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It is known that the commutatorgroup of the general linear group
over a division algebra is simple $($modulo its $center)^{1)}$, but little is
known on the multiplicative group of a division algebra itself. In this
paper we shall consider this group as a group of substitutions of a
system of isomorphic subfields. We shall prove that this representa-
tion is always faithful. This fact constitutes a stronger result than a
generalization of a theorem of H. Cartan2), which we have proved in
our previous note3). Geometrically expressed, the group of inner auto.
morphisms of a central simple algebra becomes thus a group of linear
transformations which operates transitively on an algebraic variety.
Since a simple algebra is a symmetric algebra, this group is consisting
of rotations with respect to some metric.

Next, we shall treat generalized quaternion algebras as the sim-
plest case, and shall prove that their groups of inner automorphisms
are isomorphic to rotation groups of three dimensions and that all
rotation groups are found in this way. This is a generalization of
the wellknown parametrization of the real rotation group by real
quaternions on the one hand, and of the isomorphism of some rotation
groups with the projective general groups of dimension two4) on the
other hand. This result, combined with an idea of J. Dieudonn\’e by
which he has given some examples of rotation groups having an
infinite series of normal subgroups5), permits us to determine completely
the structure of rotation groups of three dimensions over the rational
number field.

It is also the case for an arbitrary symmetric algebra that the
multiplicative group of the algebra is represented into a rotation
$g$roup. Then, what subgroup of the rotation group will be the image
of this representation ? In \S 3, we shall prove that, if the image is th $e$
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whole rotation group then the algebra is, essentially, a generalized
quaternion algebra. This fact was found first in the real scalar case
by Mr. N. Iwahori, who gave us many advices on the whole of this
paper, and to whom the author wishes to say many thanks.

\S 1. A class of representations of the multiplicative group
of simple algebras.

Let $F$ be a field, $A$ a central simple algebra (of a finite dimen $\cdot$

sion) over F. $F$ will be assumed to contain an infinite number of
elements, since our main interest lies in the case where $A$ is a divi-
sion algebra. If $B$ is a simple subalgebra6) of $A$ other than $A$ and $F$,
we shall denote by $V(B)$ the commuter algebra of $B$ in $A$ . If an-
other simple subalgebra $B^{\prime}$ is isomorphic to $B$ over $F$, then the
isomorphism of $B$ with $B^{\prime}$ can be extended to an inner automorphism
of $A$ . Thus, denoting by $[B]$ the totality of subalgebras of $A$ iso-
morphic to $B$, the group $I(A)$ of all inner automorphisms of $A$ has
a representation as a transitive group of substitutions on $[B]$ . $I(A)$

is isomorphic to $A^{*}/F^{*}$ , the asterisk being used as usual to denote the
multiplicative group of a ring. If aBa $=B^{\prime}$ for $a$ in $A^{*}$ , we say
simply $a$ maps $B$ onto $B^{\prime}$ .

Now, the non-existence of invariant subrings ( $\neq A$ , SE $F$ ) in $A$

(IS.3) Theorem 1) implies the non.triviality of such a representation
of $I(A)$ with respect to every simple $B$. We shall prove here more-
over

PROPOSITION 1. The representation of $I(A)$ as a group of substi-
tutions on $[B]$ is faithful.

When $B$ is a commutative field $K$, we have a more precise result.
Namely

PROPOSITION 2. Let $K$ be a subfield of $A$ of degree $r>1$ over $F$.
i) If $K_{i}\in[K],$ $i=1,$

$\ldots\ldots,$

$1$, are such that $\bigcap_{i=1}^{l}V(K_{i})=F$, the group

of all inner automorphisms of A which map every $K_{i}$ onto $K_{i}$ itself
$(i=1,\ldots\ldots, 1)$ is a finite group of order at most $r^{l}$ .

ii) There are a finite number of subfields $K_{i}e[K],$ $i=1$ , ..., $m$ ,
$K_{1}=K$, such that the only inner automorphism mapping every $K_{i}$

onto $K_{i}$ is the identity automorphism.
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PROOF OF PROPOSITION 2. By means of the non-existence of
invariant subrings we can find actually a finite number of fields
$K_{i},$ $i=1$ , ......, $l$, such that $K_{i}\in[K],$ $K_{1}=Kand\cap V(K_{i})=F$, since
$K_{\alpha}e[K]\cap V(K_{\alpha})$ is an invariant subring other than $A$ . Let $H$ be the totality of

inner automorphisms which map every $K_{i}$ onto $K_{i},$ $i=1,$
$\ldots\ldots,$

$l$, and
assume that $H$ contains $r^{l}+1$ distinct automorphisms. Since every
one of these automorphisms induces an automorphism of $K_{1}$ over $F$,
and since $K_{1}$ has at most $r$ automorphisms over $F$, at least $r^{l-1}+1$

automorphisms in $H$ induce on $K_{1}$ one and the same automorphism.
These $r^{l-1}+1$ automorphisms map every $K_{i}$ onto $K_{i},$ $i=2,\ldots\ldots,$ $1$.
Thus, in repeating this argument, we obtain finally two distinct
automorphisms $\sigma$ and $\tau$ which have the same effect on $K_{i},$ $ i=1,\ldots\ldots$ ,
$l$. Let $a$ and $b$ in $A^{*}$ give rise to $\sigma$ and $\tau$ , respectively, then $a^{-1}b$

commutes with every elements in any one of $K_{i},$ $i=1,\ldots\ldots,$ $l$. Thus
we have $a^{-I}b\in\cap V(K_{i})=F$, which implies that $\sigma$ and $\tau$ are identical:
but this is a contradiction, and the first half i) of Proposition 2 is
proved.

Therefore, the kernel of the homomorphic mapping of $I(A)$ into
the group of substitutions on $[K]$ is of course a finite group. Now
we have

LEMMA 1. The only normal subgroup of $I(A)$ of finite order is
the identity group.

PROOF. We know that, if $N(\neq(1))$ is a normal subgroup of
$I(A)$ then $I(A)$ can be considered as a $g$roup of automorphisms of $N$.
(The last proposition in IS.) Since $I(A)\simeq A^{*}/F^{*}$ is not a finite
group by our assumption on $F,$ $N$ can, of course, not be a finite
group.

By means of this Lemma, Proposition 1 is proved for the case
where $B$ is a commutative field.

This fact, together with i), yields immediately the second half ii)

of Proposition 2.
PROOF OF THE GENERAL CASF OF PROPOSITION 1. Let $N(B)$ be

the totality of elements of $A$ mapping every $B$ ‘ in $[B]$ onto $B$‘ itself,
then $N(B)$ is a normal subgroup of $A^{*}$ . If the center $K$ of $B$ has a
degree $>1$ over $F$ then $N(B)\subset N(K)=F^{*}$ , since $K$ is a com-
mutative field. Hence we shall confine ourselves to $B$ whose center
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coincides with F. $A$ is then a Kronecker product of $B$ with its com-
muter $C$, and $N(B)$ is contained in $B^{*}C^{*}$ . We shall show $N(B)=F^{\kappa}$ .

a) First, we consider the case where $A$ is not a division algebra.
Then, $A$ is a matrix algebra of a degree $>1$ over a division algebra
$D$ , and the commutator group $S$ of $A^{*}$ is simple $mod$ . $F^{*}$ . Thus, if
$N(B)\neq F^{*},$ $N(B)\supset S$. Let $e_{ij}$ denote the matrix units of $A$ . Then
$1+\lambda e_{ij},$ $\lambda\in D,$ $i\neq j$, are all contained in $S^{7)}$. If $b\in B$ then

(1) $(1+\lambda e_{ij})b(1-\lambda e_{ij})-b\in B$ .
Thus, it is easy to see that $B$ contains an element $b=\sum\beta_{kl}e_{kl}$ such
that one of its coefficients not on the diagonal, say $\beta=\beta_{ij},$ $j\neq i$, is not
zero. Applying (1) to this $b$ with $\lambda=\lambda_{1},$ $\lambda_{2}\neq 0$ in $F$, and subtracting
the one result from the other, we have

$(\lambda_{1}-\lambda_{2})\beta e_{ij}\in B$ .
Take $\lambda_{1}\neq\lambda_{2}$ , then we have

$\beta e_{ij}\in B$ .
Repeating the operation of the form (1) on this element we obtain

$\beta e_{kl}\in B$ , $k\neq l$ .
In the same way we see that

$\gamma e_{kl}eC$ , $k\neq l$ .
with $\gamma\neq 0$ in $D$ . Since $\gamma e_{kl}$ commutes with every element of $B$ , we
should have

$\gamma e_{kl}\cdot\beta e_{lk}=\beta e_{lk}\cdot\gamma e_{kl}$ ,

but this implies

$\gamma\beta e_{kk}=\beta\gamma e_{ll}$ .
This is not the case, since $e_{kk}$ and $e_{ll}$ are linearly independent over $D$ .
Thus it remains only the case $N(B)=F^{*}$ .

b) Next, let $A$ be a division algebra.
LEMMA 2. Let $B$ be a central simple algebra over F. Any nor-

mal subgroup $B_{1}$ of $B^{*}$ , containing $F^{*}$ and not identical with $F^{*},$ con-
tains an F-basis $(u_{i}),$ $i=1,\ldots\ldots,$ $r$, of $B$ such that none of $u_{i}$ is con-
tained in $F^{*}$ .
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PROOF. We can find in $B_{1}$ an F-basis $(v_{i})$ of $B$ by Corollary 1to
Theorem 1 in IS. Then $(b^{-1}v_{i})$ is also a basis for anyb in $B_{I}$ . Thus,
if every F-basis contained in $B_{1}$ has an element of $F$, every element $b$

of $B_{1}$ is expressible in the form $b=v_{\rho}f,$ $1\leqq\rho\leqq r,$ $f\in p*$ Then $B\sqrt F^{*}$

should be a finite group, but this is not the case by the preceding
Lemma.

We shall assume that $N(B)\neq F^{*}$ . Let $B_{1}$ be the totality of $b$ in
$B^{*}$ for which we can find a $c$ in $C^{*}$ such that $bc$ is in $N(B);B_{1}$ is
a normal subgroup of $B^{*}$ . By the above Lemma, we can take an F-
basis $(u_{i}),$ $i=1,\ldots\ldots,$ $r$, of $B$ such that $u_{i}\in B_{1},$ $u_{i}\not\in F,$ $i=1,$

$\ldots\ldots,$
$r$.

For each $u_{i}$, take $c_{i}$ in $C^{*}$ such that $u_{i}c_{i}\in N(B)$ . We shall fix for a
moment two suffixes $s$ and $t$ for which $u_{t}u_{s}\neq u_{s}u_{t}$ . Let $C_{t}$ be a
commutative $subfield_{-\supseteqq}F$ of $C$, containing the element $c_{t}$ . If $c\in C_{t}$ and
$c\not\in F$, we can find $\alpha_{j}$ in $F,$ $i=1,$

$\ldots\ldots,$
$r$, and $c^{\prime}$ in $C^{*}$ such that

(2) $u_{t}c_{l}(u_{s}+c)=(u_{s}+c)(\sum_{j}u_{j}\alpha_{j})d$ .
Since $(u_{i})$ are linearly independent over $C,$ (2) implies $r$ equalities on
$c_{t},$ $c,$

$c^{\prime}$ with coefficients in $F$, i.e.
$(3_{k})$

$\gamma_{kts}c_{t}=(\sum_{j}\gamma_{ksj}\alpha_{j}+\alpha_{k}c)c^{\prime}$, $k\neq t$,

$(3_{t})$
$(\gamma_{tts}+c)c_{t}=(\sum_{J}\gamma_{tsj}\alpha_{j}+\alpha_{t}c)c^{\prime}$,

where $\gamma s$ are determined by $u_{i}u_{j}=\sum u_{k}\gamma_{kij}$ . If every $\alpha_{k},$ $k\neq t$, is
zero, we may suppose $\alpha_{t}=1$ , and (3) are reduced to

$(3_{k})^{\prime}$ $\gamma_{kts}c_{t}=\gamma_{kst}c^{\prime}$ , $k\neq t$,
$(3_{t})^{\prime}$ $(\gamma_{tts}+c)c_{t}=(\gamma_{tst}+c)c^{\prime}$ .
$c_{t}(c^{\prime})^{-1}$ is in $F$ by $(3_{k})^{\prime}$ , and then we have $c_{t}=c^{\prime}$ by $(3_{t})^{\prime}$ , as we have
assumed $c\not\in F$. But this should lead to $u_{t}u_{s}=u_{s}u_{t}$ , against our as-
sumption.

Thus one of $\alpha_{k}$ , say $\alpha_{T},$ $T\neq t$, is not zero; by $(3_{k})$ we have

$(4_{k})$

$\alpha_{k}=\frac{\gamma_{kls}}{\gamma_{Tts}}\alpha_{T}$ ,
$)k\neq t$.

$\gamma_{kts}\sum_{j}\gamma_{Tsj}\alpha_{i}=\gamma_{Tts}\sum_{j}\gamma_{ksj}\alpha_{j}$ .
Since $\alpha_{k}\neq 0$ is equivalent to $\gamma_{kts}\neq 0,$ $\alpha_{T}\neq 0$ is always the case for
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$c\in C_{t},$ $\not\in F$. We may suppose $\alpha_{T}=1$ . then $(4_{k})$ are linear equations in
$\alpha_{t}$ with constant coefficients. On the other hand, in combining $(3_{T})$

with $(3_{t})$ we have a non-trivial quadratic equation in $c$ whose coef-
ficients are linear functions of $\alpha_{t}$ ; since this equation is satisfied by
many values for $c$ in the commutative field $C_{t},$

$\alpha_{t}$ can not be unique.
Hence the coefficients of $\alpha_{t}$ in $(4_{k})$ must be zero, and we have

$(5_{k})$ $\gamma_{kts}\gamma_{Tst}=\gamma_{kst}\gamma_{Tts}$ , $k\neq t$.
If we change the r\^ole of $u_{s}$ and $u_{t}$ , we find that there is a suffix

$S\neq s$ , such that
$(6_{h})$ $\gamma_{hrt}\gamma_{Sts}=\gamma_{hts}\gamma_{Sst}$ , $h\neq s$ .
If $S\neq t$, then $(6_{t})$ together with $(5_{S})$ gives

$(5_{t})$
$\gamma_{tts}\gamma_{Tst}=\gamma_{tst}\gamma_{Tts}$ .

If $S=t$ , but $\tau\neq s,$ $(6_{T})$ is the same as $(5_{t})$ . Finally, is $S=t$, and $T=s$

then one of $\gamma_{hts},$ $h\neq s,$ $t$, is not zero (for otherwise we should have
$u_{t}u_{s}=\mu u_{t}+\nu u_{s},$ $\mu,$

$\nu\in F$, whence $1=\mu u_{s}^{-1}+\nu u_{t}^{-1}$ , which would imply
$u_{t}u_{s}=u_{s}u_{t})$ , and $(5_{t})$ follows from $(5_{h})$ and $(6_{h})$ .

We have therefore obtained for any $i,$ $j=1,$
$\ldots\ldots,$

$r$,

$tl_{j}u_{i}=u_{i}u_{j}\delta_{ij}$ , $\delta_{ij},$ $eF^{*}$ .
But, from these formulas follows that one of $u_{i}$ must be in $F^{*}$ by the
argument used in IS $n^{o}6$ . This contradicts our choice of $(u_{i})$ , and Pro-
position 1 is completely proved.

$CoROLLARY$. $[B]$ contains an infinite number of simple subalgebras,
except for the cases $B=A$ and $B=F$.

We shall assume in the following that the characteristic of $F$ is
not two. Let $F^{n}$ be a vector space of dimension $n$ over $F$, and $f$ be
a non-degenerate quadratic form on $F^{n}$ . $f$ determines a metric of $F^{n}$ ,
and the orthogonal group $O_{n}(F, f)$ is defined as the set of all linear
transformations conserving this metric. The sub$g$roup of $O_{n}(F, f)$ of
index 2 consisting of the transformations with the determinant 1 is
called the rotation group $O_{l}^{+}(F, f)$ . The matrix $M$ of $f$ with respect
to a basis of $F^{n}$ is a non.singular symmetric matrix; conversely any
non-singular symmetric matrix $M$ defines a non-degenerate quadratic
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form $f$. The condition for a non-singular $T$ to be in $O_{n^{+}}(F, f)$ is
that
(7) ${}^{t}TMT=M$ , and $\det T=1$ .

Now, let $A$ be a symmetric algebra of dimension $n$ over $F$, then
the underlying vector space of $A$ is $F^{n}$ . An inner automorphism
$t\rightarrow sts^{-1}$ of $A$ induces on $F^{n}$ a linear transformation $I_{s}$ , whose matrix
is

$I(s)=S(s)^{t}R(s)^{-1}$ ,

where $S$ and $R$ denote the left and the right regular representations
of $A$ , respectively. Since we have a non-singular symmetric matrix
$M$ intertwining $S$ with $R$ , and since $S(s)$ commutes with ${}^{t}R(s)^{-1}$ , the
matrix $I(s)$ satisfies the condition (7) with this $M$. Hence the group
$I(A)$ is represented in some rotation group.

Now, let $A$ be a central simple algebra, and let an irreducible
equation

(8) $G(t)=0$

of a degree $>1$ in $F$ have a solution in A. (8) is equivalent to a
system of $n$ equations

(9) $G_{j}(t_{1}, \ldots\ldots, t_{n})=0,$ $i=1,$
$\ldots\ldots,$

$n$ ,

in $n$ coordinates $t_{1},$ $t_{n}$ of $t$. Let $V_{G}$ be the variety in $F^{n}$ deter-
mined by (9). Then $I_{s}$ maps $V_{G}$ onto $V_{G}$ itself; and for any two
points $t$ and $t$

‘ of $V_{G}$ , there exists a rotation $I_{s}$ mapping $t$ onto $i^{\prime}$ ,
since $t$ and $t$

‘ determine in $A$ isomorphic subfieldss). Thus we have
by Proposition 1

PROPOSITION 3. The group $I(A)$ is represented faithfully as a
group of rotations of $F^{n}$ , which opemtes transitively on $V_{G}$ .

\S 2. Orthogonal groups of three dimensions.

We shall consider the case of generalized quaternion algebras in
detail. Let $a\neq 0$ and $b\neq 0$ be in $F$, and $A=(a, b)$ be a generalized
quaternion algebra over $F$ whose basis elements are $u_{0},$ $u_{1},$ $u_{2},$ $u_{3}$, and
whose table of multiplication is determined by
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$u_{0}=1,$ $u_{3}=u_{1}u_{2}=-u_{2}u_{1}$ ,

$u_{1}^{2}=a$ , $u_{2}^{2}=b$ .
Any inner automorphism $I_{s}$ of $A$ leaves fixed the straight line $\{u_{0}\}$ ,
and $I_{s}$ is a rotation of the space $F^{3}=\{u_{1}, u_{2}, u_{3}\}$ orthogonal to $\{u_{0}\}$ .
The restriction of the metric of $A$ to $F^{3}$ has the form

(10) $\overline{f(}t$ ) $=t^{2}=at_{1}^{2}+bt_{2}^{2}-abt_{3}^{2}$ ,

where $t=u_{1}t_{1}+u_{2}t_{2}+u_{3}t_{3}$ . If we denote by $I_{s}^{\prime}$ the restriction of $I_{s}$ on
$F^{3}$, then the mapping $I_{s}\rightarrow I_{s}^{\prime}$ is an isomorphism of $I(A)$ into $O_{3^{+}}(F$,

$\overline{f})$ . We then prove
PROPOSITION 4. $I(A)$ is isomorphic with $O_{3^{+}}(F,\overline{f})$ .
PROOF. Let $V$ be the variety in $F^{3}$ determined by $t^{2}=a$ ; $V$ is

mapped onto itself by every rotation of $F^{3}$ . We shall show that the
group $I(A)$ is transitive on $V$. If $t^{2}-a$ is irreducible in $F$, this fol-
lows from Proposition 3. If it is reducible, $A$ is a matrix algebra of
degree two over $F$ ; it is easy to see that the elementary divisors of
$x-t$ (where $x$ is an indeterminate) are independent of the choice of $t$

$\in V$, and the elements of $V$ are conjugate with each other under inner
automorphisms. Hence we have only to prove that any transforma $\cdot$

tion leaving fixed the point (1,0,0) on $V$ is of the form $I_{s}^{\prime}$ . In $I(A)$

such transformations are induced by elements of the form $ s=u_{1}+\alpha$ ,
$\alpha\in F$ , and corresponding matrices $I^{\prime}(s)$ have the form

(11)
,

where $d=\alpha^{2}-a$ . On the other hand, let $T=(\alpha_{ij})$ be a rotation which
leaves fixed the point (1,0,0). If $\alpha_{32}=0$ , then $T$ is the identity. If
$\alpha_{32}\neq 0$ , put

$\alpha=(1+\alpha_{22})/\alpha_{32}$ ,

then $T$ has the form (11) in view of the condition (7), as desired.

Next, let an arbitrary non.degenerate ternary quadratic form
$f=pt_{1}^{2}+qt_{2}^{2}+rt_{3}^{2}$
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be given, multiply the form $f$ by $-r/pq$ , and $denot\underline{e}a=-r/q,$ $b=-r/p$,
then we have the form (9), and $O_{3^{+}}(F, f)=O_{3^{+}}(F, f)$ . Hence by Pro-
position 4 we have

PROPOSITION 5. The rotation group $O_{3^{+}}(F, f)$ is isomorphic to
$I(A)$ , where $A=(a, b)=(-qr,-pr)$ .

$CoROLLARY$ . In $O_{3}^{+}(F, f)$ , every normal subgroup $\neq(1)$ has the
centralizer (1).

This follows from the Theorem 4 of IS.
If $f$ is a null form, i.e. if $f$ represents zero non-trivially, then the

algebra $A$ has an element $t$ such that $l^{2}=0$ , and $A$ is a matrix algebra
of degree two over $F$, and hence $O_{3}^{+}(F, f)$ is isomorphic to the pro $\cdot$

jective general linear group $PGL(F, 2)^{9)}$ , and it is known that the
commutator group of $O_{3^{+}}(F, f)$ is simple in this case.

If $f$ is not a null form, $A$ is a division algebra. In this case the
structure of $O_{3^{+}}(F, f)$ is not known in general. Let the ground field
$F$ be an algebraic number field, then the form $f$ remains definite on
some $\mathfrak{p}.adic$ extensions $F_{\mathfrak{p}}$ of $F^{10)}$ , and the group $O_{3^{+}}(F_{\mathfrak{p}}, f)$ for such
$\mathfrak{p}$ is isomorphic to $A_{\mathfrak{p}}^{*}/F_{\mathfrak{p}}^{*}$ , where $A_{\mathfrak{p}}=(a, b)_{\mathfrak{p}}$ is a division algebra
over $F_{\mathfrak{p}}$ If $F$ has furthermore at most one real infinite prime, this is
the case for a finite prime $\mathfrak{p}$, since there are at least two primes where
$A$ does not spliti1). Then, let $\pi$ be a prime element of $F_{\mathfrak{p}},$ $\Pi$ that of
$A_{\mathfrak{p}}$ such that $\Pi^{2}=\pi$ , and $R$ a complete system of representatives of
the residue class field of $A_{\mathfrak{p}}$ ; then every element $t$ of $A_{\mathfrak{p}}$ is expanded

in. the form

$t=\sum_{i=h}^{\infty}\tau_{i}\Pi^{i}$ $\tau_{i}\in R,$
$\tau_{h}$ \yen $0(mod. \pi)$ .

Let $E_{0}$ be the group of all units, i.e. elements for which $h=0$ and $E_{k}$

be the sub $g$roup of $E_{0}$ consisting of units congruent to 1 $mod.\Pi^{k}$ ,
$k=1,2,\ldots\ldots 12)$ Let $N_{k}^{\prime}$ be the subgroup of $O_{3^{+}}(F_{t}, , f)$ corresponding
to $E_{k}\cdot F_{v}^{*}/F_{\mathfrak{p}}^{*}$ under the isomorphism mentioned above; $N_{k}^{\prime},$ $k=0,1$ ,
2 are normal subgroups of $O_{3^{+}}(F_{\mathfrak{p}}, f)$ such that i) $ N_{0}^{\prime}\underline{\supset}N_{1}^{\prime}\underline{\supset}\ldots\ldots$

ii) factor groups $O^{+}/N_{0}^{\prime}$ and $N_{k}^{\prime}/N_{k+1}^{\prime},$ $k=0,1,2,\ldots\ldots are$ abelian and
$iii)\cap N_{k}^{\prime}=(1)$ .

Now, $o_{3^{+}}(F, f)$ may be considered as a subgroup of $O_{3}^{+}(F_{\mathfrak{p}}, f)$ ,
and $N_{k}=N_{k}^{\prime}\cap O_{3}^{+}(F, f)$ is a normal subgroup of $O_{3^{+}}(F, f)$ . Since
$O_{3}^{+}(F, f)$ is not solvable by Corollary to Proposition 5, we have
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actually an infinite number of distinct $N_{k}$ on account of the condition
i), ii), iii) above. Thus we have proved

PROPOSITION $6^{5)}$. Let $F$ be an algebraic number field having at
most one real infinite prime, and $f$ a ternary quadratic form on $F$.
If $f$ is not a null form, then the rotation group $O_{3}^{+}(F, f)$ has an in.
finite sequence of normal subgroups $N_{i},$ $i=1,2$ ,......, such that i)
$ O^{+}\supset N_{1}\supset N_{l}\supset\cdots\cdots$ , ii) $O^{+}/N_{1},$ $N_{1}/N_{2}$ , ......, are all abelian and
$iii)\cap N_{i}=(1)$ .

Remark. J. Dieudonn\’e proposed an interesting problem: whether
the principle of ((passage from local to global)) of H. Hasse is also
true for orthogonal groups $\pi$ ) Since we have seen that the commutator
group of $O_{3^{+}}(F, f)$ is simple if and only if the algebra $A=(-qr,-pr)$
is a matrix algebra, this problem is answered in affirmative in the
three dimensional case for the field having the above property; for
example, the rational number field $Q$, the field $Q(e^{2_{l}\iota i/n})$ , and the
imaginary Galois extensions of $Q$ in general, etc.

\S 3. Impossibility of finding another rotation groups.

Let $A$ be a non-commutative algebra over $F$ with the identity 1,
and let the center $Z$ of $A$ be non-isotropic13) with respect to a non-
degenerate quadratic form $f$. We shall denote by $B$ the orthogonal
complement of $Z$ in $A$ . Our aim is to determine the structure. of
algebras satisfying the following condition:

(R) Every rotation of $B$ with respect to $f$ is induced by an inner
automorphism of $A$ ; that is, if $u$ is a rotation of $B$ there exists a
regular element $t$ of $A$ such that $u(x)=txt^{-1}$ for every $x$ in $B$.

Let $A$ satisfy this condition. If $B$ is of an even dimension, then
the symmetry of $A$ with respect to $Z$ induces a rotation on $B$ ; by the
condition (R) we have a regular element $t$ of $A$ such that tbt $=-b$ ,
$b\in B$. Since $ttt^{-1}=t$ , we have $t\in Z$, but this is evidently not the case.
Hence $B$ has an odd dimension; in particular $B$ has at least three
dimensions.

First, we shall assume that $A$ satisfies the following condition:
(r) $B$ contains a regular element.
Let $b$ be such a regular element, $U$ be a non-isotropic subspace of
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$B$ of dimension two containing the vector $b^{14)}$ , and $V$ its orthogonal
complement, There exists a regular element a $e$ $A$ which induces the
symmetry of $B$ with respect to $V$ ; then, since the elements $vb$ of $Vb$

are transformed $into\rightarrow vb$ by $a$ , we have $Vb\underline{\subset}U$ , hence it holds that

$\dim V=\dim Vb\leqq\dim U=2$ .
Since, on the other hand, $V$ contains $Z$ and $a$ where $a\not\in Z$, it follows
that $\dim V=2,$ $V=\{1, a\}$ , and $U=Vb=$ { $b$ , ab}. We have moreover
i) $ab=-ba$, by the definition of $a$ ,
ii) $a^{2}=\alpha\neq 0$ is in $F$, since $a^{2}$ commutes with every element of $A$ , and
iii) $b^{2}=\beta\neq 0$ is in $F$, since $b^{2}$ commutes with both $a$ and $b$ .
Hence it is proved that $A$ is a generalized quaternion algebra.

Next, we assume that $B$ contains no regular element. Let $b$ be a
non-isotropic vector of $B$ , and let a regular element $t$ induce the sym-
metry of $B$ with respect to the straight line $\{b\}$ ; then $Z+\{b\}$ is the
ring consisting of elements of $A$ which commute with $t$ . Put $b^{2}=z_{0}+$

$\beta b,$ $z_{0}eZ,$ $\beta\in F$ ; there is a rotation $u$ such that $u(b)=-b$, and $u$

leaves fixed the vector $b^{2}-z_{0}$ , hence we must have $b^{2}=z_{0\in}Z$ . Since
$t$ is in $Z+\{b\}$ , we may suppose that $t=z_{1}+b,$ $z_{1}\in Z$ ; from the fact $t^{2}$

$\in Z$ , we see immediately $z_{1},b=0$ , whence we have $z_{0}=tb\neq 0$ and $z_{1}t=$

$z_{1}^{2}\in Z$ . Let $U$ be the orthogonal complement of $\{b\}$ in $B$, and $u$ be
any vector of $U$, then we have by the definition of $t$ that

$z_{1}tu=-z_{1}ut=-uz_{1}t$

$=z_{1}^{2}u=uz_{1}^{2}=uz_{1}t$ .
It follows that $uz_{1}t=0$ ; since $t$ is regular we have $uz_{1}=0$ . Thus,
combining with $z_{1}b=0$ , we see that

(12) $z_{1}B=0$ .
Now, let $b_{i}$ , $i=1,2,\ldots\ldots be$ an orthogonal basis of $B$ , then $b_{i}^{2}\neq 0$

is in $Z$, and $b_{i}b_{j},$ $i\neq i$ , is in $B$ . Let $A_{1}$ be the left annihilator of $B$

in $A$ , which is not the zero ideal by (12), and $s=z+\sum\beta_{i}b_{i},$ $zeZ$ be
an element of $A_{1}$ ; then we have

$zb_{j}+\sum\beta_{i}b_{i}b_{j}=0$ , $ j=1,2,\ldots\ldots$ ,

which implies that the element $\beta_{j}b_{j}^{2}$ of $Z$ is written an the sum of
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the elements of $B$, hence we have $\beta_{j}b_{j}^{2}=0$, so that $\beta_{j}=0,$ $j=1,2,$
$\ldots\ldots$ .

Thus we have seen that $s=z$ is in $Z$, and $A_{1}(\leq Z)$ is a two-sided
ideal of $A$ .

Let $A_{2}$ be the annihilator of $A_{1}$ in $A$ . Since the regular element
$t$ has the decomposition $t=z_{1}+b,$ $z_{1}\in A_{1},$ $b\in B\underline{\subset}A_{2}$ , we see that
i) $A_{1}\cap A_{2}=(0)$ , since $x\in A_{1}\cap A_{2}$ annihilates $t$ ,
ii) $A$ is the direct sum of $A_{1}$ and $A_{2}$ , since every $y\in A$ is written as

$y=z_{1}t^{-1}y+bt^{-1}y,$ $z_{1}t^{-1}y\in A_{1}bt^{-1}y\in A_{2}$ , and
iii) $b$ is regular in $A_{2}$ , since $b$ is the $A_{2}\cdot component$ of $t$.

It is evident that the center $Z_{2}$ of $A_{2}$ , being the intersection $Z\cap A_{2}$ ,
is the orthogonal complement of $B$ in $A_{2}$ . Thus, the algebra $A_{2}$ satis-
fies the condition (r), and is therefore a generalized quaternion
algebra.

Conversely, let $A_{1}$ be an arbitrary commutative algebra with an
identity and $A_{2}$ be a generalized quaternion algebra, then $A=A_{1}+A_{2}$

satisfies the condition (R) by Proposition 4. Thus, we have proved
PROPOSITION $7^{15)}$. An algebra $A$ satisfies the condition (R) $lf$ and

only if $A$ is a direcl sum of a generalized quaternion algebra and a
commutative algebra with an identity.
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