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An elementary proof of the fundamental
theorem of normed fields.

By Shunzi KAMETANI

(Rec. March 8, 1952)

In the theory of normed rings founded by I. Gelfand1), the most
fundamental is the following theorem of Mazur-Galfand: “ A normed
field over the complex number field is, in the sense of isomorphism,
nothing but the complex number field itself”, the proof of which was
depending on the notion of analyticity, Cauchy’s integral formula and
Liouville’s theorem, etc2).

Quite recently, Prof. E. Artin in his lecture note ’ Algebraic num-
bers and algebraic functions I (1950-51) Princeton ‘ gives a proof of
this theorem as one of the bases of his theory, replacing contour in-
tegral by its approximating sum.

The aim of this short note is also to give an elementary proof of
the above theorem, using no function-theoretical methods but the notion
of continuity. Moreover the proof does not assume the completeness
of the normed fields, though it is easy to see, by way of completion,
that the assumption of completeness does not harm the generality of
this theorem.

Let $K$ be a normed field, that is to say, a field in the sence of
algebra and at the same time a linear space, over the complex number
field $C$, in which is given $t\dot{n}e$ norm $||||$ satisfying

$x\in K\rightarrow||x||\geqq 0$ ,

$x\neq 0\leftarrow-||x||>0$ ,

$x,y\in K\rightarrow||x+y$ !,:i$ll 1 $x||+||y||$ , $||xy||\leqq||x||$ . IIyll,
$\lambda\in C,$ $x\in K\rightarrow||\lambda X||=|\lambda|\cdot||X||$ .

Then the unit $e$ of $K$, being $\neq 0$ , has positive norm, and consequently,
$||e||\geqq 1$ .

1) I. Gelfand: “ Normierte Ringe ”, Recueil Math. T. 9 (51) No. 1 (1941).
2) ibid.
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Throughout this note, the condition of completeness is not assumed.
Thus, with respect to the norm, $K$ becomes a metric space in

which, as a function of $x,$ $||x||$ is continuous. Also the product $xy$

is a continuous function of $x$ and $y$ ,
LEMMA 1. There exists a neighborhood $V$ of $e$ where $||x^{-1}||\leqq 1$

$+||e||$ holds.
PROOF. If $||x-e||<1(\leqq||e||)$ then $x\neq 0$ and $x^{-1}$ exists, which

shows in view of the following identity

$(e-(e-x))\sum_{j=0}^{n}(e-x)^{j}=e-(e-x)^{n+1}$

that, if $||x-e||<1$ , then, as $ n\rightarrow\infty$ ,

(1) $||\sum_{j\Rightarrow 0}^{n}|(e-x)^{j}-x^{-1}||\leqq||x^{-1}||\cdot||e-x||^{n+1}\rightarrow 0$ .

Now, if $||x-e||<2^{-1}$, then, again from the above identity

$||x^{-1}-\sum_{j=0}^{n}(e-x)^{j}||\geqq||x^{-1}||-||e||-\sum_{j=1}^{n}||e-x||^{j}$

$\geqq||x^{-1}|I-11$ $e||-\sum_{j=1}^{n}2^{-j}\geqq||x^{-1}$ I-I1 $e||-1$

from which and from (1) follows $0\geqq||x^{-1}||-(||e||+1)$ . This completes
the proof.

LEMMA 2. $x^{-1}$ is a continuous function defined on $K-\{0\}$ .
PROOF. Let $\{x_{n}\}$ be any sequence of points in $K$ converging to $e$ .

Then, from a certain number on, $x_{n}\in V$ holds, which shows
$||x_{n}^{-1}-e||\leqq||x_{n}^{-1}||\cdot||e-x_{n}||\leqq(||e||+1)||e-x_{n}||\rightarrow 0$ ,

that is,
(2) $x_{n}^{-1}\rightarrow e$ as $Xn\rightarrow e$ .

Now, if $x_{n}\rightarrow x\neq 0$ , then by the continuity of product,

$x_{n}x^{-1}\rightarrow xx^{-1}=e$

which shows by (2)
$xx_{n}^{-1}=(x_{n}x^{-1})^{-1}\rightarrow e$ .

But again by the continuity of product

$x_{n}^{-1}=x^{-1}\cdot x\cdot x_{n}^{-1}\rightarrow x^{-1}$ ,
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and the result follows.
This gives as an immediate consequence the following
LEMMA 3. $||x^{-1}||$ is continuous at every point $x\neq 0$ .
THEOREM OF MAZUR-GELFAND. $K=\{\lambda e|\lambda\in C\}$ .
PROOF. Suppose $K\neq\{\lambda e|\lambda\in C\}=C^{*}$ .
Then there would exist $x\in K-C^{*}$ . Obviously

(3) $a,$ $beC$ , $a\neq 0\rightarrow a\cdot x+b\cdot e\in K-C^{*}$

Since $x-\lambda e\neq 0$ for every $\lambda\in C,$ $\varphi(\lambda)=(x-\lambda e)^{-1}$ and $||\varphi(\lambda)||$ are, by
Lemma 2 and 3, continuous on $C$. Furthermore

$||\varphi(\lambda)||\leqq|\lambda^{-1}|\cdot||(\lambda^{-1}x-e)^{-1}||\rightarrow 0$ as $|\lambda|\rightarrow\infty$ ,

since $\lambda^{-1}x-eeV$ for sufficiently large $|\lambda|$ .
From this fact and the continuity of $||\varphi(\lambda)||$ would follow the

existence of a number $\lambda_{0}\in C$ such that $||\varphi(\lambda_{0})||=\sup_{\lambda eC}||\varphi(\lambda)||$ .
In view of the property (3), it may be assumed that $\lambda_{0}=0$ and

$||\varphi(\lambda_{0})||=1$ , so that
(4) $\lambda\in C\rightarrow||\varphi(\lambda)||=||(x-\lambda e)^{-1}||\leqq||x^{-1}||=1$ .

Now it will be shown that (4) implies

(5) $||(x-2^{-1}e)^{-1}||=1$ .
Once this established, it would be possible to replace $x$ by $x-2^{-1}e$

in view of (3) and, by repetition of this process, would hold
$1=||(x-2^{-1}\cdot n\cdot e)^{-1}||$ $(n=1,2, \cdots)$

which would lead to a contradiction, since
$||(x-2^{-1}\cdot n\cdot e)^{-1}||\rightarrow 0$ $(n\rightarrow\infty)$ .

It remains only to prove that (4) implies (5).
If $||\varphi(2^{-1})||<1$ , then $||\varphi(2^{-1})||=1-2\delta$ where $\delta>0$ . By the con-

tinuity of $||\varphi^{(}\lambda$ ) $||$ , there would exist a positive number $\eta$ such that
(6) $|\lambda-2^{-1}|\leqq\eta\rightarrow||\varphi(\lambda)||<1-\delta$ .

Let $\xi_{1},$ $\cdots\xi_{n}$ be the $n$th roots of 1. Then it is easy to see

$\sum_{j=0}^{n}(x-2^{} \xi_{j}\cdot e)^{-1}=n\cdot x^{n-1}(x^{n}-2^{-n}e)^{-1}$
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$=n\cdot x^{-I}(e+x^{-1}(2^{-1}x^{-1})^{n}(e-(2^{-1}x^{-1})^{n})^{-1})$

or
$n^{-1}\sum_{j=0}^{n}$ $(x-2^{} \xi_{j}\cdot e)^{-1}=x^{-1}+x^{-1}(2^{-1}x^{-1})^{n}(e-(2^{-1}x^{-1})^{n})^{-1}$

from which

(7) $n^{-1}\sum_{j=0}^{n}||\varphi(2^{-1}\xi_{j})|_{1^{1}}\geqq||x^{-1}||-||x^{-1}||\cdot||2^{-1}x^{-1}||^{n}\cdot||(e-(2^{-1}x^{-1}))n-1||$ .

Let $n^{\prime}$ be the number of $2^{-1}\xi_{j}$ satisfying $|2^{-1}\xi_{j}-2^{-1}|\leqq\eta$ . Then
from (6), (4) and (7), follows
(8) $n^{-1}(n^{\prime}(1-\delta)+(n-n^{\prime}))>1-2^{-n}||(e-(2^{-1}x^{-1})^{n})^{-1}||$ ,

in which the right hand-side of (8) tends to 1 since $e-(2^{-1}x^{-1})^{n}\in V$

for sufficiently large $n$ , while the left hand.side, $ 1-(n^{\prime}/n)\delta$ , tends to

$ 1-\frac{l}{2\pi 2^{-1}}\delta$ where $l/(2\pi 2^{-1})$ is the ratio of the length 1 of the arc

defined by $|\lambda-2^{-1}|\leqq\eta$ and $|\lambda|=2^{-1}$ to the total length of the circle
$|\lambda|=2^{-1}$ .

This obviously would give

$1-\frac{l}{\pi}\delta\geqq 1$

which is a contradiction. (March 3rd, 1952)
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