A Proof of Schauder's Theorem

Shizuo Kakutani

1. Introduction. The purpose of this note is to give a simple proof to the following theorem of J. Schauder ${ }^{1}$: A bounded linear operator T defined on a Banach space X is completely continuous if and only if the adjoint operator T^{*} of T defined on the conjugate space X^{*} of X is completely continuous. We shall give a formulation of Schauder's theorem (Theorem 2) in which X and X^{*} (and hence T and T^{*}) appear as a dual pair. (It is to be observed that X^{*} has no need to be the conjugate space of X in Theorem 2). Since T and T^{*} play equivelent roles in our formulation, the " if" part of the theorem is an equivalent proposition to the " only if" part.

Our proof of Schauder's theorem is based on the following well-known theorem of G. Arzelà: A uniformly bounded, equi-continuous family $F=\{f(x)\}$ of real-valued continuous functions $f(x)$ defined on a totally bounded metric space X is totally bounded with respect to the metric

$$
\begin{equation*}
d\left(f_{1}, f_{2}\right)=\sup _{x \in X}\left|f_{1}(x)-f_{2}(x)\right| \tag{1}
\end{equation*}
$$

We shall give a formalation of a special case of Arzela's theorem (Theorem 1) in which X and F play equivalent roles so that the total boundedness of X is also necessary for the total boundedness of F. The notion of totally bounded functions introduced in section 2 will be helpful in making arguments simpler.
2. Totally bounded functions. Let $X=\{x\}, Y=\{y\}$ be two sets. Let $f(x, y)$ be a bounded real-valued function defined for all $x \in X$ and for all $y \in Y$.

Lemma r. The following threc conditions are mutually cquivalent: (i) for any $\varepsilon>0$ there cxists a decomposition $X=U_{i=1}^{m} A_{i}$ of X inito a finite number of subsets $A_{i}, i=1, \cdots, m$, such that

$$
\begin{equation*}
\left|f\left(x_{1}, y\right)-f\left(x_{2}, y\right)\right|<\varepsilon \tag{2}
\end{equation*}
$$

for all $x_{1}, x_{2} \in A_{i}$ (same i), $i=1, \cdots, m$, and for all $y \in Y$. (ii) for any $\varepsilon>0$ there exists a decomposition $Y=U_{j=1}^{n} B_{j}$ of Y into a finite number of subsets $B_{j}, j=1, \cdots, n$, such that

$$
\begin{equation*}
\left|f\left(x, y_{1}\right)-f\left(x, y_{2}\right)\right|<\varepsilon \tag{3}
\end{equation*}
$$

for all $x \in X$ and for all $y_{1}, y_{2} \in B_{j}$ (same $\left.j\right), j=1, \cdots, n$. (iii) for any $\varepsilon>0$ there exist decompositions $X=U_{i=1}^{m} A^{b}, Y=U_{j=1}^{n} B_{j}$ of X and Y into a finite
number of subsets $A_{i}, i=1, \cdots, m$, and $B_{j}, j=1, \cdots, n$, such that

$$
\begin{equation*}
\left|f\left(x_{1}, y_{1}\right)-f\left(x_{2}, y_{2}\right)\right|<\varepsilon \tag{4}
\end{equation*}
$$

for all $x_{1}, x_{2} \in A_{6}$ (same i), $i=1, \cdots, m$, and for all $y_{1}, y_{2} \in B_{j}$ (same j), $j=1, \cdots, n$.

The proof of this lemma is easy and so omitted. In case one (and hence all) of the conditions of Lemmı 1 is satisfied, we say that the function $f(x, y)$ is totally bounded on X and Y.
3. Arzela's theorem. Let $\mathrm{X}=\{x\}, Y=\{y\}$ and $f(x, y)$ be the same as in section 2. For any $x_{1}, x_{2} \in X$, let us put

$$
\begin{equation*}
d^{(1)}\left(x_{1}, x_{2} ; f\right)=\sup _{y \in Y}\left|f\left(x_{1}, y\right)-f\left(x_{2}, y\right)\right| . \tag{5}
\end{equation*}
$$

Then $d^{(1)}\left(x_{1}, x_{2} ; f\right)$ is a quasi-metric defined on X (i.e. $d^{(1)}\left(x_{1}, x_{2} ; f\right)$ satisfies all axioms of a metric except possibly the separation axiom: $d^{(1)}\left(x_{1}, x_{2} ; f\right)>0$ if $\left.x_{1} \neq x_{2}\right) . \quad X$ is called totally bounded with respect to $d^{(1)}\left(x_{1}, x_{2} ; f\right)$ if for any $\varepsilon>0$ there exists a decomposition $X=U_{i=1}^{n} A_{i}$ of X into a finite number of subsets $A_{i}, i=1, \cdots, m$, such that $d^{(1)}\left(x_{1}, x_{2} ; f\right)<\varepsilon$ for all $x_{1}, x_{2} \in A_{t}$ (same i), $i=1, \cdots, m$. Similarly, if we put for any $y_{1}, y_{2} \in Y$

$$
\begin{equation*}
d^{(2)}\left(y_{1}, y_{2} ; f\right)=\sup _{x \in X}\left|f\left(x, y_{1}\right)-f\left(x, y_{2}\right)\right|, \tag{6}
\end{equation*}
$$

then $d^{(2)}\left(y_{1}, y_{2} ; f\right)$ is a quasi-metric on Y. The total boundedness of Y with respect to the quasi-metric $d^{(2)}\left(y_{3}, y_{2} ; f\right)$ is defined similarly.

Theorem I. X is totally bounded zevith respect to $d^{(1)}\left(x_{1}, x_{2} ; f\right)$ if and only if Y is totally bounded with respect to $d^{(2)}\left(y_{1}, y_{2}: f\right)$.

Proof. Theorem 1 follows immediately from Lemma 1 if we observe that the total boundedness of X with respect to $d^{(1)}\left(x_{1}, x_{2} ; f\right)$ is equivalent to the condition (i) of Lemma 1 and that the total boundedness of Y with respect to $d^{(2)}\left(\left(y_{1}, y_{2} ; f\right)\right.$ is equivalent to the condition (ii) of Lemma 1.

Remark. Theorem 1 is symmetric in X and Y. Hence the " if" part and the " only if" part of Theorem 1 are essentially the same propositions. Further, it is easy to see that this proposition is a consequence of Arzela's theorem. In fact, if we put $f_{y}(x)=f(x, y)$, then $F=\left\{f_{y}(x) \mid y \in Y\right\}$ is a uniformly bounded, equi-continuous family of continuous functions $f_{y}(x)$ defined on a set X with a quasi-metric $d^{(1)}\left(x_{1}, x_{2} ; f\right)$; and we have

$$
\begin{align*}
d\left(f_{y_{1}}, f_{y_{2}}\right) & =\sup _{x \in X}\left|f_{y_{1}}(x)-f_{y_{2}}(x)\right| \tag{7}\\
& =\sup _{x \in X}\left|f\left(x, y_{1}\right)-f\left(x, y_{2}\right)\right| \\
& =d^{(2)}\left(y_{1}, y_{2} ; f\right) .
\end{align*}
$$

4. Normed pair. Let $X=\{x\}, Y=\{y\}$ be two normed linear spaces with $\|x\|_{1},\|y\|_{2}$ as norms, Assume that there is a real-valued bilinear
functional (x, y) defined for all $x \in X$ and for all $y \in Y$ such that

$$
\begin{align*}
& \|x\|_{1}=\sup _{\|y\| / 2 \leq 1}|(x, y)| \tag{8}\\
& \|y\|_{2}=\sup _{\| x / 1 \leq 1}|(x, y)| \tag{9}
\end{align*}
$$

for all $x \in X$ and for all $y \in Y . \quad X$ and Y are called a normed pair with respect to the inner product (x, y).

Let X, Y be a normed pair with respect to the inner product (x, y). Let T, T^{*} be two bounded linear operators defined on X, Y respectively. T and T^{*} are called an adjoint pair if

$$
\begin{equation*}
(T x, y)=\left(x, T^{*} y\right) \tag{10}
\end{equation*}
$$

for all $x \in X$ and for all $y \in Y$. It is easy to see that

$$
\begin{align*}
& \|T\|_{1}=\sup _{\| x^{\prime} \mid \leq 1}\|T x\|_{1} \tag{11}\\
& =\sup _{\| \int / \mid 1 \leq 1} \sup _{\| y| | z \leq 1}|(T x, y)| \\
& =\sup _{\| y \mid / 2 \leq 1} \sup _{\| x \mid 1 \leq 1}\left|\left(x, T^{*} y\right)\right| \\
& =\sup ^{\prime} / y_{y / 21} \leq\left\|T^{*} y\right\|_{2}=\left\|T^{*}\right\|_{l_{2}} .
\end{align*}
$$

An example of a normed pair is given by a Banach space X and its conjugate space X^{*} if we define the inner product $\left(x, x^{*}\right)$ as the value of a bounded linear functional x^{*} at a point x. Similarly, the conjugate space X^{*} of X and the second conjugate space $X^{* *}$ of X (i.e. the conjugate space of X^{*}) form a normed pair. (It is also easy to see that, if we consider X as a linear subspace of $X^{* *}$ and if Y is a linear subspace of $X^{* *}$ which contains X, then X^{*} and Y form a normed pair). Further, a bounded linear operator T (defined on X) and the adjoint operator T^{*} (defined on X^{*}) form an adjoint pair. Similarly, the adjoint operator T^{*} of T and the second adjoint operator $T^{* *}$ of T (defined on $X^{* *}$) form an adjoint pair.

From Theorem 1 follows immediately:
Lemma 2. Let X, Y be a normed pair zeith respect to the inner product (x, y), and lit A, B be tzeo bounded subsets of X, Y respectively. Then the following three conditions are mutually equivalent:
(i) A is totally bounded with respect to the quasi-metric

$$
\begin{equation*}
d^{(1)}\left(x_{1}, x_{2} ; B\right)=\sup _{y \in B}\left|\left(x_{1}, y\right)-\left(x_{2}, y\right)\right| \tag{12}
\end{equation*}
$$

(ii) B is totally bounded with respect to the quasi-metric

$$
\begin{equation*}
d^{(2)}\left(y_{1}, y_{2} ; A\right)=\sup _{\text {xeA }}\left|\left(x, y_{1}\right)-\left(x, y_{2}\right)\right| \tag{13}
\end{equation*}
$$

(iii) the inner product (x, y) is totally bounded on A and B,

If we consider the special case when B is the unit sphere S_{Y} of Y, then we obtain:

Lomma 3. Let X, Y be a normed pair with respect to the inner product (x, y), and let A be a bounded subset of X. Then the following three conditions are mutually equivalent: (i) A is totally boinded with respect to the metric $d^{(1)}\left(x_{1}, x_{2}\right)=\left\|x_{1}-x_{2}\right\|_{1}$. (ii) the unit sphere S_{Y} of Y is totally bounded with respect to the quasi-metric $d^{(2)}\left(y_{1}, y_{2} ; A\right)$ (or equivalently, from any sequence $\left\{y_{n} \mid n=1,2, \cdots\right\}$ of elements of S_{Y} it is possible to find a subsequence $\left\{y_{n_{k}} \mid k=1,2, \cdots\right\}$ for which the inner product $\left(x, y_{n_{k}}\right)$ converges uniformly on A). (iii) the inner product (x, y) is totally bounded on A and S_{Y}.
5. Schauder's theorem. A bounded linear operator T defined on a normed linear space X is called completely continuous on X if the image $T\left(S_{X}\right)$ of the unit sphere S_{X} of X by T is totally bounded with respect to the metric $d^{(1)}\left(x_{1}, x_{2}\right)=\left\|x_{1}-x_{2}\right\|_{1}$.

Theorem 2. Let X, Y be a normed pair, and let T, T^{*} be an adjoint pair of bounded linear operators defined on X, Y, respectively. Then T is completely continuous on X if and only if T^{*} is completely continuous on Y.

Proof. Let S_{X}, S_{Y} be the unit spheres of X, Y respectively; and consider the function

$$
\begin{equation*}
f(x, y)=(T x, y)=\left(x, T^{*} y\right) \tag{14}
\end{equation*}
$$

defined for all $x \in S_{X}$ and for all $y \in S_{Y}$. Theorem 2 follows immediately fiom Lemma 3 if we observe that the following five conditions are mutually equivalent: (i) $T\left(S_{x}\right)$ is totally bounded with respect to the metric $d^{(1)}\left(x_{1}, x_{2}\right)=\left\|x_{1}-x_{2}\right\|_{1}$; (ii) the inner product (x, y) is totally bounded on $T\left(S_{X}\right)$ and S_{Y}; (iii) the function $f(x, y)$ is totally bounded on S_{X} and S_{Y}; (iv) the inner product (x, y) is totally bounded on S_{X} and $T^{*}\left(S_{Y}\right)$; (v) $T^{*}\left(S_{Y}\right)$ is totally bounded with respect to the metric $d^{(2)}\left(y_{1}, y_{2}\right)$ $=\left\|y_{1}-y_{2}\right\|_{2}$.

Yale University

Bibliography

1) J. Schauder, Über lineare vollstetige Operatoren, Studia Math., 2 (1930), 183-196.
