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On the automorphisms of a real semi-
simple Lie algebra.
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Let $\mathfrak{G}$ be a real semi-simple Lie algebra and $G$ the group of auto-
morphisms of $\mathfrak{G}$ . As is well-known, the connected component $G^{0}$ of
the identity of $G$ coincides with the group of inner automorphisms of
$\mathfrak{G}$ . The object of this paper is to investigate the structure of the
factor group $G/G^{0}$ ; $i$ . $e$ . the type of outer automorphisms of $\mathfrak{G}$ modulo
the inner automorphisms.

E. Cartan [2] 1) has treated our subject in 1927, and established
intimate relations between the group $G$ and the group of isometric
transformations in a certain type of Riemannian space. However, the
problem being algebraic in its character, a more direct treatment might
be desirable. Now, Cartan [1] had earlier dealt with the same subject
by a more algebraic method for the case where the Lie aIgebra $\mathfrak{G}$ is
complex semi-simple. F. Gantmacher [4] [5] attempted to rearrange
Cartan’s results concerning complex semi-simple Lie algebras on the
basis of the structure theory founded by H. Weyl [9], and then applied
so obtained results to the classification of real simple Lie algebras
which had been also achieved by Cartan with specific devices. It is
to be noted that recently I. Satake [8] has given an algebraic proof to
a theorem of Cartan on which Gantmacher had yet to depend.2) In
following this algebraic direction, we shall give in this paper some
results analogous to the case of complex semi.simple Lie algebras.

In \S 1, we reduce our problem to that concerning a maximal
compact subgroup of the group $G$ . This reduction was done by Cartan
[3], but we shall perform it by means of a method suggested by G. D.
Mostow [7]. Next, to investigate the structure of this maximal compact

1) Numbers in brackets refer to Bibliography at the end of this paper.
2) See Footnote 9).
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subgroup, we study in \S 2 the structure of the Lie algebra $\mathfrak{G}$ in con-
nection with its complex form $\tilde{\mathfrak{G}}$ making use of the results of Gant-
macher and Satake cited above. We then obtain in \S 3 our main
results: The group $G/G^{0}$ is described by means of the groups of
“ rotations” $\mathfrak{T}$ and $\mathfrak{S}$ which are determined by the situation of $\mathfrak{G}$ in

$\tilde{\mathfrak{G}}$ expressed in terms of the root system of $\tilde{\mathfrak{G}}$ . In \S 4, we consider the
real forms of the complex simple Lie algebras of type $A_{n}$ as repre-
sentatives of real simple Lie algebras, and apply our results to deter-
mine the groups $G/G^{0}$ in this case. This furnishes a new proof to the
results established by Cartan [2] and by N. Jacobson [6].

\S 1. Structure of the group of automorphisms.

In the following, we denote by $R$ the real number field and by $C$

the complex number field.
Let $\mathfrak{G}$ be a real semi-simple n-dimensional Lie algebra and $\mathfrak{G}$ its

complex form, $i$ . $e.$ , the complex semi-simple Lie algebra obtained from
$\mathfrak{G}$ by extending the coefficient field $R$ to $C$. By a theorem of E.
Cartan3), we may consider $\mathfrak{G}$ as situated in $\tilde{\mathfrak{G}}$ in the following manner:
Let $\mathfrak{G}_{u}$ be a unitary restriction of $\tilde{\mathfrak{G}}$ and take an involutive automor-
phism $S$ of $\mathfrak{G}_{u}$ . We decompose $\mathfrak{G}_{u}$ into the eigenspaces of $S$ and obtain

(1) $\mathfrak{G}_{u}=\mathfrak{G}_{1}+\mathfrak{G}_{-1}$ ,

where
$\mathfrak{G}_{1}=\{x+Sx;x\in \mathfrak{G}_{u}\}$ ,

(2)
$\mathfrak{G}_{-1}=\{x-Sx;x\in \mathfrak{G}_{u}\}$ .

Then, $\mathfrak{G}$ is given by the real linear space in $\tilde{\mathfrak{G}}$ of the following form;
(3) $\mathfrak{G}=\mathfrak{G}_{1}+\sqrt{-1}\mathfrak{G}_{-1}$ ,

where $\sqrt{-1}\mathfrak{G}_{-1}=\{\sqrt{}=\Gamma x;x\in \mathfrak{G}_{-1}\}$ .
Now the fundamental quadratic form of $\tilde{\mathfrak{G}}$ ;

(4) $\Phi(x)=trace$ of $($ad $x)^{2}$

where ad $x$ is the adjoint mapping in $\tilde{\mathfrak{G}}$ of an element $x$ of $\tilde{\mathfrak{G}}$ , is
negative definite on $\mathfrak{G}_{u}$ . Therefore we can choose a suitable basis

3) See $e$. $g$. Gantmacher [5] p. 226 Th. 6, or Mostow [7] Th. 1.
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(5) $e_{1},$ $e_{2},$ $\cdots\cdots,$ $e_{n}$

of a contained in $\mathfrak{G}_{u}$ so that the form (4) is represented as
(6) $\Phi(x)=-\{(x^{1})^{2}+(x^{2})^{2}+\cdots+(x^{n})^{2}\}$

for $x=x^{1}e_{1}+x^{2}e_{2}+\cdots+x^{n}e_{n}$ . The involutive automorphism $S$ leaving
invariant this form, $S$ is an orthogonal transformation with respect to
the basis (5). Therefore, after $apply\dot{i}ng$ a certain orthogonal trans-
formation to (5) if necessary, we may assume that the first $r$ vectors
$e_{1},$ $e_{r}$ span $\mathfrak{G}_{1}$ and the latter $n-r$ vectors $e_{r+1},$ $\cdots$ , $e_{n}$ span $\mathfrak{G}_{-1}$ over $R$ .

Let $G,\tilde{G}$ and $G_{u}$ be the groups of all automorphisms of $\mathfrak{G},\tilde{\mathfrak{G}}$ and
$\mathfrak{G}_{u}$ respectively. Since an automorphism of $\mathfrak{G}$ or of $\mathfrak{G}_{u}$ is uniquely
extensible to an automorphism of $\tilde{\mathfrak{G}},$ $G$ and $G_{u}$ may be considered as
subgroups of G. $G$ and $G_{u}$ are then composed of all automorphisms
of $\tilde{\mathfrak{G}}$ which leave invariant $\mathfrak{G}$ and $\mathfrak{G}_{u}$ respectively. As is well-known,
$\tilde{G}$ is a Lie group whose Lie algebra is {ad $x;x\in\tilde{\mathfrak{G}}$ } and is isomorphic
to $\tilde{\mathfrak{G}}$ . Its closed subgroups $G$ and $G_{u}$ are those which correspond to
the real subalgebras $\mathfrak{G}$ and $\mathfrak{G}_{u}$ respectively of $\tilde{\mathfrak{G}}$ . Now, representing
the automorphisms by matrices with respect to the basis (5), we may
regard the group $\tilde{G}$ and so its subgroups $G$ and $G_{u}$ as linear groups.
A non-singular matrix $A=(a_{ij})_{i.j=1}^{n},$ $a_{iJ}\in C$, belongs to $\tilde{G}$ if and only
if it satisfies all the relations

(7) $A[e_{i}, e_{j}]=[Ae_{i}, Ae_{j}]$ $(1 \leqq i, j\leqq n)$ ,
$which\ovalbox{\tt\small REJECT}$ are obviously expressed by algebraic equations with $n^{2}$ variables
$a_{ij}$ . We remark that the coefficients of these equations are given by
the structure constants for the basis (5), so that they are real numbers.
As the groups $\tilde{G},$ $G$ and $G_{u}$ are regarded as linear groups, their Lie
algebras $\tilde{\mathfrak{G}},$

$\mathfrak{G}$ and $\mathfrak{G}_{u}$ are representable as linear Lie algebras, and they
coincide with {X; $x\in\tilde{\mathfrak{G}}$ }, $\{X;x\in \mathfrak{G}\}$ and {X; $x\in \mathfrak{G}_{u}$ } respectively where
$X$ is the matrix representing ad $x$ with respect to the basis (5). Since
automorphisms of $\tilde{\mathfrak{G}}$ leave invariant the form (6), $\tilde{G}$ consists of complex
orthogonal matrices. Further, it is clear that $G_{u}$ coincides with the
subgroup composed of all real matrices in $\tilde{G}$ . As regards $G$ , since $\mathfrak{G}$

is spanned over $R$ by the elements
$e_{1},$ $\cdots,$ $e_{r},$ $\sqrt{-1}e_{r+1},$

$\cdots,$
$\sqrt{-1}e_{n}$ ,
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$G$ consists of all matrices $A=(a_{ij})$ in $\tilde{G}$ satisfying the following con-
ditions
(8) $\overline{a}_{ij}=a_{ij}$ , for $1\leqq i,$ $j\leqq r$ or $r+1\leqq i,$ $j\leqq n$ ,

$\overline{a}_{ij}=-a_{ij}$ , otherwise.

We define a subgroup $K$ of $\tilde{G}$ as follows.
$K=\dot{G}\cap G_{u}$ .

Then $K$ is the group of automorphisms of $\tilde{\prime s}$ which leave invariant
both $\mathfrak{G}$ and $\mathfrak{G}_{u}$ . The Lie algebra of $K$ is isomorphic to $\mathfrak{G}\cap \mathfrak{G}_{u}=\mathfrak{G}_{1}$ .
In our matricial representation, $K$ consists of all real matrices in $\tilde{\mathfrak{G}}$

which satisfy (8), that is, matrices $A=(a_{ij}),$ $a_{ij}\in R$, with the following
property:
(9) $a_{ij}=0$ , for $1\leqq i\leqq r$ and $r+1\leqq j\leqq n$ , or

$r+1\leqq i\underline{<}-n$ and $1\leqq j\leqq r$ .
LEMMA 1. An automorphism $A$ in $G_{u}$ belongs tu $K$, if and only

if A salisfies either one of the following conditions:

(10) A $x\in \mathfrak{G}_{1}$ for $x\in \mathfrak{G}_{1}$ ,

(11) A $S=SA$ .
PROOF. The necessity of (10) is obvious. If (10) is satisfied, then

as $A$ is an orthogonal transformation, $\mathfrak{G}_{-1}$ is also left invariant by $A$ .
So $A$ leaves invariant $\mathfrak{G}$ as well as $\mathfrak{G}_{u}$ . The condition (11) is equivalent
to (9), since $S$ is represented by the matrix $(s_{ij})$ where $s_{ij}=\delta_{i,j}$ for

. $1\leqq i\leq-r$ and $s_{ij}=-\delta_{i,j}$ for $r+1\leqq i\leqq n,$ $q$ . $e$ . $d$ .
Now, from what is mentioned above, we see that $G$ is a pseudo-

algebraic subgroup of the general linear group $GL(n, C)$ in the sense
of C. Chevalley [3], that is, a subgroup whose matrices $A=(a_{ij})$ are
defined by a certain number of algebraic equations for the 2 $n^{\angle}$ variables
$a_{ij}^{\prime},$ $a_{ij}^{\prime\prime}(1\leqq i, j\leqq n)$ where $a_{ij},$

$a_{ij}^{\prime\prime}$ are respectively real and imaginary
parts of $a_{ij}$ . In our case, these algebraic equations are given by (7)
and (8). The following lemma concerning some type of pseudo-algebraic
subgroups may be proved just as in the proof of a lemma on the same
type of algebraic subgroups due to Chevalley ([3] p. 201).

LEMMA 2. Let $G$ be a pseudo-algebraic subgroup of $GL(n, C)$ and
suppose that for a matrix $A=(a_{ij})$ of $G$ the adioint marlix ${}^{t}\overline{A}=(\overline{a}_{ji})$
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also belongs to G. Then, for the unique expression of a matrix $A$ in
$G$ in the form
(12) $A=A_{h}A_{u}$

where $A_{h}$ is a positive definite hermitian matrix and $A_{u}$ a unitary
matrix, the matrices $A_{h}$ and $A_{u}$ belong to G. Moreover, when we
represent the matrix $A_{h}$ uniquely in the form
(13) $A_{h}=\exp A_{h}^{\prime}$

where $A_{h}^{1\prime}$ is an hermitian matrix, the matrix $A_{h}^{\prime}$ belongs to the Lie
algebra $\mathfrak{G}$ of $G$.

In our case the group $G$ satisfies the assumption of this lemma.
To see this, as a matrix $A=(a_{ij})$ in $G$ is complex orthogonal, $i$ . $e.$ ,
$(a_{ji})=(a_{ij})^{-1}$ , we need only to show that the complex conjugate matrix
$\overline{A}=(\overline{a}_{ij})$ of $A$ also belongs to $G$ . This follows from the fact that $\overline{A}$

satisfies the relations (7) and (8) as well as $A$ by a remark after (7).
Thus the conclusion of Lemma 2 is valid for our group $G$.

We see first that unitary matrices in $G$ are real orthogonal matrices
and they form the $subgro_{u^{\rceil}}pK$ Next, let $H$ be the set of positive
definite hermitian matrices contained in $G$ . As $G$ is a closed subgroup
of $GL(n, C)$ , its inner topology coincides with the relative topology in-
duced from $GL(n, C),$ $K$ is a compact subgroup and $H$ is a closed
subset in $GL(n, C)$ . By Lemma 2, we obtain a one-to-one mapping
from $G$ onto the product space $H\times K$ which maps an element $A$ of
$G$ with decomposition (12) to the pair $(A_{h}, A_{u})$ . It is easily seen that
this mapping is a homeomorphism. Next we show that $H$ is homeo-
morphic to a real vector space. For this purpose, we consider the
linear subspace $\mathfrak{G}_{h}iI\iota \mathfrak{G}$ which consists of all hermitian matrices con-
tained in $\mathfrak{G}$ . We see easily from (3) that $\mathfrak{G}_{h}$ is really in accord with
$\sqrt{-1}\mathfrak{G}_{-1}$ . The second half of Lemma 2 asserts that (13) gives a one-
to-one correspondence between $\mathfrak{G}_{h}$ and $H$. When we regard $\mathfrak{G}_{h}$ as a
real vector space, this mapping, $exp$ , is a homeomorphism. For, it is
obtained by restricting the domain of definition to $\mathfrak{G}_{h}$ of the well-known
homeomorphism, $exp$ , from the set of all hermitian matrices onto the
set of all positive definite hermitian matrices. Besides we see from
this that $K$ is a $m|$aximal compact subgroup of $\mathfrak{G}$ .

Thus we have proved the following theorem, which does not
depend on the matricial representation of $G$ if $\exp$ ad $x,$ $x\in G$ , is
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understood to be the point $x(1)$ of the one.parameter subgroup $x(t)$

with the tangential vector ad $x$ at the identity of $G$ .
THEOREM 1. Let $\mathfrak{G}$ be a real semi.simple Lie algebra and $\tilde{\mathfrak{G}}$ its

complex form. We take a unitary restriction $\mathfrak{G}_{u}$ of $\tilde{\mathfrak{G}}$ and suppose $\mathfrak{G}$

relate to $\mathfrak{G}_{u}$ as in the formulae (1), (2) and (3) by means of an in-
volutive automorphism $S$ of $\mathfrak{G}_{u}$ . Let $G$ and $G_{u}$ be the groups of auto-
morphisms of $\mathfrak{G}$ and $\mathfrak{G}_{u}$ respectively which are extended to automor-
phisms of $\tilde{\mathfrak{G}}$ . The Lie algebra of $G$ is isomorphic to $\mathfrak{G}$ . We set

$K=G\cap G_{u}$

$H=$ { $\exp$ ad $x;x\in\sqrt{}-1\mathfrak{G}_{-1}$ }.

Then $K$ is a maximal compact subgroup of $G$ with the Lie algebra
isomorphic to $\mathfrak{G}_{1}$ and $H$ is homeomorphic to a real vector space. Every
element $g$ of $G$ is uniquely and continuously represented in the form

$g=hk$ , $h\in H$ , $k\in K$ ,

so that
$G=HK$

and $G$ is homeomorphic to the product space of $H$ and $K$.
We denote by $G^{0}$ and $K^{0}$ the connected components of the identity

in the groups $G$ and $K$ respectively. $G^{0}$ is the $so\cdot called$ adjoint group
of $\mathfrak{G}$ composed of all inner automorphisms of $\mathfrak{G}$ . Then from this
theorem we may deduce the following corollaries successively.

COROLLARY 1 With the same meanings as the decomposition of
$G$ in Theoerm 1, there holds

$G^{0}=HK^{0}$ .
COROLLARY 2. $G/G^{0}\cong K/K^{0}$ (which is a finite group !).

\S 2. Structure of the Lie algebra.

In the first half of this paragraph, we summarize for the sake of
later use and in order to settle our notations some known results about
structure and automorphisms of a complex semi-simple Lie algebra.

4) This was first proved by Cartan [2] p. 368. Simpler proofs were given by Mostow
[7] and by Y. Matsushima (Shij\^o Sugaku Danw. 2-5 (1947) p. 123 (in Japanese)). Also
K. Iwasawa gave its somewhat sharpend form (Ann. Math. 50 (1949), p. 525).
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Thereafter we shall clarify in more detail the situation of a real semi-
simple Lie algebra $\mathfrak{G}$ in its complex form $\tilde{\mathfrak{G}}$ and determine the structure
of the subalgebra $\mathfrak{G}_{1}$ , which will be used in the next paragraph.

In a real or complex Lie algebra an element $x_{0}$ is said to be
regular, if the multiplicity of O-eigenvalues of ad $x$ takes its minimum
at $x_{c}$ , and a subalgebra which coincides with the O-eigenspace for the
adjoint mapping of a regular element is called a Cartan subalgebra.
Let $\tilde{\mathfrak{G}}$ be a complex semi-simple Lie algebra.5) There exists in $\tilde{\mathfrak{G}}$ a
canonical basis
(14) $h_{1},$

$\cdots,$
$h_{l},$

$e_{\alpha},$ $e_{-\alpha},$ $e_{\beta},$ $e_{-\beta},$
$\cdots$ ,

which is a complex basis with the following properties: $h_{1},$ $h_{t}$ span
a Cartan subalgebra $\tilde{\mathfrak{H}}$ of $\tilde{\mathfrak{G}}$ . The commutations between the elements
(14) are as follows.

(15) $\left\{\begin{array}{l}[h_{i},h_{j}]=0 (1\leqq i,j\leqq l),\\[h_{i},e_{\alpha}]=\alpha_{i}e_{\alpha}, \alpha_{i}\in R,\\[e_{\alpha},e_{-\alpha}]=-h_{\alpha},\\whereh_{\alpha}=\alpha^{1}h_{1}+\cdots+\alpha^{l}h_{J}, \alpha^{i}\in R,\\[e_{\alpha},e_{\beta}]=N_{\alpha.\beta}e_{\alpha+\beta}, N_{\alpha,\beta}\in R.\end{array}\right.$

The real vectors $\alpha=(\alpha_{1}, \cdots, \alpha_{l})$ are called roots or roots in contravariant
form and they form the root system $\sum$ . $N_{\alpha,\beta}\neq 0$ if and only if $\alpha+\beta$

is again a root and $N_{\alpha,\beta}=N_{-\alpha.-\beta}$ . Furthermore, $\Phi(e_{\alpha}, e_{-\alpha})=-1$ , where
$\Phi(\cdot, \cdot)$ is the polar form of the quadratic form (4), the so-called
fundamental bilinear form of $\tilde{\mathfrak{G}}$ .

The unitary restriction $\mathfrak{G}_{u}$ of $\tilde{\mathfrak{G}}$ with respect to this canonical basis
(14) is the linear subspace spanned over $R$ by the elements

$\sqrt{-1}h_{1},\cdots,$ $\sqrt{-1}h_{l},$ $e_{\alpha}+e_{-\alpha}$ , $\mapsto-1(e_{\alpha}-e_{-\alpha}),\cdots$ .
Now we denote by $\mathfrak{H}$ the real linear subspace of $\tilde{\mathfrak{G}}$ composed of

the elements of the form
(16) $h_{\lambda}=\lambda^{1}h_{1}+\cdots+\lambda^{l}h_{l}$ , $\lambda^{i}\in R$ ,

and call $\mathfrak{H}$ the real part of the Cartan subalgebra SC. $\mathfrak{H}$ is characterized
as the set of all elements $h$ in $\mathfrak{H}$ for which all the eigenvalues of ad $h$

5) For the details about its structure mentioned in below, see Weyl [91.
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are real. $\sqrt{}-1\mathfrak{H}=\{\sqrt{-1}h;he\mathfrak{H}\}$ is then a Cartan subalgebra of
$\mathfrak{G}_{u}$ . On the other hand, the fundamental quadratic form $\Phi$ of $\tilde{\mathfrak{G}}$ is
positive definite on $\mathfrak{H}$ , so1that $\mathfrak{H}$ may be regarded as a real euclidean
space with the inner product $(\cdot, \cdot)$ defined by $\Phi(\cdot, )$ . We identify
a real vector $\lambda=(\lambda^{1},\cdots, \lambda^{l})$ with the vector $h_{\lambda}$ in (16). It is known
that the vector $\alpha,$

$h_{\alpha}$ in (15), is the covariant form of the root in the con-
travariant form $\alpha:\alpha(\lambda)=\alpha_{1}\lambda^{1}+\cdots+\alpha_{\iota}\lambda^{l}=(\alpha, \lambda)$ , and that these vectors
$h_{\alpha}(\alpha\in\sum)$ span $\mathfrak{H}$ over $R$ . Considering in covariant forms, the root
system $\sum has$ the following properties:

(i) For $\alpha\in\sum,$ $-\alpha\in\sum and$ no other multiples of $\alpha$ belong to $\sum$ .
(ii) For $\alpha,$ $\beta\in\sum$ , $2(\alpha,\beta)(\alpha,\alpha)$ is an integer and $\beta-2(\alpha,\beta)(\beta,\beta)\alpha\in\sum$ .

From these properties we may prove the following
LEMMA 3 Let $\alpha,.\beta\in\sum,$ $\alpha\neq\pm\beta$ . Then $\beta-$ (sign $(\alpha, \beta)$) $\alpha\in\sum$ .
Moreover, it is known6) that the root system $\sum$ has 1 linearly

independent roots
(17) $\alpha^{(1)},\cdots,$ $\alpha^{(l)}$

with the following property: any root $\alpha$ is uniquely representable in
the form

(18) $\alpha=p_{1}\alpha^{(1)}+\cdots+p_{l}\alpha^{(l)}$ ,

where $p_{1},\cdots,$ $p_{l}$ are integers which are either all $\geqq 0$ or all $\leqq 0$ . We call
this system of roots a fundamental basis in $\sum and$ denote a fixed one
by $\sum^{0}$. A root $\alpha$ is called positive or negative according to $p_{i}$ are $\geqq 0$

or $\leqq 0$ in the expression (18) of $\alpha$ .
LEMMA 4. Every positive root $\alpha$ can be connected from a root in

$\sum^{0}$ by a chain of roots;

$\alpha^{(i)},$ $\alpha^{(i)}+\alpha^{(j)},\cdots,$ $\alpha-\alpha^{(k)},$ $\alpha$ ,

where each term is obtained by adding some root in $\sum^{0}$ to the forego-
ing term.

PROOF. We show first that $\alpha-\alpha^{(k)}$ is again a root for some root
$\alpha^{(k)}$ in $\sum^{0}$ if $\alpha$ is a positive root not in $\sum^{0}$ . Suppose this be false. Then
for all $\alpha^{(k)}$ in $\sum^{0}(\alpha, \alpha^{(k)})\leqq 0$ by Lemma 3 and, when $\alpha$ is expressed
in the form (18),

6) See $e.g$ . Satake [8] Lemma 1 and Prop. 3.
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$(\alpha, \alpha)=p_{1}(\alpha, \alpha^{(1)})+\cdots+p_{l}(\alpha, \alpha^{(l)})\leqq 0$ ,

which is a contradiction. Now we see easily from the property of
fundamental basis that $\alpha-\alpha^{(k)}$ is also a positive root. The lemma may
be then proved by the induction on the integers $p_{1}+\cdots+p_{l}$ in (18) for
positive roots $\alpha$ .

Next we recall some known results7) concerning automorphisms of
$\tilde{\mathfrak{G}}$ which leave invariant the Cartan subalgebra $\tilde{\mathfrak{H}}$ . Such an automor-
phism $A$ leaves invariant the real part $\mathfrak{H}$ of $\mathfrak{H}$, as is seen from the
characterization of $\mathfrak{H}$ mentioned before. Then $A$ induces in $\mathfrak{H}$ a rota-
tion $\tau$ , that is, an orthognal transformation which permutes the roots
among themselves. In this case, we have

(19) $Ae_{\alpha}=\kappa_{\alpha}e_{\tau(\alpha)}$ , $\kappa_{\alpha}\in C$ ,

and the numbers $\kappa_{\alpha}$ satisfy the following relations:
(20) $\kappa_{\alpha}\kappa_{-\alpha}=1$ ,

(21) $\kappa_{\alpha+\beta^{=}}\kappa_{\alpha}\kappa_{\beta}\frac{N_{\tau(\alpha).\tau(\beta)}}{N_{\alpha,\beta}}$ , if $\alpha+\beta$ is a root.

In case $A$ leaves invariant the unitary restriction $\mathfrak{G}_{u}$ , too,

(22) $\overline{\kappa}_{\alpha}=\kappa_{-\alpha}$ ,

and, together with (20),

(23) $|_{\kappa_{\alpha}}|=1$ .
Conversely, every rotation is induced by such an automorphism, where
we may assume further that this automorphism leaves invariant $\mathfrak{G}_{u}$ as
well as $\mathfrak{H}$ . Let $\tilde{\mathfrak{T}}$ be the group of all rotations in $\mathfrak{H}$ % is a finite
group. We consider in $\mathfrak{H}$ the $(l-1)$-dimensional hyperplane $E_{\alpha}$ through
the origin and orthogonal to a root $\alpha$ . The reflection $\sigma_{\alpha}$ with respect
to $E_{\alpha}$ ;

(24) $\sigma_{\alpha}(h)=h-\frac{2\alpha(h)}{\alpha(h_{\alpha})}h_{\alpha}$ $(he\mathfrak{H})$ ,

is surely a rotation by the property (ii) of the root system. The rota-
tions of this form generate a normal subgroup $\tilde{\mathfrak{S}}$ of $\tilde{\mathfrak{T}}$ whose elements

7) See Cartan [1], or Gantmacher [4] Chapter 3.
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we call inner rotations. Then a rotation is induced by an inner auto-
morphism of $\tilde{\mathfrak{G}}$ and even of $\mathfrak{G}_{u}$ if and only if it is an inner rotation.
Furthermore the connected components of $\mathfrak{H}-\cup\alpha E\alpha$ which are convex
domains restricted by just $l$ hyperplanes are obviously permuted among
themselves under rotations and transitively even under inner rotations.
In more detail, each one of these components is a fundamental domain
of $\tilde{\mathfrak{S}}$ . In view of this fact, we call a rotation which transforms a
component, say $\Pi$ , into itself a particular rotation, or precisely, a
particular rotation with respect to $\Pi^{8)}$ All particular rotations with
respect to a fixed component $\Pi$ form a group $\tilde{\mathfrak{P}}$ and we have

(25) $\tilde{\mathfrak{T}}=\tilde{\mathfrak{S}}\tilde{\mathfrak{P}}$ , $\tilde{\mathfrak{S}}\cap\tilde{\mathfrak{P}}=\{1\}.9$ )

In the sequel, we take up the special component $\Pi_{0}$ defined by

(26) $\Pi_{0}=$ { $h;\alpha^{(i)}(h)>0$ , for all $\alpha^{(i)}e\sum^{0}$ },

and consider particular rotations with respect to $\Pi_{0}$ . Such particular
rotations are characterized as the orthogonal transformations in $\mathfrak{H}$ which
permute the roots in the fundamental basis $\sum^{0}$ among themselves.
Therefore they transform positive or negative roots to positive or
negative roots respectively. By the way, we see that any particular
rotation is conjugated to a particular rotation with respect to $\Pi_{0}$ by
an inner rotation.

After these preparations, we return to a real semi-simple Lie
algebra $\mathfrak{G}$ . Henceforward we use the notations in the previous para-
graph, and the canonical basis (14) etc. considered above are supposed
to be those of the complex form $\tilde{\mathfrak{G}}$ of $\mathfrak{G}$ . By theorems of $Gantmacher^{1\ovalbox{\tt\small REJECT})}$

we may add the following assumptions on the involutive automorphism
$S$ of $\mathfrak{G}_{u}$ which determine the situation of $\mathfrak{G}$ in $\tilde{\mathfrak{G}}$ : $S$ leaves invariant
the Cartan subalgebra $\mathfrak{H}$ of $\tilde{\mathfrak{G}}$ and induces in $\mathfrak{H}$ a particular rotation
$\rho$ with respect to $\Pi_{0}$ . For brevity, we write $\lambda^{*}$ for $\rho(\lambda)$ and $h^{*}$ for
$\rho(h)$ . We may set

8) This definition is apparent!y different but is equivalent with the original one given
by Gantmacher [4] p. 132, which may be seen by Th. 26 in [4] p. 136.

9) This formula is given by Satake [8] p. 292, and furnishes a simple proof of Th.
24 in Gantmacher [4] p. 134.

10) See Gantmacher [4] $p,$ $139$ Th. 29, [5] p. 222 Th. 3 and p. 229 Th. 8.
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(27) $s_{e_{\alpha}=\nu_{\alpha}e_{\alpha*}}$ , $\nu_{\alpha}\in C$ .
Then, corresponding to (20)$-(23)$ , the following relations hold.
(28) $\nu_{\alpha}\nu_{-a}=1$ ,

(29) $\nu_{\alpha+\beta}=\nu_{\alpha}\nu_{\beta}\frac{N_{\alpha*.\beta*}}{N_{a.\beta}}$ , if $\alpha+\beta$ is a root,

(30) $\overline{\nu}_{\alpha^{=}}\nu_{-\alpha}$ ,

(31) $|_{\nu_{\alpha}}|=1$ .
Moreover, since $S$ is involutive, we have $\alpha^{**}=\alpha$ and

(32) $\nu_{\alpha}\nu_{\alpha*}=1$ .
Especially, we have $\nu_{\alpha^{=}}\pm 1$ if $\alpha=\alpha^{*}$ . Therefore, we can devide a1I
roots into the three parts;

$\Sigma_{1}=\{\alpha;\alpha=\alpha^{*}, \nu_{\alpha}=1\}$ ,

(33) $\sum_{2}=\{\beta;\beta=\beta^{*}, \nu_{\beta}=-1\}$ , and
$\Sigma_{3}=\{\xi;\xi\neq\xi^{*}\}$ .

We shall indicate henceforward by the letters $\alpha,$ $\beta$ and $\xi$ the roots in
$\sum_{1}^{\neg}$ , $\sum_{2}^{\neg}$ and $\sum_{3}$ respectively without explicit notices. (Sometimes,
$\alpha,$ $\beta,\cdots$ are yet used to denote general roots with no confusion). Since
$\rho$ is a particular rotation with respect to $\Pi_{0}$ , it permutes the roots in
the fundamental basis $\sum^{0}$ among themselves, so that we may write
these roots in the following way instead of (17).

(34) $\alpha_{1},\cdots,$ $\alpha_{p},$ $\beta_{1},\cdots,$ $\beta_{q},$ $\xi_{1},$ $\xi_{1}^{*},\cdots,$ $\xi_{r},$ $\xi_{r}^{*11)}$

LEMMA 5. $\xi-\xi^{*}$ is not a root.
PROOF. We represent $\xi$ by (34) in the form

$\xi=p_{1}\alpha_{1}+\cdots+p_{p}\alpha_{p}+q_{1}\beta_{1}+\cdots+q_{q}\beta_{q}+r_{1}\xi_{1}+r_{z}\xi_{1}^{*}+\cdots+r_{\rho}\angle r-1\xi_{r}+r_{2r}\xi_{r}^{*}$ .
Then,

$\xi^{*}=p_{1}\alpha_{1}+\cdots+p_{p}\alpha_{p}+q_{1}\beta_{1}+\cdots+q_{q}\beta_{q}+r_{2}\xi_{1}+r_{1}\xi_{1}^{*}+\cdots+r_{2},$ $\xi_{r}+r_{2r-1}\xi_{r}^{*}$ ,

and
$\xi-\xi^{*}=(r_{1}-r_{2})\xi_{1}+(r_{2}-r_{1})\xi_{1}^{*}+\cdots+(r_{\angle^{\backslash }r-1}-r_{2r})\xi_{r}+(r_{2r}-r_{2r-1})\xi_{r}^{*}$ .

11) Hereafter suffices for roots do not indicate their co- or contravariant components.
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If $\xi-\xi^{*}$ is a root, this is the expression (19) for $\xi-\xi^{*}$ . Therefore the
coefficients are all $\geqq 0$ or all $\leqq 0$ . Then $r_{2k-1}=r_{2k}(1\leqq k\leqq r)$ and $\xi=\xi^{*}$ ,
which is a contradiction.

LEMMA 6. If $(\xi, \xi^{*})\neq 0$ , then $\xi+\xi^{*}$ is a root and it belongs to
$\sum_{2}$.

PROOF. As $\rho$ is a particular rotation, $\xi^{*}\neq-\xi$ . Then by Lemma
3 either $\xi+\xi^{*}$ or $\xi-\xi^{*}$ is a root. The latter case is excluded by
Lemma 5. The second assertion; $\nu_{\xi+\xi*}=-1$ is easily verified by (29)
and (32).

We shall see later that the converse of this lemma is true \langle p. 125).
Now we shall investigate the structure of the subalgebra $\mathfrak{G}_{1}$ . For

.convenience, we call the complex linear subspace in $\tilde{\mathfrak{G}}$ which is spanned
over $C$ by a real linear subspace $\mathfrak{G}_{R}$ the complexification of $\mathfrak{G}_{R}$ and
denote by $\tilde{\mathfrak{G}}_{R}$ . Then the complexificatioil $\tilde{\mathfrak{G}}_{1}$ of $\mathfrak{G}_{1}$ is the l-eigenspace
of the automorphism $S$ extended over $\tilde{\mathfrak{G}}$ . On the other hand, as $S$ is
assumed to leave invariant $\mathfrak{H}$ and so $\mathfrak{H}$ , we have

$\tilde{\mathfrak{H}}=\tilde{\mathfrak{H}}_{1}+\mathfrak{H}_{-1}$ , where $\tilde{\mathfrak{H}}_{1}=\tilde{\mathfrak{G}}_{1}\cap\S$ $\tilde{\mathfrak{H}}_{-1}=\tilde{\mathfrak{G}}_{-1}\cap\S$ ,
$\mathfrak{H}=\mathfrak{H}_{1}+\mathfrak{H}_{-1}$ , where $\mathfrak{H}_{1}=\tilde{\mathfrak{G}}_{1}\cap \mathfrak{H}$ $\mathfrak{H}_{-1}=\tilde{\mathfrak{G}}_{-1}\cap \mathfrak{H}$ .

$\tilde{\mathfrak{H}}_{1}$ and $\mathfrak{H}_{-1}$ coincide with the complexifications of $\mathfrak{H}_{1}$ and $\mathfrak{H}_{-1}$ respectively.
Now a theorem of Gantmacherl2) asserts that $\mathfrak{H}_{1}$ contains a regular
element of $\tilde{\mathfrak{G}}$ . From this theorem we can deduce the following lemma
which plays an essential r\^ole in the sequel.

LEMMA 7. $\sqrt{-1}\mathfrak{H}_{1}$ contains a regular element $x_{0}$ of $\tilde{\mathfrak{G}}$ and it is
a regular element of $\tilde{\mathfrak{G}}_{1}$.

In fact, returning to the definition of a regular element, we see
easily the first half of this lemma from the fact that the coefficients
of Killing’s equation of an element $x$ in $\tilde{\mathfrak{G}}$ with respect to the basis
(5) are polynomials of the parameters $x^{i}$ of $x$ with real coefficients.
The second half is proved by the fact that ad $x$ for $xe\tilde{\mathfrak{G}}_{1}$ reduces $\tilde{\mathfrak{G}}_{1}$.

$\mathfrak{G}_{1}$ is the Lie algebra of the compact group $K$, or precisely, of $K^{0}$.
Therefore it is the direct sum of its center $\mathfrak{Z}^{0}$ and its semi-simple
commutator algebra $\mathfrak{G}_{1}^{\prime}$ , and a Cartan subalgebra of $\mathfrak{G}_{1}$ is commutative
and is the direct sum of $\mathfrak{Z}^{0}$ and a Cartan subalgebra of $\mathfrak{G}_{1}^{\prime}$ . Hence,
the Cartan subalgebra containing the regular element $x_{0}$ which is chosen

12) See Gantmacher [4] p. 132 Th. 23.
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in $\sqrt{-1}\mathfrak{H}_{1}$ by Lemma 7 coincides with $\sqrt{}^{-}-1\mathfrak{H}_{1}$ and is the direct sum
of $\sim-1\mathfrak{Z}$ and $\sqrt{-1}\mathfrak{H}_{1}^{\prime}$ where we set $\mathfrak{Z}=\sim-1\mathfrak{Z}^{0}$ and $\mathfrak{H}_{1}^{\prime}=\tilde{\mathfrak{G}}_{1}^{\prime}\cap \mathfrak{H}$ so that

$\mathfrak{H}_{1}=\mathfrak{Z}+\mathfrak{H}_{1}^{\prime}$ . Then $\tilde{\mathfrak{G}}_{1}$ is obviously the direct sum of the complexifications
$\sim \mathfrak{Z}$ and $\tilde{\mathfrak{G}}_{1}^{\prime}$ . $\tilde{\mathfrak{G}}_{1}^{\prime}$ is semi.simple and coincides with the commutator algebra
of $\tilde{\mathfrak{G}}_{1}$ and $\tilde{\mathfrak{H}}_{1}^{\prime}$ is a Cartan subalgebra of $\tilde{\mathfrak{G}}_{1}^{\prime}$ .

We look for the root system of the complex semi-simple Lie algebra
$\tilde{\mathfrak{G}}_{1}^{\prime}$ with respect to the Cartan subalgebra $\tilde{\mathfrak{H}}_{1}^{\prime}$ . As (14) is a basis in $\tilde{\mathfrak{G}}$

and as $\tilde{\mathfrak{G}}_{1}$ is the set of elements of the form $x+Sx(x\in\tilde{\mathfrak{G}})$ , we see by
\langle 27) and (33) that $\tilde{\mathfrak{G}}_{1}$ is spanned by the elements of the forms

$h_{\alpha}$ , $e_{\alpha}$ ,

$h_{\beta}$ ,

$h_{\xi}+h_{\xi*},$ $e_{\xi}+\nu_{\xi}e_{\xi*}$ .
Therefore $\tilde{\mathfrak{G}}_{1}^{\prime}$ is spanned by the commutators of any two of these
elements. By making use of (15), (28), (29), (30), (32) and Lemma 5,
we can calculate these commutators and see that they are linear com-
binations of the following elements

\langle 35) $h_{\alpha}$ , $h_{\xi}+h_{\xi*}$ ,

\langle 36) $e_{\alpha}$ , $e_{\xi}+\nu_{\xi}e_{\xi*}$ .
It is clear that the elements in (35) are contained in $\mathfrak{H}_{1}^{\prime}$ and span the
Cartan subalgebra $\tilde{\mathfrak{H}}_{1}^{\prime}$ over $C$. Moreover, if $h_{\lambda}\in \mathfrak{H}_{1}^{\prime}$ , then $\lambda^{*}=\lambda$ and
$(\xi, \lambda)=(\xi^{*}, \lambda)$ , therefore,

$[h_{\lambda}, e_{\alpha}]=(\alpha, \lambda)e_{\alpha}$ ,\langle 37)
$[h_{\lambda}, e_{\xi}+\nu_{\xi}e_{\xi*}]=(\xi, \lambda)(e_{\xi}+\nu_{\xi}e_{\xi*})$ .

These formulae imply that the elements in (36) are common eigenvectors
for ad $h$ where $h$ are the elements in the Cartan subalgebra $\mathfrak{H}_{1}^{\prime}$ of $\tilde{\mathfrak{G}}_{1}^{\prime}$ ,
and that the roots in contravariant form are of the forms $\alpha$

‘ or $\xi^{\prime}$

which are obtained by restricting the linear forms $\alpha$ or $\xi$ respectively
onto $\mathfrak{H}_{1}^{\prime}$ . It is easily seen that $\mathfrak{H}_{1}^{\prime}$ coincides with the real part of $\mathfrak{H}_{1}^{\prime}$ .
We set

$e_{\alpha\prime}=e_{\alpha}$ $e_{\xi^{J}}=e_{\xi}+\nu_{\xi}e_{\xi\star}$ .
Then, by (15), (32) and Lemma 5,
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$[e_{\alpha\prime}, e_{-a^{J}}]=-h_{\alpha}$ ,(38)
$[e_{\xi^{\prime}}, e_{-\xi^{\prime}}]=-(h_{\xi}+h_{\xi*})$ .

We denote by $\Phi^{\prime}(\cdot, \cdot)$ the fundamental bilinear form of $\tilde{\mathfrak{G}}_{1}^{\prime}$ and com.
pute, as in Weyl [9], the left side of the identity

$\Phi^{\prime}(h^{\prime}+e_{\gamma\prime}, [e_{-\gamma\prime}, h‘ +e_{\gamma\prime}])=0$

for $h^{\prime}e\mathfrak{H}_{1}^{\prime}$ and $\gamma^{t}=\alpha^{\prime}$ or $\xi^{\prime}$ . Then, setting $-h_{\gamma},=[e_{\gamma},, e_{-\gamma},]$ and $c_{\gamma}=$

$-\Phi^{\prime}(e_{\gamma},, e_{-\gamma\prime})$ , we have
$\gamma^{\prime}(h)=\Phi^{\prime}(h^{\prime}, h_{\gamma\prime})/c_{\gamma\prime}$ .

This shows that $c_{\gamma\prime}$ is real and that the covariant form of the root $\gamma^{\prime}$

is given by $h_{\gamma\prime}/c_{\gamma\prime}$ .
Finally, we apply Lemma 6. Then, if $(\xi, \xi^{*})\neq 0,$ $\xi+\xi^{*}=\beta$ and

$\xi^{t}=\beta^{\prime}/2$ since $\xi^{\prime}=\xi^{*;}$ .
The results thus obtained are formulated in the following
LEMMA 8. $\mathfrak{H}i$ is a Cartan subalgebra of $\tilde{\mathfrak{G}}_{1}^{\prime}$ and $\mathfrak{H}_{1}^{\prime}$ coinczdes with

its real part. The root system of $\tilde{\mathfrak{G}}_{1}^{\prime}$ with respect to the Cartan sub-
algebra $\mathfrak{H}_{1}^{\prime}$ is as follows.

$\alpha^{\prime}$ , $h_{\alpha}/c_{\alpha^{\prime}}$ ,
$\beta^{\prime}/2$ , $h_{\beta}/c_{\xi}$ , where $\beta=\xi+\xi^{*},$ $(\xi, \xi^{*})\neq 0$ ,

$\xi^{\prime}$ , $(h_{\xi}+h_{\xi*})/c_{\xi^{\prime}}$ , where $(\xi, \xi^{*})=0$ .
In this table, the left and right terms in each row are respectively

the contra- and covariant forms of a root, and $\alpha,$
$\xi$ run over $\sum_{1}$ and

$\sum_{2}$ respectively.
For the later use, we add more one
LEMMA 9. For $h_{\lambda}e\mathfrak{Z},$ $\alpha(h_{\lambda})=0,$ $(\xi+\xi^{*})(h_{\lambda})=0$ .
$1^{\supset}ROOF$ . $\alpha(h_{\lambda})=(\alpha, \lambda)$

$=\Phi(h_{\alpha}, h_{\lambda})$

$=\Phi(-[e_{\alpha},, e_{-\alpha^{\prime}}], h_{\lambda})$ (by (38))
$=\Phi(e_{-\alpha},, [e_{\alpha^{\prime}}, h_{\lambda}])=0$ .

$(\xi+\xi^{*})(h_{\lambda})=(\xi+\xi^{*}, \lambda)$

$=\Phi(h_{\xi+\xi*}, h_{\lambda})$

$=\Phi(-[e_{\xi},, e_{-\xi^{\prime}}], h_{\lambda})$ (by (38))
$=\Phi(e_{-\xi^{\prime}}, [e_{\xi^{\prime}}, h_{\lambda}])=0$ .
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\S 3. The group $G/G^{0}$.
We reserve the notations in the foregoing paragraphs.
LEMMA 10. Let $A$ be an automorphism (contained) in K Then

A leaves invariant $\mathfrak{H}_{1}$ if and only $lf$ A leaves invariant $\mathfrak{H}$ .
PROOF. If $A$ leaves invariant $\mathfrak{H}$, then by Lemma 1 $A$ does so

$\mathfrak{H}_{1}=\mathfrak{H}\cap\tilde{\mathfrak{G}}_{1}$ . Conversely, let $A$ be an automorphism in $K$ which leaves
invariant $\mathfrak{H}_{1}$ . Then, from $\mathfrak{H}\supset\sqrt{-1}\mathfrak{H}_{1}$ it follows that $A\tilde{\mathfrak{H}}$ is a Cartan
subalgebra which contains $\sqrt{}-1\mathfrak{H}_{1}-$ . By Lemma $7,$ $\sim-1\mathfrak{H}_{1}$ contains a
regular element of $\tilde{\mathfrak{G}}$ . Therefore the Cartan subalgebras $A$ ij and SS
coincide as they are the 0.eigenspace of the adjoint mapping for this
common regular element. Hence $A\mathfrak{H}=\mathfrak{H}$ .

LEMMA 11. Let $A$ be an automorphism in K Then there exists
an automorphism $U$ in $K^{0}$ such that $UA$ leaves invariant $\mathfrak{H}$ .

PROOF. As we have already seen, $\sqrt{}-1\mathfrak{H}_{1}$ and so $\sqrt{-1}A\mathfrak{H}_{1}$ are
Cartan subalgebras in the Lie algebra $\mathfrak{G}_{1}$ of the compact connected Lie
groug $K^{0}$ . As is well known, the maximal abelian subgroups in $K^{0}$

corresponding to $\sqrt{-1}\mathfrak{H}_{1}$ and $\sqrt{-1}A\mathfrak{H}_{1}$ are conjugate to one another.
This implies easily the existence of $U$ in $K^{0}$ such that $UA\mathfrak{H}_{1}=\mathfrak{H}_{1}$.
Then by the previous lemma $UA\mathfrak{H}=\mathfrak{H},$ $q$ . $e$ . $d$ .

We shall denote by $K^{*}$ the subgroup of $K$ composed of all auto-
morphisms which leave invariant $\tilde{\mathfrak{H}}$ and set $K_{0}^{*}=K^{*}\cap K^{0}$. Then
Lemma 11 asserts that

$K=K^{0}K^{*}$ .
Therefore,
(39) $K/K^{0}\cong K^{*}/K_{0}^{*}$

On the other hand, an automorphism $A$ in $K^{*}$ leaves invariant
ij and hence induces in $\mathfrak{H}$ a rotation. We prove

LEMMA 12. If the rotation induced by an automorphism $A$ in $K^{*}\backslash $

is the identical transformation, then this automorphism is in $K_{0}^{*}$ .
PROOF. We prove this lemma in a more precise form: under

the assumption of the lemma, the automorphism $A$ belongs to the
maximal abelian subgroup of $K^{0}$ corresponding to the Cartan sub-
algebra $\sqrt{-1}\mathfrak{H}_{1}$ .

As was shown by Gantmacher,i3) such an automorphism of $\mathfrak{G}_{u}$

13) See Gantmacher [4] p. 128 Th. 19.
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that fixes each element of $\tilde{\mathfrak{H}}$ is of the form $\exp$ (ad $\sqrt{-1}h$) with some
$h$ in $\mathfrak{H}$ . Therefore the automorphism $A$ in our lemma has this form.
Then, for any root $\alpha$ ,

(40) A $e_{\alpha}=\exp(\alpha(\sqrt{-1}h))e_{\alpha}$ .

Since $A$ leaves invariant $\tilde{\mathfrak{G}}_{1}$ which is spanned by the elements ( $ 35\rangle$

and (36),

$A(e_{\xi}+\nu_{\xi}e_{\xi*})=\exp(\xi(\sqrt{-1}h))e_{\xi}+\nu_{\xi}\exp(\xi^{*}(\sqrt{-1}h))e_{\xi*}$

must be a scalar multiple of $e_{\xi}+\nu_{\xi}e_{\xi*}$ . So we have

(41) $\exp(\xi(\sqrt{}^{-}-1h))=\exp(\xi^{*}(\sqrt{-1}h))$ .
We put $h_{1}=(h+h^{*})/2$ . Then $h_{1}$ is certainly contained in $\mathfrak{H}_{1}$. We sho$w$

that $\exp$ (ad $(\sqrt{-1}h_{1})$) $=\exp$ (ad $(\sqrt{-}1h))$ , which will prove our as-
sertion. For a root $\alpha$ with $\alpha=\alpha^{*},$ $\alpha(h)=\alpha^{*}(h)=\alpha(h^{*})$ and $\alpha(h_{1})=\alpha(h)_{\leftarrow}$

For a root $\xi$ , we see from (41) that

$\exp(\xi(\sqrt{-1}h_{1}))=\exp(\xi(\sqrt{-1}h))$ .
By (40), we have the desired result, $q$ . $e$ . $d$ .

Now, let $\mathfrak{T}$ be the group of rotations in $\mathfrak{H}$ which are induced by
automorphisms in $K^{*}$ and $\mathfrak{S}$ its subgroup composed of rotations in.
duced by automorphisms in $K_{0}^{*}$ . Of course $\mathfrak{S}$ is contained in $\tilde{\mathfrak{S}}$ .
Lemma 12 implies that

$K^{*}/K_{0}^{*}\cong \mathfrak{T}/\mathfrak{S}$ .

Combining this with Corollary 2 to Theorem 1 and (39), we have $\cdot$

arrived at the following
THEOREM 2. $G/G^{0}\cong \mathfrak{T}/\mathfrak{S}$ .
The remainder of this paragraph is devoted to characterize the $\cdot$

groups $\mathfrak{T}$ and $\mathfrak{S}$ so as to make Theorem 2 significant.
THEOREM 3. A rotation $\tau$ belongs to $\mathfrak{T}$ if and only if it satisfies

the following conditions:

(42) $\tau\rho=\rho\tau$ ,

(43) $\mathcal{T}(\alpha)\in\sum_{i}$ , for $\alpha\in\sum_{i}(i=1,2,3)$ .
Here $\rho$ denotes as in \S 2 the particular rotation which is induced by
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the involutive automorphism $S$ mentioned in Theorem 1 and $\sum_{i}(i=1$ ,
2, 3) are defined in (33)

REMARK. Under the assumption (42) for $\tau$ , (43) is equivalent to $\cdot$

the following condition:
(44) $\tau(\alpha)\in\Sigma_{1}$ , for $\alpha\in\Sigma_{1}$ ,

and this is surely satisfied in case $\sum_{1}$ or $\sum_{2}$ is empty.
PROOF OF THEOREM 3. As was mentioned in \S 2, a rotation $\tau$

may be considered to be induced by an automorphism $A$ in $G_{u}$ . By
definition this automorphism belongs to $K^{*}$ , if it belongs to $K$. Ac-
cording to Lemma 1 the latter condition is equivalent to

(45) A $S=SA$ .
When we consider this condition on $\mathfrak{H}$ , we see immediately that (42)
and (45) are equivalent on $\mathfrak{H}$ . Outside of $\mathfrak{H},$ (45) holds if and only if

A $Se_{\alpha}=S$ A $e_{\alpha}$

for all roots $\alpha$ . The numbers $\kappa_{\alpha}$ being as in (19), this relation is ex-
pressed by

$\nu_{\alpha}\kappa_{\alpha*}e_{\tau(\alpha*)}=\kappa_{\alpha}\nu_{\tau(\alpha)}e_{\tau(\alpha)*}$ .
Under the assumption (42), $\tau(\alpha^{*})=\tau(\alpha)^{*}$ and therefore this relation is
again equivalent to

(46) $\nu_{\alpha}\kappa_{\alpha*}=\kappa_{\alpha}\nu_{\tau(\alpha)}$ .
Thus, in order that the automorphism $A$ belongs to $K^{*}$ it is necessary
and sufficient that its inducing rotation $\tau$ satisfies the conditions (42)
and the numbers $\kappa_{\alpha}$ for $A$ satisfy the relation (46) for all roots $\alpha$ .

Now suppose that $\tau$ belongs to $\mathfrak{T}$ . Then we may assume that $A$

belongs to $K^{*}$ . From the above considerations, we see that the property
(42) is true for $\tau$ . Further, (46) implies $\nu_{\alpha}=\nu_{\tau(\alpha)}$ for any root $\alpha$ such
that $\alpha=\alpha^{*}$ , and this shows the condition (43) for $\tau$ .

To prove the converse, we first show that under the assumption
(42) (46) is valid for all roots if it is valid for roots in the fundamental
basis of the root system. In virtue of Lemma 4, this will be seen
when we prove that if (46) is valid for a root $\alpha$ then so is for $-\alpha$ ,
and that if (46) is valid for two roots $\alpha,$ $\beta$ whose sum is again a root
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then so is for $\alpha+\beta$. We prove these assertions. If (46) is valid for
a root $\alpha$ , then applying (20) and (28) we have

$\nu_{-\alpha}\kappa_{-\alpha\star}=\frac{1}{\nu_{\alpha}\kappa_{\alpha*}}=\frac{1}{\kappa_{\alpha}\nu_{\tau(\alpha)}}=\kappa_{-\alpha}\nu_{\tau(-a)}$ ,

which is the formula (46) for $-\alpha$ . For the second assertion, using
\langle 21) and (29) repeatedly, we have under our assumptions

$\nu\kappa=^{\alpha\underline{*)}.\tau(\underline{\beta*)}}\alpha*.\beta*$

$=\kappa_{\alpha}\nu_{\tau(\alpha)}\kappa_{\beta}\nu_{\tau(\beta)}\underline{N_{\tau(\alpha_{\frac{*)}{N_{\alpha}}}.\underline{\tau(\beta*)}}}\beta$

$=\kappa_{a+\beta}\nu_{\tau(\alpha)+\tau(\beta)}\frac{N_{\alpha.\beta}}{N_{\tau(\alpha).\tau(\beta)}}\frac{N_{\tau(\alpha).\tau(\beta)}}{N_{\tau(\alpha)*,\tau(\beta)*}}\underline{N_{\tau(\alpha)N_{\alpha,\beta}^{\underline{*,\tau(\beta)*}}}}$

$=\kappa_{\alpha+\beta}\nu_{\tau(a+\beta)}$ ,

which is the formula (46) for $\alpha+\beta$ .
Now suppose that $\tau$ is a rotation with the properties (42) and (43).

Let $A$ be an arbitrary automorphism in $G_{u}$ which induces $\tau$ in $\mathfrak{H}$ On
account of (23), (31) and the linear independence of the roots in the
fundamental basis (34), we can find an element $h$ of $\mathfrak{H}$ satisfying the
following equations.

$\exp(\sqrt{-1}\alpha_{1}(h))=\cdots=\exp(\sqrt{}-1\alpha_{p}(h))=$

$=\exp(\sqrt{-1}\beta_{1}(h))=\cdots=\exp(_{\iota/}\overline{-1}\beta_{q}(h))=$

$=\exp(\sqrt{-1}\xi_{1}(h))=\cdots=\exp(\sqrt{-1}\xi_{r}(h))=1$ ,

$\exp(\sqrt{-1}\xi_{k}^{\star}(h))=\kappa_{\xi_{k}}\nu_{\tau(\xi_{k})}/\nu_{\xi_{k}}\kappa_{\xi_{k^{\star}}}$ $(1\leqq k\leqq r)$ .
Consider the automorphism

$ A^{\prime}=A\exp$ (ad $(\sqrt{-1}h)$).
Then $A^{\prime}$ leaves invariant $\mathfrak{H}$ and induces the same rotation $\tau$. More-
over, if we set

$A^{\prime}e_{\alpha}=\kappa_{\alpha}e_{\tau(\alpha)}$ ,

we see from the above choice of $h$ and from the definition of $A^{\prime}$ that
the numbers $\kappa_{\acute{\alpha}}$ are related to $\kappa_{\alpha}$ for roots $\alpha$ in the fundamental basis
in the following way.
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$\kappa_{\acute{\alpha}_{i}}=\kappa_{\alpha_{i}}$ $(1\leqq i\leqq p)$ ,

$\kappa_{\acute{\beta}_{j}}=\kappa_{\beta_{j}}$ $(1\leqq i\leqq q)$ ,

$\kappa_{\acute{\mathfrak{k}}_{k}}=\kappa_{\xi_{k}}$ ,

$\nu_{\xi_{k}}\kappa_{\xi_{k}^{*=}}^{\prime}\kappa_{\xi_{k}}\nu_{\tau(\xi_{k})}$ $(1\leqq k\leqq r)$ .
From these equations, we shall show that the relation

(46) $\nu_{\alpha}\kappa_{\acute{\alpha}*}=\kappa_{\acute{\alpha}}\nu_{\tau(\alpha)}$ ,

which is the condition (46) for the automorphism $A^{\prime}$ , is satisfied by all
roots $\alpha$. By what is mentioned above it is sufficient to see this that
(46) is valid for the roots $\alpha$ in the fundamental basis. If $\alpha=\alpha_{i}$ ,
$(1 \leqq i\leqq p)$ or $\alpha=\beta_{j}(1\leqq j\leqq q),$ (46) is clearly true by the assumption
(43). For $\alpha=\xi_{k}(1\leqq k\leqq r)(46)^{\prime}$ is derived from the latter two of the
above equations, and, taking the reciprocals of the both sides of this
relation and applying (32) and (42), we find the relation (46)‘ for
$\alpha=\xi_{k}^{*}(1\leqq k\leqq r)$ . Thus, as was seen in the beginning of this proof, $A^{r}$

is an automorphism in $K^{*}$ and so $\tau$ is a rotation in $\mathfrak{T}$ . This completes
the proof of Theorem 3.

Next we consider the subgroup $\mathfrak{S}$ which is composed of inner
rotations of $\mathfrak{H}$ induced by automorphisms in $K_{0}^{*}$ . By Lemma 10 such
an automorphism reduces $\mathfrak{H}_{1}$ and $\mathfrak{H}_{1}^{\prime}=\tilde{\mathfrak{G}}_{1}^{\prime}\cap \mathfrak{H}$ . Therefore its inducing
rotation leaves invariant the subspace $\mathfrak{H}_{1}^{\prime}$ of $\mathfrak{H}$

LEMMA 13. A rotation of $\mathfrak{H}$ contained in $\mathfrak{S}$ induces an inner
rotation in $\mathfrak{H}_{1}^{\prime}$ , and conversely an inner rotation of $\mathfrak{H}_{1}^{\prime}$ is induced by one
and only one rotation of $\mathfrak{H}$ belonging to $\mathfrak{S}$ . Here and henceforward
$\mathfrak{H}_{1}^{J}$ is regarded as the $eal$ part of the Cartan subalgebra $\mathfrak{H}_{1}^{\prime}$ of $\tilde{\mathfrak{G}}_{1}^{\prime}$ (by
Lemma 8) and an inner rotation in it is also considered with respect
to $\tilde{\mathfrak{G}}_{1}^{\prime}$ .

PROOF. An element $U$ of $K^{0}$ is by Lemma 1 an automorphism of
$\mathfrak{G}_{u}$ which leaves invariant $\mathfrak{G}_{1}$ , therefore it induces an automorphism $U_{1}$

of $\mathfrak{G}_{1}$ . While, $K^{0}$ is the group with the Lie algebra $\mathfrak{G}_{1}$ . It is easily
seen that this automorphism $U_{1}$ coincides with the automorphism of
$\mathfrak{G}_{1}$ which is induced from the inner automorphism of the group $K^{(\rangle}$

raised up by the element $U$ of $K^{0}$. On the other hand, as was seen
in \S 2 $\mathfrak{G}_{1}$ is the direct product of its center $\mathfrak{Z}^{0}$ and the semi-simple
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commutator algebra $\mathfrak{G}_{1}^{\prime}$ . These subalgebras generate in the group $K^{0}$

closed subgroups $Z^{0}$ and $K^{c;}$ respectively. $Z^{0}$ is a central subgroup
and

$K^{0}=Z^{0}K^{0;}$

From these considerations we see first that every automorphism in $K^{0}$

leaves fixed each element of $\mathfrak{Z}^{0}$ and leaves invariant $\mathfrak{G}_{1}^{\prime}$ , and secondly
that the automorphism $U_{1}$ for an automorphism $U$ in $K^{0}$ may be seen
in $\mathfrak{G}_{1}^{\prime}$ to be induced by an inner automorphism of the group $K^{0/}$ .

Now, suppose that $\sigma$ is a rotation in $\mathfrak{H}$ which belongs to $\mathfrak{S}$ and is
induced by an automorphism $U$ in $K$. By what is mentioned above,
as far as we concem with the behavior of $U_{1}$ in $\mathfrak{G}_{1}^{\prime}$ we may assume
that $U$ is an automorphism in $K^{cr}$ . Hence the restriction $\sigma$

‘ of $\sigma$ in
$\mathfrak{H}_{1}^{\prime}$ may be considered to be induced by an inner automorphism of the
group $K^{c/}$ . Therefore, $\sigma^{\prime}$ is an inner rotation of $\mathfrak{H}_{1}^{\prime}$

To prove the converse, let us remark that $\mathfrak{G}_{1}^{\prime}$ is a unitary restric-
tion of $\tilde{\mathfrak{G}}_{1}^{\prime}$ with respect to (a canonical basis related to) the Cartan
subalgebra $\tilde{\mathfrak{H}}_{1}^{\prime}$ of $\tilde{\mathfrak{G}}_{1}^{\prime}$ . In fact, since $\mathfrak{G}_{1}^{\prime}$ is a real form of $\tilde{\mathfrak{G}}_{1}^{\prime}$ namely a
real subalgebra whose complex form is $\tilde{\mathfrak{G}}_{1}^{\prime}$ and since it is the Lie algebra
of the compact group $K^{0/},$ $\mathfrak{G}_{1}^{\prime}$ is a unitary restriction with respect to
a Cartan subalgebra of $\tilde{\mathfrak{G}}_{1^{14)}}^{\prime}$. By the conjugateness of maximal abelian
subgroups in $K^{0^{;}}$ , we may easily see that this Cartan subalgebra is
mapped onto $\mathfrak{H}_{1}^{\prime}$ by an inner automorphism of $\mathfrak{G}_{1}^{\prime}$ , which implies the
assertion. Let $\sigma^{\prime}$ be an inner rotation of $\mathfrak{H}_{1}^{\prime}$ . Then as was mentioned
in \S 2, we may assume that $\sigma^{\prime}$ is induced by an inner automorphism
of the unitary restriction $\mathfrak{G}_{1}^{\prime}$ . Therefore we find an element $U$ in the
group $K^{c/}$ such that the inner automorphism of the group $K^{0/}$ raised
up by this element $U$ induces in the Lie algebra $\tilde{\mathfrak{G}}_{1}^{\prime}$ an automorphism
which leaves invariant $\mathfrak{H}_{1}^{\prime}$ and induces in $\mathfrak{H}_{1^{\prime}}$ the rotation $\sigma^{\prime}$ . Considering
$U$ as an automorphism of $\tilde{\mathfrak{G}}$ belonging to $K^{0}$ , we see from $\mathfrak{H}_{1}=\mathfrak{H}_{1}^{\prime}+\mathfrak{Z}$

that $U$ leaves invariant $\mathfrak{H}_{1}$ and so $\mathfrak{H}$ by Lemma 10: $U$ belongs to $K^{*}$ .
It is then clear that $\sigma^{\prime}$ is the restriction to $\mathfrak{H}_{1}^{\prime}$ of the inner rotation
of $\mathfrak{H}$ belonging to $\mathfrak{S}$ induced by this automorphism $U$.

Finally, we show that a rotation $\sigma$ in $\mathfrak{S}$ is uniquely determined by
its restriction $\sigma^{\prime}$ into $\mathfrak{H}_{1}^{\prime}$. To see this it is sufficient to prove that if

14) This is seen from Gantmacher [5] p. 226 Th. 5.
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$\sigma^{\prime}$ is the identical transformation then so is $\sigma$. Suppose $\sigma$ is induced
by an automorphism $U$ belonging to $K_{0}^{*}$ . The assumption on $\sigma$

‘ im-
plies that $U$ leaves fixed any element of the Cartan subalgebra $\sqrt{-l}g$

of $\mathfrak{G}_{1}$ and this in turn implies that $U$ is commutative with the element
of the maximal abelian subgroup in $K^{0}$ corresponding to $\sqrt{-1}\mathfrak{H}_{1}$ . Then
$U$ belongs to this subgroup and therefore is of the form $\exp$ (ad $\sqrt{-1}h$)
with a suitable element $h$ of $\mathfrak{H}_{1}$ . Hence $U$ fixes any element of $\mathfrak{H}$ and
so $\sigma$ is the identical transformation.

LEMMA 14. Let $\sigma$ be an inner rotation of $\mathfrak{H}$ . Suppose that $\sigma$

leaves invariant the subspace $\mathfrak{H}_{1}$ in which $\sigma$ leaves fixed every element
of $\mathfrak{Z}$ and induces in $\mathfrak{H}_{1}^{\prime}$ an inner rotation $\sigma^{\prime}$ . Then $\sigma$ belongs to $\mathfrak{S}$ .

PROOF. By the previous lemma, we can find an element $U$ in $K_{0}^{*}$

which induces in $\mathfrak{H}_{1}^{\prime}$ the inner rotation $\sigma^{\prime}$ . Let $\tau$ be the inner rotation
of $\mathfrak{H}$ induced by this automorphism $U$. We show that $\tau=\sigma$ which
proves our lemma. Since $\sigma$ is an inner rotation, we can find an element
$V$ of $G_{u}^{0}$ (the connected component of the identity in $G_{u}$ ) so that $V$

leaves invariant $\tilde{\mathfrak{H}}$ and induces in $\mathfrak{H}$ the rotation $\sigma$ . The element
$U^{-1}V$ is obviously contained in $G_{u}^{0}$ , leaves invariant $\mathfrak{H}$ and leaves fixed
each element of $\mathfrak{H}_{1}$ Now, by Lemma 7, $\sqrt{-1}\mathfrak{H}_{1}$ contains a regular
element $x_{0}$ of $\tilde{\mathfrak{G}}$ and naturally of $\mathfrak{G}_{u}$ . For a sufficiently small $e>0$ ,
$\exp$ ad $ex_{0}$ is a regular element of the compact group $G_{u}^{0}$ , that is, an
element whose centralizer just coincides with the maximal abelian sub-
group $T$ corresponding to the Cartan subalgebra $\sqrt{-1}\mathfrak{H}$ in the Lie
algebra $\mathfrak{G}_{u}$ . It follows from the fact that $U^{-1}V$ leaves fixed the ele-
ment $x_{0}$ in $\mathfrak{G}_{u},$ $U^{-1}V$ commutes with the regular element $\exp$ ad $eX_{0}$.
Therefore $U^{-1}V$ is contained in $T$ and hence $U$ and $V$ induce in $\mathfrak{H}$

the same rotation: $\tau=\sigma,$ $q$ . $e$. $d$ .
We now proceed to characterize the group $\mathfrak{S}$ . First we determine

the inner rotations of $\mathfrak{H}_{1}^{\prime}$ The group of all inner rotations in $\mathfrak{H}_{1}^{\prime}$ is
generated by reflections of $\mathfrak{H}_{I}^{\prime}$ with respect to the hyperplanes through
the origin and orthogonal to each root. By Lemma 8, these reflections
are of the following forms: for $h^{\prime}\in \mathfrak{H}_{1}^{\prime}$

(47) $\sigma_{\alpha^{\prime}}^{\prime}(h^{\prime})=h^{\prime}-\frac{2\alpha^{\prime}(h^{\prime})}{\alpha(h_{\alpha}/c_{\alpha},)}\frac{h_{\alpha}}{c_{\alpha}}$

$=h^{\prime}-\frac{2\alpha(h^{\prime})}{\alpha(h_{\alpha})}h_{\alpha}$ ,
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(48) $\sigma_{\beta}^{\prime}’(h^{\prime})=h^{\prime}-$

$- 2\underline{\beta^{\prime}(}h_{-}^{\prime})$ $h_{\beta}$

$\beta^{\prime}(h_{\beta}/c_{\xi^{\prime}})$
$c_{\xi^{\prime}}$

$=h^{\prime}$ –
$\frac{28(h^{\prime})}{\beta(h_{\beta})}h_{\beta}$ , where $\beta=\xi+\xi^{*},$ $(\xi, \xi^{*})\neq 0$ .

(49) $\sigma_{\xi’(h^{\prime})=h^{\prime}-}^{\prime}\frac{}{\xi^{\prime}(h}\frac{2\xi^{\prime}(h^{\prime})}{\xi+h_{\xi*}/c_{\epsilon\prime}^{\backslash }}\frac{h_{\epsilon\dot{J}}+h}{c_{\xi}}\xi\#$

$=h^{\prime}$ –
$\frac{2\xi(h^{\prime})}{\xi(h_{\xi})}(h_{\xi}+h_{\xi*})$ , where $(\xi, \xi^{*})=0$ .

By Lemma 13, each of these rotations in $\mathfrak{H}_{1}^{\prime}$ is induced by one and
only one rotation of $\mathfrak{H}$ belonging to $\mathfrak{S}$ . Therefore, whenever we deter-
mine the rotations of $\mathfrak{H}$ belonging to $\mathfrak{S}$ and inducing the inner rotations
(47), (48) and (49) in $\mathfrak{H}_{1}^{\prime}$ . we see that these rotations of $\mathfrak{H}$ are the
generators of the group $\mathfrak{S}$ . For this determination we apply Lemma
14. Then, we have only to research the inner rotations of $\mathfrak{H}$ which
reduce $\mathfrak{H}_{1}$ , fix each element of $\mathfrak{Z}$ and induce the rotations (47), (48) and
(49) in $\mathfrak{H}_{1}^{\prime}$ . This is performed as follows.

ad (47): We consider the inner rotation of $\mathfrak{H}$ which is the reflec-
tion with respect to the hyperplane $E_{\alpha}$ :

(50) $\sigma_{\alpha}(h)=h-2_{-}\alpha\underline{(}h)h_{\alpha}$ .
$\alpha(h_{\alpha})$

$\sigma_{a}$ reduces $\mathfrak{H}_{1}$ For, if $h=h^{*}$ ,

$(\sigma_{\alpha}(h)_{/}^{*}=h^{*}--2\alpha(h)h_{\alpha}^{*}$

$\alpha(h_{\alpha})$

$=h---- 2\alpha(h)h_{\alpha}=\sigma_{\alpha}(h)$ .
$\alpha(h_{\alpha})$

$\sigma_{\alpha}$ leaves fixed each element of $\mathfrak{Z}$ , as is seen from Lemma 9. Obviously
$\sigma_{\alpha}$ coincides with $\sigma_{\alpha}^{\prime}$

’ in $\mathfrak{H}_{1}^{\prime}$ Therefore it leaves invariant $\mathfrak{H}_{1}^{\prime}$ . Thus
$\sigma_{\alpha}$ is the uniquely determined rotation in $\mathfrak{S}$ which induces in $\mathfrak{H}_{1}^{\prime}$ the
rotation $\sigma_{\alpha^{\prime}}^{\prime}$ in (47).

ad (48): We see just as for $\sigma_{\alpha}^{\prime}$

’ that the reflection with respect to
the hyperplane $E_{\beta}$ :
(51) $\beta(h)=h-\frac{2\beta(h)}{\beta(h_{\beta})}h_{\beta}$

is the uniquely determined rotation in $\mathfrak{S}$ which induces in $\mathfrak{H}_{1}^{\prime}$ the rota-
tion $\sigma_{\beta^{\prime}}^{\prime}$ in (48).
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ad (49): In this case, we consider two reflections:

$\sigma_{\xi}(h)=h-\frac{2\xi(h)}{\xi(h_{\xi})}h_{\xi}$ ,

$\sigma_{\xi*}(h)=h-\frac{2\xi^{*}(h)}{\xi^{*}(h_{\epsilon*})}h_{\xi*}$ .

The product of these rotations is, as $\xi^{*}(h_{\xi})=0$ by assumption,

(52) $\sigma_{\xi*}\sigma_{\xi(h)=h-\frac{2\xi(h)}{\xi(h_{\xi})}h_{\xi}-}\frac{2\xi^{*}(h)}{\xi^{*}(h_{\xi*})}h_{\xi*}$ .
Of course $\xi(h_{\xi})=\xi^{*}(h_{\xi*})$ . For an element $h$ in $\mathfrak{H}_{1},$ $\xi(h)=\xi(h^{*})=\xi^{*}(h)$

and (52) is written in the form

$\sigma_{\xi*}\sigma_{\xi}(h)=h-\frac{2\xi(h)}{\xi(h_{\xi})}(h_{\xi}+h_{\xi*})$ .

This implies first that $\sigma_{\xi*}\sigma_{\xi}$ leaves invariant $\mathfrak{H}_{1}$ and coincides with $\sigma^{r_{\xi}}$

’

in $\mathfrak{H}_{1}^{\prime}$ and secondly that $\sigma_{\xi*}\sigma_{\xi}$ leaves fixed each element of $\mathfrak{Z}$ by Lemma
9 and by 2 $\xi(h)=(\xi^{*}+\xi)(h)$ . Thus we see that (52) is the uniquely
determined rotation in $\mathfrak{S}$ which induces the rotation $\sigma^{t_{\xi}}$ in $\mathfrak{H}_{1}^{\prime}$ .

Finally we prove the converse of Lemma 6, $i$ . $e.$ , that $\xi+\xi^{*}$ is not
a root if $(\xi, \xi^{*})=0$. $\ln$ proving that the rotation of $\mathfrak{H}$ in $\mathfrak{S}$ which in-
duces the inner rotation $\sigma^{r_{\xi}}$ in $\mathfrak{H}_{1}^{\prime}$ is $\sigma_{\xi*}\sigma\epsilon$ we use the property $(\xi, \xi^{*})=0$

only. Now suppose that $\xi+\xi^{*}$ is a root $\beta$ . Then we see as for the
second case in above that $\sigma_{\beta}$ is also a rotation in $\mathfrak{S}$ which induces
$\sigma_{\xi}^{\prime}$

’ in $\mathfrak{H}_{1}^{\prime}$ . By Lemma 13, we have $\sigma_{\gamma^{=}}\sigma_{\xi*}\sigma_{\xi}$ , which contradicts to the
-fact that $\sigma_{\gamma}$ and $\sigma_{\xi*}\sigma_{\xi}$ are linear transformations in $\mathfrak{H}$ of determinants
$-1$ and 1 respectively.

We have thus obtained the following
THEOREM 4. The group $\mathfrak{S}$ is generated by the inner rotations

$\sigma_{\alpha}$ ,

$\sigma_{\beta}$ , where $\beta=\xi+\xi^{*}$ and $(\xi, \xi^{*})\neq 0$ ,

$\sigma_{\xi*}\sigma_{\xi}$ , where $(\xi, \xi^{*})=0$ .
Here $\alpha,$

$\beta$ and $\xi$ are roots classified by (33), $\xi^{*}=\rho(\xi)$ and $\sigma_{\gamma}(\gamma=\alpha,$ $\beta$

$ror\xi)$ is the reflection with respect to the hyperplane $E_{\gamma}$ through the
.origin and orthogonal to the root $\gamma$.
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Combining Theorems 2, 3 and 4, our purpose to determine the
group $G/G^{0}$ is completely accomplished.

\S 4. Applications.

We shall apply our results obtained in \S 3 to the actual determina-
tion of the groups $G/G^{0}$ for the real forms $\mathfrak{G}$ of the complex simple
Lie algebras $\tilde{\mathfrak{G}}$ of type $A_{n}^{15)}$

By definition $\tilde{\mathfrak{G}}$ is the Lie algebra of the complex unimodular group
$SL(n+1, C)$ of a certain degree $n+1$ and is composed of complex
matrices of degree $n+1$ with zero trace. Let $e_{ij}(1\leqq i, i\leqq n+1)$ be
the matrix $(\delta_{i.k}\delta_{j.l})_{k,l=1}^{n+1}$ and set $h_{i}=e_{ii}(1\leqq i\leqq n+1)$ . Then

(55) $h_{1}-h_{n+1},$
$\cdots,$

$h_{n}-h_{n+1},$ $e_{12},$ $e_{21},$ $\cdots.e_{ij},$ $ e_{ji},\cdots$ $(1\leqq i<j\leqq n+1)$ .
form a basis of $\tilde{\mathfrak{G}}$ which has the properties of a canonical basis (14)
defined in \S 2 except the property $\Phi(e_{\alpha}, e_{-\alpha})=-1$ . As will be easily
verified, the loss of the last property gives no affections in the follow-
ing considerations. We may regard the Cartan subalgebra ij as in the
$(n+1)$ -dimensional complex vector space $\tilde{E}_{n+1}$ spanned by $h_{1},\cdots,$ $h_{n+1}$ .
Then the root with the eigenvector $e_{ij}(1\leqq i, j\leqq n+1)$ has the follow-
ing contravariant form.
(54) $\alpha_{ij}(h)=\lambda^{i}-\lambda^{j}$ for

$h=\lambda^{1}h_{1}+\cdots+\lambda^{n+1}h_{n+1}$ , $\lambda^{1}+\cdots+\lambda^{n+1}=0$ .
$\sum=\{\alpha_{ij} ; 1\leqq i, j\leqq n+1\}$ is the root system for $\tilde{\mathfrak{G}}$ . As is calculated
in Satake [8], a fundamental basis of $\sum$ is given by $\sum^{0}=\{\alpha_{ii+1}$ ;
$1\leqq i\leqq n\}$ .

On account of (54) the real part $\mathfrak{H}$ of the Cartan subalgebra $\tilde{\mathfrak{H}}$

may be identified with the linear subspace orthogonal to $h_{1}+\cdots+h_{n+1}$

in the real euclidean space $E_{n+1}$ spanned by $h_{1},$
$\cdots,$

$h_{n+1}$ . We shall
indicate by an element of $E_{n+1}$ the element of $\mathfrak{H}$ congruent to this
element modulo the l-dimensional subspace spanned by $h_{1}+\cdots+h_{n\backslash - 1}$ ,
and by a linear transformation in $E_{n+1}$ leaving invariant $\mathfrak{H}$ its inducing

15) For the different approaches to the same results, see Cartan [2] pp. 385-400 and
Jacobson [6].
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linear transformation in $\mathfrak{H}$ Then an inner rotation is realized by the
linear transformation in $E_{n+1}$ ;

$\sigma.(h_{i})=h.(i)$ $(1 \leqq i\leqq n+1)$ ,

where $\pi$ is a permutation of the letters 1, $\cdots$ , $n+1$ , and $\pi\rightarrow\sigma_{rt}$ gives,
an isomorphism between the group $\tilde{\mathfrak{S}}$ and the symmetric group of
degree $n+1$ . It is clear that
(55) $\sigma_{X}(\alpha_{ij})=\alpha_{lt(i)\pi(j)}$ $(1\leqq i, j\leqq n+1)$ .
Let $\rho_{0}$ be the rotation defined by

$\rho_{\cup}(h_{i})=-h_{n+2-i}$ $(1\leqq i\leqq n+1)$ .
Then $\rho_{0}$ is the only one non-trivial particular rotation transforming
the roots in the fundamental basis $\sum^{0}$ among themselves. From ( $ 25\rangle$

in \S 2 we see that the group $\tilde{\mathfrak{T}}$ of all rotations is given by

(56) $\tilde{\mathfrak{T}}=\tilde{\mathfrak{S}}+\rho_{0}\tilde{\mathfrak{S}}$ .
We define more one rotation $\tau_{0}$ by the formula

$\tau_{0}(h_{i})=-h_{i}$ $(1\leqq i\leqq n+1)$ .
Then
(57) $\tau_{0}(\alpha_{ij})=\alpha_{ji}$ $(1\leqq i, i\leqq n+1)$ ,

and (56) is also written as
(58) $\tilde{\mathfrak{T}}=\tilde{\mathfrak{S}}+\tau_{0}\tilde{\mathfrak{S}}$ .

Now, as was introduced in \S 51 and 2, a real form $\mathfrak{G}$ of $\tilde{\mathfrak{G}}$ is ob-
tained by making use of an involutive automorphism $S$ of the unitary
restriction $\mathfrak{G}_{u}$ of $\tilde{\mathfrak{G}}$ with respect to the basis (53). Following Gant-
macher16), we may assume moreover that $S$ is of the form
(59) $ S=S_{0}\exp$ (ad $\pi\sqrt{-1}h_{0}$),$17$)

where $S_{0}$ is an automorphism of $\mathfrak{G}_{u}$ uniquely determined by an involutive
particular rotation $\rho$ in the following way and $h_{0}$ is an element from
$\mathfrak{H}$ such that $\rho(h_{0})=h_{0}$ . $S_{0}$ leaves invariant $\tilde{\mathfrak{H}}$ and induces in $\mathfrak{H}$ the
particular rotation $\rho$ , and if we set

16) See footnote 10).
17) In the formulae (59) and (61) $\pi$ denotes the usual ratio for a circle.
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(60) $S_{0}e_{\alpha}=\mu_{\alpha}e_{\alpha*}$ , $\alpha^{*}=\rho(\alpha)$ ,

the numbers $\mu_{\alpha}$ are equal to 1 for roots $\alpha$ in the fundamental basis
$\sum^{0}$ and are determined for other roots $\alpha$ by the relations

$\mu_{\alpha}\mu_{-a}=1$ ,

$\mu_{\alpha+\beta}=N_{N_{\alpha^{-}.\beta^{\underline{\beta^{x_{\backslash }}}}}^{\underline{\alpha}*}}..\mu_{\alpha}\mu_{\beta}$ ,

by making use of Lemma 4. From (59) and (60), it follows that the
numbers $\nu_{\alpha}$ defined in (27): $Se_{\alpha}=\nu_{\alpha}e_{\alpha*}$ are given by

(61) $\nu_{\alpha^{=}}\mu_{\alpha}\exp(\pi\sqrt{-1}\alpha(h_{0}))$ .
We shall write $\mu_{ij}$ and $\nu;j$ for the numbers $\mu_{\alpha}$ and $\nu_{\alpha}$ respectively
with $\alpha=\alpha_{ij}$ .

Thus we may say that a real form $\mathfrak{G}$ is determined by an involu-
tive particular rotation $\rho$ and an element $h_{0}$ with the property $\rho(h_{0})=h_{0}$

in $\mathfrak{H}$ . Now, by just the same argument as in Gantmacher $[5]^{18)}$ we
may see that a real form $\mathfrak{G}$ of $\tilde{\mathfrak{G}}$ is, up to isomorphism, one of the
following types (a), (b), (c) and (d), and to each case we shall determine
the group $G/G^{0}$. According to Theorem 2 this determination is reduced
to that of the groups $\mathfrak{T}$ and $\mathfrak{S}$ , which is performed by means of
Theorems 3 and 4. In the following, we set

$\mathfrak{T}_{1}=\mathfrak{T}\cap\tilde{\mathfrak{S}}$ .
(a) $\rho=$ the identical transformation, $h=h_{l+1}+\cdots+h_{n+1},1\leqq l\leqq n_{-}+\underline{1}$ .

2
$\mathfrak{G}$ is the Lie algebra of the group $G_{n+1}^{l}$ of linear transformations in
$n+1$ complex variables leaving invariant the hermitian form

$x_{1}\overline{x}_{1}+\cdots+x_{\iota}\overline{x}_{l}-x_{l+1}\overline{x}_{l+1}-\cdots-x_{n+1}\overline{x}_{n+1}$ .
In this case, obviously $\mu_{\alpha}=1$ for all roots $\alpha$ and by (61)

$\nu_{ij}=\{_{-1}1$
,

$othiefor_{erW^{-}}1\underline{<}_{S}i,.j\leqq l$

or $l+1\leqq i,$ $j\leqq n+1$ ,

Therefore
$\sum_{1}=$ { $\alpha_{ij}$ ; $1\leqq i,$ $j\leqq l$ or $l+1\leqq i,$ $j\leqq n+1$ }, and
$\sum_{2}$ consists of all roots not in $\sum_{1}$ .

18) See Gantmacher [5] $l7$ and $l17$.
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In order to apply Theorem 3 for the determination of the group
$\mathfrak{T}$ we need only to research what rotations $\tau$ satisfy the condition (43),
or its simpler form (44), since the condition (42) is trivial for our case.
The rotation $\tau_{0}$ belongs to $\mathfrak{T}$ by (57) and it follows from (58) that
(62) $\mathfrak{T}=\mathfrak{T}_{1}+\tau_{0}\mathfrak{T}_{1}$ .
As regards $\mathfrak{T}_{1}$ , we see from (55) that an inner rotation $\sigma_{tt}$ belongs to
$\mathfrak{T}_{1}$ , if and only if the permutation $\pi$ maps the subset $\{$ 1, 2, $\cdots$ , $l\}$ onto
itself or onto the subset $\{l+1,\cdots, n+1\}$ . Of course the latter case
occurs only when $n$ is an odd integer $2f-1$ and $l=f$. On the other
hand, by Theorem 4 $\mathfrak{S}$ is the group generated by the reflections
$\sigma_{\alpha}(\alpha\in\sum_{1})$ . The permutations induced by these reflections are trans-
positions $(i,j)$ where $1\leqq i,$ $j\leqq l$ or $l+1\leqq i,$ $j\leqq n+1$ . Therefore $\mathfrak{S}$

consists of all rotations $\sigma_{tl}$ such that the permutations $\pi$ map the subset
{1, $\cdots$ , 1} onto itself. Hence $\mathfrak{S}$ coincide with $\mathfrak{T}_{1}$ except when $n=2f-1$
and $l=f$. In this exceptional case $\mathfrak{S}$ is a subgroup of index 2 in $\mathfrak{T}_{L}$

and for example the inner rotation $\sigma_{\pi 0}$ where $\pi_{0}=(1,f+1)(2,f+2)\cdots$

$(f, n+1)$ does not belon$g$ to $\mathfrak{S}$ but to $\mathfrak{T}_{1}$. Combining (62), we have

(63) $\mathfrak{T}_{=}\{\mathfrak{S}+\sigma^{0_{t0}}\mathfrak{S}+\tau \mathfrak{S}_{\mathfrak{S}+\tau_{0}\mathfrak{S}}+\sigma_{rt_{0}}\tau_{0}if_{\mathfrak{S}}l\neq if\frac{n+1}{n^{2}=2}f-1$

and $l=f$ .
Thus we conclude by Theorem 2 that the group $G/G^{0}$ is an abelian

group of $ord\circ\gamma 2$ or 4 according to each case in (63). By the way, we
note that $\tau_{0}$ and $\sigma_{n_{0}}$ are induced in a natural way from the following
automorphisms $A_{*}$ and $A_{0}$ respectively of the group $SL(n+1, C)$ : For
$(x_{ij})\in SL(n+1, C)$ ,

$A_{*}(x_{ij})=(x_{ji})^{-1}$ ,

$A_{0}(x_{ij})=(u_{ij})^{-1}(x_{ij})(u_{ij})$ ,

where $u_{ij}=\delta_{i.j-f}$ if $1\leqq i\leqq f$ and $u_{ij}=\delta_{i.j+f}$ if $f+1\leqq i\leqq n+1$ .
Therefore, the typical outer automorphisms of $\mathfrak{G}$ , namely those which
are representatives of the cosets of $G$ modulo $G^{0}$ except of the coset
$G^{0}$ , are the automorphisms corresponding to the automorphisms of the
group $G_{n+1}^{l}$ which are induced in this subgroup from $A_{*}$ or from $A_{0\nu}$

$A_{*}$ and $A_{0}A_{*}$ according to each case in (63).
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For the following cases, we first compute the numbers $\mu_{\alpha}$ in (60)
for the particular rotation $\rho_{0}$ and obtain
(64) $\mu_{ij}=(-1)^{i+j+1}$ $(1 \leqq i, i\leqq n+1)$ .
For brevity we shall indicate by $i^{*}$ the integer related to an integer
$i(1\leqq i\leqq n+1)$ by the equation $i+i^{*}=n+2$ . $\rho_{0}$ is then given by

$\rho_{0}(h_{i})=-h_{i*}$ $(1\leqq i\leqq n+1)$ ,

and so
(65) $\rho_{0}(\alpha_{ij})=\alpha_{j*i*}$ $(1\leqq i, j\leqq n+1)$ .

(b) $n=2f+1$ ; odd integer, $\rho=\rho_{0},$ $h=h_{f+1}+\cdots+h_{n+1}$ . $\mathfrak{G}$ is iso-
morphic to the Lie algebra of the real unimodular group $SL(n+1, R)$

of degree $n+1$ .
From (61) and (64) we find in this case

$\nu_{jj}=\{_{(-1)^{i+j+1}ot^{i}h^{f}erwise}^{(-1)_{i+j},1\leqq.i,j\leqq f}$
or $f+1\leqq i,$ $j\leqq n+1$ ,

Therefore, together with (65), we see that
$\sum_{1}$ is empty,

$\sum_{2}=\{\alpha_{ii*} : 1\leqq i\leqq n+1\}$ , and
$\sum_{3}=\{\alpha_{ij;}1\leqq i, j\leqq n+1, i\neq i^{*}\}$ .

$\sum_{3}$ is empty for the case $n=1$ .
We determine the group $\mathfrak{T}$ by Theorem 3. Using Remark after

this theorem we see that $\mathfrak{T}$ consists of rotations $\tau$ satisfying the condi-
tion (42): $\tau\rho_{0}=\rho_{0}\tau$. Clearly $\tau_{0}$ satisfies this condition and hence (62)
is also valid for this case. For an inner rotation $\sigma_{\alpha},$

$\sigma_{jt}\rho_{0}(h_{i})=-h_{\alpha(i*)}$

and $\rho_{0}\sigma.(h_{i})=-h_{t(i)*}(1\leqq i\leqq n+1)$ and therefore $\sigma$. belongs to $\mathfrak{T}_{1}$ if
and only if

$\pi(i^{*})=\pi(i)^{*}$ for $i=1,\cdots,$ $n+1$ .
Let $X$ be the group of permutations which satisfy this condition. Then
$\mathfrak{T}_{1}$ is isomorphic to $X$. Representing a permutation from $X$ as a pro-
duct of cyclic permutations, we can see easily that $X$ is generated by
the permutations of the following forms.

\langle 66) $(i, i^{*}),$ $(i,j)(i^{*},j^{*})$ ( $1\leqq i,$ $j\leqq n+1$ , and $i\neq j^{*}$).
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If $n=1$ the permutations of the second type do not appear in $X$ and
$X=(1,1^{*})$ . On the other hand, suppose $n\geqq 2$ and let $\xi=\alpha_{ij}(i\neq j^{*})$

be a root in $\sum_{3}$. Then $(\xi, \xi^{*})=(\alpha_{ij}, \alpha_{j*i*})=0$ . According to Theorem
4 $\mathfrak{S}$ is now generated by the inner rotations $\sigma_{\xi*}\sigma g(\xi\in\sum_{3})$ . When we
set $\sigma_{\xi*}\sigma_{\xi}=\sigma_{x_{\xi}}$ , then we see that

$\pi_{\xi}=(i,j)(i^{*},j^{*})$ .
Denote by $Y$ the group of permutations generated by these permu $\cdot$

tations $\pi_{\xi}(\xi\in\sum_{3})$ , and in case $n=1$ set $Y=\{1\}$ . Then, as is easily
verified, $Y$ is a normal subgroup of $X$ and is isomorphic to $\mathfrak{S}$ . More $\cdot$

over, $X/Y$ is of order 2. Indeed, from the relations
$\{(i,j)(i^{*},j^{*})\}^{-1}(i, i^{*})\{(i,j)(i^{*},j^{*})\}=(j,j^{*})$ $(1\leqq i, i\leqq n+1)$ ,

it follows that $(i, i^{*}),$ $1\leqq i\leqq n+1$ , are conjugated to each other by
elements of $Y$ and consequently, putting $\pi_{1}=(1,1^{*})$ ,

$X=Y+\pi_{1}$ Y.
Therefore,

$\mathfrak{T}_{1}=\mathfrak{S}+\sigma_{n_{1}}\mathfrak{S}$ .
Combining this with (62), we find

$\mathfrak{T}=\mathfrak{S}+\sigma ae_{1}\mathfrak{S}+\tau_{0}\mathfrak{S}+\sigma_{z_{1}}\tau_{0}\mathfrak{S}$ .
Thus by Theorem 2 the group $G/G^{0}$ is of order 4. Moreover,

typical outer automorphisms of $\mathfrak{G}$ are given by those which induce
$\sigma_{\tau r_{1}},$

$\tau_{0}$ and $\sigma_{7t_{1}}\tau_{0}$ in $\mathfrak{H}$ . Passing from $\mathfrak{G}$ to the Lie algebra of $SL(n+1, R)$

through the exact form of isomorphism between them, we can see that
the typical outer automorphisms of the latter Lie algebra are induced
from the automorphisms $A_{1},$ $A_{*}$ and $A_{1}A_{*}$ of the group $SL(n+1, R)$ ,
which are defined as follows: For $(r_{ij})\in SL(n+1, R)$,

$A_{*}(r_{ij})=(r_{ji})^{-1}$ ,

$A_{1}(r_{ij})=(p_{ij})^{-1}(r_{ij})(p_{ij})$ ,

where $(p_{ij})$ is a real orthogonal matrix of determinant $-1$ .
(c) $n=2f-1$ ; odd integer, $\rho=\rho_{0},$ $h_{0}=0$. $\mathfrak{G}$ is the Lie algebra of

the quaternion unimodular group in $f$ quaternion variables, which is
by definition the subgroup of $SL(n+1, C)$ composed of such matrices
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$(x_{ij})$ that satisfy the condition $(v_{ij})^{-1}(x_{ij})(v_{ij})=(\overline{x}_{ij})$ where $v_{ij}=\delta_{i.j-f}$

if $1\leqq i\leqq f$ and $v_{ij}=-\delta_{i,j+f}$ if $f+1\leqq i\leqq n+1$ .
In this case, by (61) and (64),

$\nu_{ij}=(-1)^{i+j+1}$ $(1\leqq i, j\leqq n+1)$ .
Therefore, together with (65), we see that

$\sum_{1}=\{\alpha_{ii*:}1\leqq i\leqq n+1\}$

$\sum_{2}$ is empty, and
$\sum_{3}=\{\alpha_{ii} ; 1\leqq i, j\leqq n+1, i\neq j^{*}\}$ .

Quite analogous considerations as for the above case (b) imply
that (62) holds also and $\mathfrak{T}_{1}$ is the same group as considered there.
However, in this case the reflections $\sigma_{\alpha}(\alpha\in\sum_{1})$ appear in the generators
of the group $\mathfrak{S}$ in addition to the rotations $\sigma_{\xi*}\sigma_{\xi}(\xi\in\sum_{3})$ so that $\sigma_{\kappa}$

with $\pi$ in (66) are the generators of $\mathfrak{S}$ . Therefore $\mathfrak{T}_{1}=\mathfrak{S}$ and by (62)

$\mathfrak{T}=\mathfrak{S}+\tau_{0}\mathfrak{S}$ .
Thus by Theorem 2 $G/G^{0}$ is of order 2. The typical outer auto-

morphism is the one which is induced in a natural way from $A_{*}$

defined in the case (a).
(d) $n=2f$ ; even integer, $\rho=\rho_{0},$ $h_{0}=0$ . $\mathfrak{G}$ is isomorphic to the Lie

algebra of the real unimodular group $SL(n+1, R)$ of degree $n+1$ .
Again by (61) and (64) we see in this case that

$\nu_{ij^{=(-1)^{i+j+}\sim}}$ $(1\leqq i, j\leqq n+1)$ .
Therefore

$\sum_{1}$ is empty,

$\sum_{2}=\{\alpha_{ii*} ; 1\leqq i\leqq n+1\}$ , and

$\sum_{3}=\{\alpha_{ij;}1\leqq i, j\leqq n+1, i\neq j^{*}\}$ .
By the same argument as in the case (b), we see that (62) holds

and $\mathfrak{T}_{1}$ consists of inner rotations $\sigma_{\tau t}$ where $\pi$ runs over the group $X$

considered there. To determine the group $\mathfrak{S}$, take a root $\xi=\alpha_{ij}$ in
$\sum_{3}$ . Then

$(\xi, \xi^{*})=(\alpha_{ij}, \alpha_{j*i*})$
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$\left\{\begin{array}{l}=0, ifi\neq fandj\neq f,\\\neq 0, ifi=forj=f.\end{array}\right.$

For a root $\xi=\alpha_{ij}$ with $(\xi, \xi^{*})=0$ , we have $\sigma_{\xi*}\sigma_{\xi^{=}}\sigma_{\sim\xi}$ where $\pi_{f}=(i,j)$

$(i^{*},j^{*})$ . For a root $\xi=\alpha_{ij}$ with $(\xi, \xi^{*})\neq 0,$ $i$ or $j$, say $j$, is equal to
$f,$ $\xi+\xi^{*}=\alpha_{ii*}$ and $\sigma_{\xi+\xi*}=\sigma_{\pi_{\xi}}$ where $\pi_{\xi}=(i, i^{*})$ . In virtue of Theorem
4 the group $\mathfrak{S}$ is generated by these rotations $\sigma_{n_{\xi}}(\xi\in\sum_{3})$ , so that $\mathfrak{S}$

consists of rotations $a.(\pi\in X)$ . Therefore, $\mathfrak{S}=\mathfrak{T}_{1}$ and by (62)

$\mathfrak{T}=\mathfrak{S}+\tau_{0}\mathfrak{S}$ .
By Theorem 2 the group $G/G^{0}$ is of order 2. The typical outer

automorphism is given by $A_{*}$ defined in the case (b).
Thus we have completely determined the structure of the groups

$G/G^{0}$ for the real forms of the complex simple Lie algebras of type
$A_{n}$ . For the real forms of the complex simple 5Lie algebras of other
types. we may determine the groups $G/G^{0}$ in a similar way.
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