8}
\end{equation*}
$$

or

$$
\begin{equation*}
|z| k(z, z)<(4 \pi)^{-1}|p|, \tag{9}
\end{equation*}
$$

since

$$
1>\frac{\Re \varphi(z)}{|\varphi(z)|}>0 .
$$

Remark. In the case where D is the unit circle, $k(z, z)=\frac{(2 \pi)^{-1}}{1-|z|^{2}}$, whence Theorems 1 and 2 reduce to Noshiro's and Sakai's theorems.

Theorem 3. Let $\log \varphi(z)$ be regular and single-valued in D. Further let $m<|\varphi(z)|<M$ in D. Then $f(z)=z^{\rho} \varphi(z)$ is $|p|$-valent and starshaped in the largest circle about the origin all of whose points satisfy

$$
\begin{equation*}
|z| k(z, z) \cdot \cos \left[\frac{\pi}{2} \frac{\log |\varphi(z)|^{2}-\log m-\log M}{\log M-\log m}\right] \cdot \log \frac{M}{m}<\frac{|p|}{4} \tag{10}
\end{equation*}
$$

or

$$
\begin{equation*}
|z| k(z, z) \log \frac{M}{m}<\frac{|p|}{4} \tag{11}
\end{equation*}
$$

Proof. We may consider a ring-domain $T: m<|t|<M$, which can be mapped on $|u|<1$ by the function

$$
\begin{equation*}
g(t)=\left[\exp \left(i \frac{\pi}{2} \cdot \frac{\log \frac{t}{\sqrt{m M}}}{\log \sqrt{\frac{M}{m}}}\right)-1\right]:\left[\exp \left(i^{\pi} \frac{\log \frac{t}{\sqrt{m M}}}{\log \sqrt{\frac{\bar{M}}{m}}}\right)+1\right] \tag{12}
\end{equation*}
$$

Remark. If we put $p=1, m=e^{-N}$ and $M=e^{N}$, we have Z. Nehari's theorem. ${ }^{4}$ Again in the case where D is the unit circle, we have Noshiro's or Sakai's theorem. ${ }^{3}$)

Theorem 4. Let $g(\log \psi(z))$ be regular and single-valued in D. Then $f(z)=z^{p} \psi(z)$ is $|p|$-valent and starshaped in the largest circle C about the origin all of whose points satisfy

$$
\begin{equation*}
|z| k(z, z) \Omega(\log \psi \psi(z), T)<(2 \pi)^{-1}|p| \tag{13}
\end{equation*}
$$

where $g(\log \psi(z))$ and $\Omega(\log \psi(z), T)$ are the functions defined in Lemma 1.

Proof. If we put in Lemma $1 \varphi(z)=\log \psi(z)$, we have

$$
\left|\frac{\psi^{\prime}(z)}{\psi(z)}\right| \leqq 2 \pi k(z, z) \Omega(\log \psi(z), T)
$$

Hence from (13) and the above inequality we obtain

$$
\left|z \frac{\psi^{\prime}(z)}{\psi(z)}\right|<|p|
$$

Consequently again by Ozaki's theorem ${ }^{11)} f(z)$ is $|p|$-valent and starshaped in C, if we have (13).

Theorem 5. Let $\log \varphi(z)$ be regular and single-valued in D. Further let l.u.b. $|\log \varphi(z)|=M$. Then $f(z)=z^{p} \varphi(z)$ is $|p|$-valent and starshaped in the largest circle about the origin all of whose points satisfy

$$
\begin{equation*}
|z| k(z, z)\left(1-\frac{|\log \varphi(z)|^{2}}{M^{2}}\right)<\frac{(2 \pi)^{-1}|p|}{M} \tag{14}
\end{equation*}
$$

or

$$
\begin{equation*}
|z| k(z, z)<\frac{(2 \pi)^{-1}|p|}{M} . \tag{15}
\end{equation*}
$$

Proof. We may take, as $g(t)$ in Theorem 4,

$$
g(t)=t / M, \quad T:|t|<M .
$$

Remark. If we put $p=1$ and adopt (15), we have Z. Nehari's theorem ${ }^{4}$.

Lemma 2. A necessary and sufficient condition for a function $f(z)=z^{\phi} \varphi(z), \varphi(0) \neq 0$, regular for $|z|<r$, to be p-valently convex ${ }^{12)}$ in $|z|<\rho$ for every $\rho<r$ is that

$$
\begin{equation*}
1+\Re \frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}>0 \quad \text { for }|z|<r \tag{16}
\end{equation*}
$$

Proof. Evidently (16) is necessary.
If (16) is satisfied, then $f(z)$ maps $|z|<\rho$ onto a locally convex ${ }^{12)}$ region and by Ozaki's theorem ${ }^{13} f(z)$ is p-valent in $|z|<\rho$ for every $\rho<r$. Hence (16) is sufficient. Q. E. D.

Using the above lemma and noticing the relation

$$
1+\Re \frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}=\Re \frac{z\left[z f^{\prime}(z)\right]^{\prime}}{z f^{\prime}(z)},
$$

we obtain the following theorems by a slight modification of the methods of proof used above.

Theorem 6. Let $g\left(z^{1^{-\phi}} f^{\prime}(z)\right)$ be regular and single-valued in D and let $z^{1-p} f^{\prime}(z) \neq 0$ at the origin ($p:$ positive integer). Let further r denote the radius of the largest circle about the origin all of whose points satisfy

$$
\begin{equation*}
|z|^{\phi} k(z, z) \frac{\Omega\left(z^{1-p} f^{\prime}(z), T\right)}{\left|f^{\prime}(z)\right|}<(2 \pi)^{-1} p \tag{17}
\end{equation*}
$$

where $g\left(z^{1-\phi} f^{\prime}(z)\right)$ and $\Omega\left(z^{1-\phi} f^{\prime}(z), T\right)$ are the functions defined in Lemma 1. Then the circle $|z|<\rho$ is mapped by $f(z)$ onto a p-valently convex region for every $\rho<r$.

THEOREM 7. Let $g\left(\log \left[z^{1-\phi} f^{\prime}(z)\right]\right)$ be regular and single-valued in D (p : positive integer). Let further r denote the radius of the largest circle about the origin all of whose points satisfy

$$
\begin{equation*}
|z| k(z, z) \Omega\left(\log \left[z^{1-\not p} f^{\prime}(z)\right], T\right)<(2 \pi)^{-1} p \tag{18}
\end{equation*}
$$

where $g\left(\log \left[z^{1-p} f^{\prime}(z)\right]\right)$ and $\Omega\left(\log \left[z^{1-p} f^{\prime}(z)\right], T\right)$ are the functions defined in Lemma 1. Then the circle $|z|<\rho$ is mapped by $f(z)$ onto a p-valently convex region for every $\rho<r$.

Remark. If we add, to the assumptions of the above Theorems 6 and $7, m<\left|z^{1-\phi} f^{\prime}(z)\right|<M$ and $\left|\log \left[z^{1-\phi} f^{\prime}(z)\right]\right|<M$ respectively, and take the mapping function (12) and $g(t)=t / M$ respectively, then we have a generalization of Z. Nehari's theorem ${ }^{4)}$ concerning the radius of convexity to the case of p-valence.

Analogously we have the following
THEOREM 8. Let $f^{\prime}(z)$ be regular and single-valued in D. Further let $\mathfrak{R} f^{\prime}(z)>0$. Then $f(z)$ is univalent and convex in the largest circle about the origin all of whose points satisfy

$$
\begin{equation*}
|z| k(z, z)<(4 \pi)^{-1} \tag{19}
\end{equation*}
$$

Corollary. Let $f^{\prime}(z)$ be regular and $\mathfrak{R} f^{\prime}(z)>0$ for $|z|<1$. Then $f(z)$ is univalent in $|z|<1$ and convex for $|z|<\sqrt{ } 2-1$.

Proof. As for the univalency in $|z|<1$, Noshiro's theorem ${ }^{14}$ can be used. For the convexity we may use Theorem 8.

Remark. Recently the present author has obtained many sufficient conditions for $f(z)$ to be convex in one direction in generalized forms, ${ }^{15}$ which are also sufficient for $f(z)$ to be p-valent in $|z|<r$. By using those conditions we can give many theorems analogous to these in the present paper. But we refrain from describing those results.

Gumma University.

Notes.

[1] K. Noshiro, On the univalency of certain analytic functions, Journ. Fac. Sci. Hokkaido Imp. Univ. (1) 2, Nos. 1-2 (1934), pp. 89-101.
[2] J. Dieudonné, Recherches sur quelques problèmes relatifs aux polynomes et aux fonctions bornées d'une variable complexe, Thèse de Paris, Ann. Sci. Ecole Norm. Sup. vol. 48 (1931), pp. 248-358.
[3] E. Sakai, On the multivalency of analytic functions, J. Math. Soc. Japan. vol. 2, Nos. 1-2 (1950), pp 105-113.
[4] Z. Nehari, The radius of univalence of analytic functions, Amer. J. Math. vol. LXXI, No. 4 (1949).
[5] We mean by $\varphi(z) \subset \boldsymbol{T}$ that the set of values taken by $\varphi(z)$ in D belongs to the domain T.
[6] The positive quantity $\Omega(\alpha, T)$ depends only on α and T, and neither on the selection of the mapping function nor on that of the branch $g(t)$ of the mapping function. See [1], foot-notes at p. 90.
[7] G. Szegö, Über orthogonale Polynome, die zu einer gegebenen Kurve der komplexen Ebene gehören, Math. Zeit. vol. 9 (1921), pp. 218-270.
[81 P. R. Garabedian, Schwarz's lemma and the Szegö kernel function, Trans. Amer. Math. Soc. Vol. 67 (1949), pp. 1-35.
[9] L. V. Ahlfors, Bounded analytic functions, Duke Math. J. vol. 14 (1947), pp. 1-14.
[10] P. R. Garabedian, loc. cit.
[11] S. Ozaki, Some remarks on the univalency and multivalency of functions, Sci. Rep. of Tokyo Bunrika Daigaku Nos. 31-32 (1934), p. 49.
[12] A. W. Goodman, On the Schwarz-Christoffel transformation and p-valent functions, Trans. Amer. Math. Soc. vol. 68 (1950), p. 211.
[13] S. Ozaki, On the theory of multivalent functions II, Sci. Rep. T.B.D. vol. 4, No. 77 (1941), p. 57.
[14] K. Noshiro, On the theory of schlicht functions, Journ. Fac. Sci. Hokkaido Imp. Univ. (1) vol. 2, No. 3 (1934), pp. 129-155.
[15] T. Umezawa, Analytic functions convex in one direction, J. Math. Soc. Japan Vol. 4, No. 2 (1952), pp. 194-202.

