Conformally Flat Riemann Spaces of Clase One

Makoto Matsumoto

(Received Nov. 11, 1949)

When an $n(\geq 3)$ -dimensional Riemann space C_n with a metric defined by a positive-definite quadratic differential form is conformal to a flat space and is of class one, at least (n-1) principal normal curvatures are equal. If all of them are equal, C_n is of constant curvature.

This theorem was proved by J. A. Schouten,⁽¹⁾ only when (n+1)-dimensional flat E_{n+1} enclosing C_n is euclidean. But, even if E_{n+1} is not euclidean, we can prove it similarly as follows.

Since C_n is conformally flat, the curvature tensor is written in the from

$$(0.1) R_{hijk} = g_{hj}l_{ik} + g_{ik}l_{hj} - g_{hk}l_{ij} - g_{ij}l_{hk};$$

where we put

$$(0.2) l_{ij} = \frac{1}{n-2} \left(R_{ij} - \frac{R}{2(n-1)} g_{ij} \right).$$

If C_n is of class one, the Gauss equation

$$(0.3) R_{hijk} = e(H_{hi}H_{ik} - H_{hk}H_{ij}) (e = \pm 1)$$

is satisfied; where e=+1 if enclosing E_{n+1} is euclidean. Referring to the coordinate system (C) such that coordinate lines are lines of curvature, we have from $(0\cdot 1)$ and $(0\cdot 3)$,

$$(0\cdot 4) l_{ii} + l_{jj} = eH_{ii}H_{jj} (i \neq j).$$

Making use of (0.4), we can prove easily the above theorem.

In this paper we look for the condition that $C_n(n>3)$ not of constant curvature be of class one. It is very difficult to express the resultant system⁽²⁾ explicitly as in the paper of T. Y. Thomas for general Riemann spaces of class one. C. B. Allendoerfer could avoid this difficulty for the Einstein spaces.⁽³⁾ We shall obtain an analogous result for conformally flat spaces as follows.

I. We have from (0.3)

$$(1 \cdot 1) H_{lm} R_{hljk} - H_{lk} R_{hljm} - H_{jh} R_{mkli} + H_{ji} R_{mklh} = 0.$$
⁽⁴⁾

Contracting (1.1) by $g^{lm}g^{jh}$ and making use of (0.1) give

$$(1\cdot 2) H_{ai}l_{j}^{a} - H_{aj}l_{i}^{a} = 0 (l_{j}^{a} = g^{ab}l_{jc}).$$

Next, contracting (1.1) by g^{hn} and taking account of (0.1) and (1.2), we have

(1.3)
$$g_{ij}H_{ka}l_i^a - g_{kl}H_{ia}l_j^a + l(H_{ij}g_{kl} - H_{kl}g_{ij}) + (n-3)(H_{ij}l_{kl} - H_{kl}l_{ij}) = 0 \quad (l = l_a^a).$$

Moreover, contracting by g^{kl} gives $nH_{ia}l_j^a = (H_b^a l_a^b - Hl)g_{ij} + (2n-3)lH_{ij} - (n-3)Hl_{ij}$, $(H_b^a = g^{ac}H_{bc}, H = H_a^a)$. Substituting from this expression in (1.3) and putting $K_{ij} = nl_{ij} - lg_{ij}$, we have finally

$$(1.4) n(K_{ij}H_{kl}-K_{kl}H_{ij})+H(g_{ij}K_{kl}-g_{kl}K_{ij})=0.$$

We see immediately that C_n is of constant curvature if, and only if, $K_{ij}=0$.

II. Referring to the coordinate system (C), we have $g_{ij}=H_{ij}=l_{ij}=K_{ij}=0$ $(i \neq j)$, $g_{ii}=1$, $(i=l,\cdots,n)$, $H_{22}=\cdots=H_{nn}$, $l_{22}=\cdots=l_{nn}$, $K_{22}=\cdots=K_{nn}$. Evidently C_n is flat for $H_{22}=0$. If $H_{11}=0$, we have $H=(n-1)H_{22}$ and from $(1\cdot 4)$ $K_{11}-K_{22}=0$; and we see easily from $(1\cdot 4)$ that $H_{11}=H_{22}=\cdots=H_{nn}$; so that C_n is of constant curvature. Consequently C_n , being not of constant curvature, is of type n, i=0, i=0, i=0, i=0. i=0. i=0. i=0.

If $K_{22}=0$, we have $l_{11}=l_{22}$ and therefore C_n is of constant curvature. If $K_{11}=0$, we have similarly $l_{11}+l_{22}=0$ and from $(0\cdot 4)$ $H_{11}H_{22}=0$; so that C_n is also of constant curvature.

Consequently we have the

Lemma:—If conformally flat $C_n(n \ge 3)$, which is not of constant curvature, is of class one, C_n is of type n and the determinant $|K_{ij}|$ does not vanish.

From det. $|K_{ij}|$ we make conjugate K^{ij} of K_{ij} and contracting (1.4) by K^{kl} we have

$$(2\cdot 1) H_{ij} = ag_{ij} + bl_{ij};$$

where a and b are scalars. Substituting $(2 \cdot 1)$ in $(0 \cdot 3)$ and making use of $(0 \cdot 1)$ we have

$$(2\cdot 2) \qquad (e-ab) R_{hijk} = a^2 (g_{hj}g_{ik} - g_{hk}g_{ij}) + b^2 (l_{hi}l_{ik} - l_{hk}l_{ij}).$$

If the matrix $||l_{ij}||$ is of rank one, the last term of $(2 \cdot 2)$ vanishes and hence (e-ab) is equal to zero; since otherwise C_n would be of constant

curvature. Therefore we have a=0; so that we meet with contradiction, i. e., e=0. Thus we have the necessary condition (A) that $||l_{ij}||$ is of rank ≥ 2 .

III. Now, from $(2\cdot 2)$, consider a system of linear homogeneous equations

$$(3\cdot1) tR_{hijk} = A(g_{hj}g_{ik} - g_{hk}g_{ij}) + B(l_{hj}l_{ik} - l_{hk}l_{ij});$$

where t, A and B are unknowns. The system has non-trivial solutions t, A and B if, and only if,

$$\begin{vmatrix} R_{a'cd} & g_{ac}g_{bd} - g_{ad}g_{bc} & l_{ac}l_{bd} - l_{ad}l_{bc} \\ R_{hijk} & g_{hj}g_{ik} - g_{hk}g_{ij} & l_{hj}l_{ik} - l_{hk}l_{ij} \\ R_{prs} & g_{pr}g_{qs} - g_{ps}g_{qr} & l_{pr}l_{qs} - l_{ps}l_{qr} \end{vmatrix} = 0.$$

Consequently it is necessary for C_n of class one that (3.2) are satisfied.

Conversely, we can prove that this condition and (A) are sufficient. In fact, suppose that we have a system of solutions t, A and B; where t=0. Making use of the equation $A(g_{hj}g_{ik}-g_{hk}g_{ij})+B(l_{hj}l_{ik}-l_{hk}l_{ij})=0$ and referring to the coordinate system (\bar{C}) ; where $g_{ij}=l_{ij}=0$ (i + j), $g_{ii}=1$; we see easily that C_n is of constant curvature, in contradiction to hypothesis. Consequently t + 0 and hence we have

$$(3\cdot3) R_{hijk} = C(g_{hj}g_{ik} - g_{hk}g_{ij}) + D(l_{hj}l_{ik} - l_{hk}l_{ij}).$$

Referring to the coordinate system (\bar{C}) we know CD=1. Now we put

$$(3\cdot 4) a = +\sqrt{\frac{cC}{2}}, \quad b = +\sqrt{\frac{cD}{2}};$$

where l=+1 or -1, according as C (D) is positive or negative. We define H_{ij} by $(2\cdot 1)$ and making use of $(0\cdot 1)$ we see immediately that those H_{ij} satisfy the Gauss equation $(0\cdot 3)$.

From the lemma and the theorems in Thomas's paper, $^{(6)}$ it follows that above H_{ij} satisfying the Gauss equation is unique to within algebraic sign and that satisfies the Codazzi equation

$$H_{ij,k}-H_{ik,j}=0$$
.

because of type n(>3). As the result we have the

Theorem:—If $n(\geq 4)$ —dimensional Riemann space C_n with a metric defined by a positive definite quadratic differential form is conformal to a flat

space and not of constant curvature, C_n is of class one if, and only if, the matrix andition (A) and the equation (3.2) are satisfied. Then the type number of C_n is equal to n.

IV. Now we give another proof of the theorem of Brinkmann that class number of conformally flat space is at most two. (7) Let us define $H_{ij}^{P}(PI, II)$ as follows:

(4.1)
$$H_{ij}^{I} = \frac{1}{\sqrt{2}} (g_{ig} + l_{ij}), \quad H_{ij}^{II} = \frac{1}{\sqrt{2}} (g_{ij} - l_{ij}),$$

then we have from (0.1) the Gauss equation

$$(4\cdot2) R_{hijk} = l_P(H_{hj}^P H_{ik}^P - H_{hk}^P H_{ij}^P) (l_I = +1, l_{II} = -1),$$

and according to (0.2)

(4·3)
$$H_{ij,k}^{P} - H_{ik,j}^{P} = \frac{l_{P}}{\sqrt{2} (n-2)} R_{ijk};$$

where we put

$$(4\cdot4) R_{ijk}=R_{ij,k}-R_{ik,j}-\frac{1}{2(n-1)}(g_{ij}R_{,k}-g_{ik}R_{,j}).$$

We know well that R_{ijk} vanishes for conformally flat space $C_n(n \ge 3)$. Hence, if we define $H_{qi}^P = 0$, then we have the Codazzi equation $H_{ij,k}^P - H_{ik,j}^P = l_Q(H_{ij}^Q H_{Pk}^Q - H_{ik}^Q H_{Pj}^Q)$, and also the Ricci equation

$$H_{Qi,j}^{P} - H_{Qj,i}^{P} = g^{ab}(H_{ai}^{Q}H_{bj}^{P} - H_{aj}^{Q}H_{bi}^{P})$$
;

so that $C_n(n \ge 3)$ is imbedded always in flat E_{n+2} . It will be interesting to compare $(2 \cdot 1)$ with $(4 \cdot 1)$.

Mathematical Institute
Kyoto University

References

- (1) Math Zeits., 11 (1921), p. 88.
- (2) Acta Math., 67 (1936), Cf. (8.4).
- (3) Bull. Amer. Math. So., 43 (1937), pp. 265-270.
- (4) T. Y. Thomas, l. c., Cf. (8.2).
- (5) l. c., Cf. § 5.
- (6) 1. c., Cf. §§ 5, 6.
- (7) Pro. Nat. Acad. Sci. U.S.A., 9 (1923), pp. 1-3.