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Noshiro’s theoremsl) (generalizations of Dieudonn\’e’s $theorem^{2)}$ ) con-
cerning the univalency of regular functions were extended to the case
of $p$-valence by E. Sakai3). In the present paper we are going to gene-
ralize some of them to meromorphic functions which are defined in a
multiply-connected domain. By accomplishing this task we shall also
be able to extend Z. Nehari’s results4) and to make them more sharp.

LEMMA 1. Let $\varphi(z)$ be regular in an n-ply connected domain
$D$ and let $\varphi(z)\subset T^{5)}$ in $D$, where $T$ is a given connected domain.
Let us denote by $u=g(t)$ an arbitrary branch of a function mapping
$T$ conformally on $|u|<1$ and suppose that $g(\varphi(z))$ is single-valued
in $D$, and put

(1) $\frac{1-|g(\alpha)|^{2}}{|g^{t}(\alpha)|}\equiv\Omega(\alpha, T)$ $(\alpha eT)^{6)}$.

Then

(2) $|\varphi^{\prime}(z)|\leqq 2\pi k(z, z)\Omega(\varphi(z), T)$ $(z\in D)$ ,

where $k(z, \xi)$ denotes the Szeg\"o kernel function7) of $D$ .
PROOF. In order that the integration be permissible we assume

that the boundary $I^{\cdot}$ of $D$ consists of smooth curves and that $\varphi(\zeta)$ is
continuous on $I^{\gamma}$ ; but once the result is obtained, both assumptions
can easily be disposed of. Indeed, if $D$ is not smoothly bounded, we may
approximate $D$ by a sequence of domains $D_{n}$ which satisfy $D_{n}\subset D,$ $D_{n}$

$\subset D_{n+1},\lim_{n\rightarrow\infty}D_{n}=D$ and whose boundaries $\Gamma_{n}$ are smooth. If we replace

$D$ by $D_{n}$ , the $addition^{1}a1$ assumption under which we prove Lemma 1
are satisfied. The general result then follows by letting $ n\rightarrow\infty$ and
observing that the Szego kernel function $k(z, z)$ is a continuous
domain function.
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Now by hypothesis,

$\frac{g(\varphi(\zeta))-g(\varphi(z))}{1-g(\varphi(z))g(\varphi(\zeta))}$ $(z, \zeta eD)$

is regular and single.valued in $D$ , and by using the residue theorem,
we obtain

(3) $ 1^{\int_{-}}|\mathscr{J}\varphi(z^{\prime}))|g(\varphi(z))\varphi_{-}(z)_{2}=\frac{1}{2\pi i}\int_{T}\frac{g(\varphi(\zeta))-g(\varphi(z))}{1-\overline{g}(\varphi\overline{(z}))g(\varphi(\zeta))}Q(\zeta, z)d\zeta$ ,

where $Q(\zeta, z)$ is an arbitrary single-valued function of $\zeta eD$ which is
regular in $D+l$ ’ except at the point $\zeta=z$ where it has the principal
part $1/(\zeta-z)^{2}$ .

According to Garabedian8) the particular function $\alpha\zeta,$ $z$) can be
chosen so that

(4) $\div F(\zeta, z)Q(\zeta, z)d\zeta>0$, $\zeta e\Gamma$ ,

where $F(\zeta, z)$ is the function introduced by Ahlfors9), which maps $D$

onto the n.times covered unit circle, and $|F(\zeta, z)|=1$ if $\zeta e\Gamma$ . By
recalling that $|g(\varphi(z))|<1$ and remarking the above fact, we obtain
from (3),

$\frac{|g^{\prime}(\varphi(z))||\varphi^{t}(z)|}{1-|g(\varphi(z))|^{2}}\leqq\frac{1}{2\pi}\int_{T}|Q(\zeta, z)d\zeta|$

$=\frac{1}{2\pi}\int_{T}|\div F(\zeta, z)Q(\zeta, z)d\zeta|$ (by (4))

$=\frac{1}{2\pi i}\int_{T}F(\zeta z)Q(\zeta, z)d\zeta$

$=F(z, z)$

On the other hand it was shown by $Garabedian^{1(1)}$ that $F(z, z)=2\pi k(z, z)$ .
Therefore we obtain (2). Q. E. D.
Remark. Hereafter, for the sake of convenience we assume that

the domain $D$ in which families of functions are defined contains the
origin.

THEOREM 1. Under the assumptions of Lemma 1, $f(z)=z^{P}\varphi(z)$ ,
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where $p$ is a positive or negahve integer and $\varphi(0)\neq 0$ , is $|p|$ -valent
and starshaped in the largest circle $C$ about the origin all of whose
points satisfy

(5) $|z|k(z, z)\frac{\Omega(\varphi(z),T)}{|\varphi(z)|}<(2\pi)^{-1}|p|$ .

PROOF. By (2) and (5) we have

(6) $|z\frac{\varphi^{\prime}(z)}{\varphi(z)}|<|p|$ .

Since $\mathfrak{R}\frac{zf^{\prime}(z)}{f(z)}=p+\mathfrak{R}\frac{z\varphi^{\prime}(z)}{\varphi(z)}$ , by using (6) we obtain

$\mathfrak{R}\frac{zf^{\prime}(z)}{f(z)}>p-|z\frac{\varphi^{t}(z)}{\varphi(z)}|>0$ if $p>0$ ,

$\mathfrak{R}\frac{zf^{\prime}(z)}{f(z)}<p+|z\frac{\varphi^{\prime}(z)}{\varphi(z)}|<0$ if $p<0$ .

Hence by Ozaki’s theorem $f(z)$ is $|p|\cdot valent$ and starshaped in $C$.
THEOREM 2. Let $\varphi(z)$ be regular and single.valued in D. Further

let $\mathfrak{R}\varphi(z)>0$ in D. Then $f(z)=z^{p}\varphi(z)$ is $|p|$ -valent and starshaped
in the largest circle about the origin all of whose points satisfy
(7) $|z|k(z, z)<(4\pi)^{-1}|p|$ .

PROOF. Considering a half-plane $T:\mathfrak{R}t>0$ and taking a map-
ping function $g(t)=(1-t)/(1+t)$ in Theorem 1, we can say that $f(z)$

is $|p|$ -valent and starshaped in the largest circle about the origin all
of whose points satisfy

(8) $|z|k(z, z)\frac{\mathfrak{R}\varphi(z)}{|\varphi(z)|}<(4_{\pi})^{-1}|p|$

or
(9) $|z|k(z, z)<(4_{\pi})^{-1}|p|$ ,

since

$1>\frac{\mathfrak{R}\varphi(z)}{|\varphi(z)|}>0$ .
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Remark. In the case where $D$ is the unit circle, $k(z, z)=\frac{(2\pi)^{-1}}{1-|z|^{2}}$ ,

whence Theorems 1 and 2 reduce to Noshiro’s and Sakai’s theorems.
THEOREM 3. Let $log\varphi(z)$ be regular and single-valued in $D$ .

Further let $m<|\varphi(z)|<M$ in D. Then $f(z)=z^{\rho}\varphi(z)$ is $|p|$ -valent
and starshaped in the largest circle about the origin all of whose $p\dot{\alpha}nts$

satisfy

(10) $|z|k(z, z)\cdot\cos[\frac{\pi}{2}\frac{\log|\varphi(z)|^{2}-\log m-\log M}{\log M-\log m}]\cdot\log\frac{M}{m}<\frac{|p|}{4}$

$or$

(11) $|z|k(z, z)\log\frac{M}{m}<\frac{|p|}{4}$

PROOF. We may consider a ring-domain $T:m<|t|<M$ , which
can be mapped on $|u|<1$ by the function

(12) $g(t)=[\exp(i\frac{\pi}{2}\cdot\frac{\log\frac{t}{}-\sqrt{mM}}{\log\sqrt{\frac{M}{m}}})-1];[\exp(i^{\pi_{-}}2\frac{\log\frac{t}{\sqrt{mM}}}{\log\sqrt{\frac{M}{m}}})+1]$ .

Remark. If we put $p=1,$ $m=e^{-N}$ and $M=e^{N}$, we have Z. Nehari’s
theorem.4) Again in the case where $D$ is the unit circle, we have
Noshiro’s or Sakai’s theorem.3)

THEOREM 4. Let $g(\log\psi(z))$ be regular and single-valued in $D$ .
Then $f(z)=z^{P}\psi(z)$ is $|p|$ -valent and starshaped in the largest circle $C$

about the origin all of whose points satisfy

(13) $|z|k(z, z)\Omega(\log\psi(z), T)<(2\pi)^{-1}|p|$ ,

where $g\langle\log\psi(z))$ and $\Omega(\log\psi(z), T)$ are the functions defined in
Lemma 1.

PROOF. If we put in Lemma 1 $\varphi(z)=\log\psi(z)$ , we have

$|\frac{\psi^{\prime}(z)}{\psi(z)}|\leqq 2\pi k(z, z)\Omega(\log\psi(z), T)$ .

Hence from (13) and the above inequality we obtain

$|z\frac{\psi^{t}(z)}{\psi(z)}|<|p|$ .
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Consequently again by Ozaki’s theoremll) $f(z)$ is $|p|\cdot valent$ and star-
shaped in $C$, if we have (13).

THEOREM 5. Let $\log\varphi(z)$ be regular and single-valued in $D$.
Further let 1. $u.b$ . $|\log\varphi(z)|=M$. Then $f(z)=z^{P}\varphi(z)$ is $|p|\cdot valent$

and starshaped in the largest circle about the origin all of whose
points satisfy

(14) $|z|k(z, z)(1-\frac{|\log_{\varphi}(z)|^{2}}{M^{2}})<\frac{(2\pi)^{-1}|p|}{M}$

$or$

(15) $|z|k(z, z)<\frac{2\pi)^{-1}|p}{M}(|$ .

PROOF. We may take, as $g(t)$ in Theorem 4,

$g(t)=t/M$ , $T:|l|<M$ .
Remark. If we put $p=1$ and adopt (15), we have Z. Nehari’s

theorem4).

LEMMA 2. A necessary and sufficient condition for a function
$f(z)=z^{p}\varphi(z),$ $\varphi(0)\neq 0$, regular for $|z|<r$, to be p-valently convexl2) in
$|z|<\rho$ for every $\rho<r$ is that

(16) $1+\mathfrak{R}\frac{zf^{;/}(z)}{f(z)}>0$ for $|z|<r$ .

PROOF. Evidently (16) is necessary.
If (16) is satisfied, then $f(z)$ maps $|z|<\rho$ onto a locally $convex^{I2)}$

region and by Ozaki’s $theorem^{I3)}f(z)$ is $p$-valent in $|z|<\rho$ for every
$\rho<r$ . Hence (16) is sufficient. Q. E. D.

Using the above lemma and noticing the relation

$1+\mathfrak{R}\frac{zf^{\prime\prime}(z)}{f(z)}=\mathfrak{R}\frac{z[zf^{\prime}(z)]^{\prime}}{zf(z)}$ ,

we obtain the following theorems by a slight modification of the
methods of proof used above.

THEOREM 6. Let $\mathscr{J}z^{1-p}f^{\prime}(z))$ be regular and $single\cdot valued$ in $D$

and let $z^{1-p}f^{\prime}(z)\neq 0$ at the origin ($p;po$sitive integer). Let further $r$

denote the radius of the largest circle about the origin all of whose
points satisfy
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(17) $|z|^{p}k(z, z)\frac{\Omega(z^{1-p}f^{\prime}(z),T)}{|f(z)|}<(2\pi)^{-1}p$ ,

where $g(z^{1-p}f^{\prime}(z))$ and $\Omega(z^{1-p}f(z), T)$ are the functions defined in Lemma
1. Then the $\dot{\alpha}rcle|z|<\rho$ is mapped by $f(z)$ onto a p-valently convex
regon for every $\rho<r$.

THEOREM 7. Let $g(\log[z^{1-p}f^{\prime}(z)])$ be regular and single-valued in
$D$ ($p$ ; positive integer). Let further $r$ denote the mdius of the largest
circle about the orign all of whose points satisfy

(18) $|z|k(z, z)\Omega(\log[z^{1-p}f^{\prime}(z)], T)<(2\pi)^{-1}p$ ,

where $g(\log[z^{1- p}f(z)])$ and $\Omega(\log[z^{1-p}f^{\prime}(z)], T)$ are the functions de-
fined in Lemma 1. Then the circle $|z|<\rho$ is mapped by $f(z)$ onto a
p.valently convex region for every $\rho<r$.

Remark. If we add, to the assumptions of the above Theorems 6
and 7, $m<|z^{1-p}f^{\prime}(z)|<M$ and $|\log[z^{1-p}f^{\prime}(z)]|<M$ respectively, and take
the mapping function (12) and $g(t)=t/M$ respectively, then we have a
generalization of $Z$. Nehari’s theorem4) concerning the radius of convexity
to the case of p-valence.

Analogously we have the following
THEOREM 8. Let $f^{\prime}(z)$ be regular and single-valued in D. Fur-

ther let $\mathfrak{R}f^{\prime}(z)>0$ . Then $f(z)$ is univalent and convex in the largest
circle about the oriin all of whose points satisfy

(19) $|z|k(z, z)<(4\pi)^{-1}$ .
$CoROLLARY$ . Let $f^{\prime}(z)$ be regular and $\mathfrak{R}f^{\prime}(z)>0$ for $|z|<1$ .

Then $f(z)$ is univalent in $|z|<1$ and convex for $|z|<\sqrt 2-1$ .
PROOF. As for the univalency in $|z|<1$ , Noshiro’s theoreml4)

can be used. For the convexity we may use Theorem 8.
Remark. Recently the present author has obtained many sufficient

conditions for $f(z)$ to be convex in one direction in. generalized forms,15)

which are also sufficient for $f(z)$ to be $p$-valent in $|z|<r$. By using
those conditions we can give many theorems analogous to these in the
present paper. But we refrain from describing those results.

Gumma University.
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