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Theorems of Bertini on Linear Systems

Yasuo AKIZUKI

As the fundamental $theorem_{\overline{3}}$ of the classical algebraic geometry we
have these of Bertini:

I. $T/le$ general section $U_{-1}$ of an algebraic variety $U_{r}$ by a linear
system $with\ell ut$ fixed components is irreducible, provided $t\prime_{l}at$ tfte linear
system is not composed of an algebraic $pe\prime\prime cil$.

II. Tlte general section $U_{r-1}$ of $U_{r}$ by a linear system can not lave any
singular points outside the singlar points of $U_{r}$ and oulside the base
points of the linear system.

The first propositIon was proved purely. algebraically first by Zariski,1)

when the basic field $k$ of $U_{r}$ is of characteristic $p=0$ . $Matsusaka^{o)}\sim$ remarked
that this holds even when $p>0$ under au additional condition.

$Zariski^{\theta)}$ has also given an adequate formulation to th $e$ second pro-
position for the case $p>0$ , as it cannot be maintained in the above $f_{01}mula-$

tion in this case.
In this paper we shall study how the above formulation will not be

maintained when $p>0$ . and will give a sufficient condition that it should
be maintained. $The\iota eby$ we shall give also a new proof the first propos-
ition. Further we shall add a new elementary proof of the second prop-
osition in the classical case.4)

1. Let $U_{r}$ be an r-dimensional irreducible algebraic variety immersed
in an $\Lambda^{7}$-dimensional projective space $S^{N}$ and defined over a field $k$ of
characteristic $p\geqq 0$ . We denote by $(\xi_{0}, \xi_{1},\ldots, \xi_{N})$ the homogeneous coordi-
nates of the generic point of $U/k$ . And we assume that the linear
system on $U$

$\lambda_{\alpha}f_{0}(\xi)+\lambda_{1}f_{1}(\Psi+\cdots+\lambda_{m}\dot{f}_{m}(\xi)$ (1)

has no fixed components.

1) See Zariski [1].
2) See Matsusaka [5].
3) See Zariski [2].
4) We shall use the same terminalogies in Weil’s book [3].
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We now consider the algebraic correspondence $W$ in doubly projective
space $S_{N}\times S_{m}$ , attaching to the linear system (1) as foHows:

$\eta_{0}f_{i}(\xi)-\dot{\eta}_{i}f_{0}(\xi)=0$ $(1\leqq i\leqq m)$ (2)

Let $P,$ $Q$ be the pair of corresponding points on $U$ and $W$, and $P$

not to belong to the base variety of the linear system. As $W$ is rational
over $U$ , if $J^{J}$ is simple on $U$, then $Q$ is simple on $W$, and vice versa.\S )

The geometrical projection $V$ of \dagger V in the second factor $S^{m}$ of $S^{N}\times S^{m}$

is an algebraic vari $ety$ defined over $k$ , for $(\eta_{i})=(f_{i}(\xi))$ is regular with
respect to $k$ , as $(\xi)i^{\circ_{J}}$ so.

Let now $C_{\lambda}$ be the generic element of the linear system (1) on $U$,

then it is readily be seen from our assumption the linear system to be
without fixed components that

$C_{\lambda}=proj_{U}[(S_{N}\times H)\cdot W]$ ,

where $H$ is the generic $hyP^{e1^{r}}plane$ in $S_{m}$

$\lambda_{0}Y_{0}+\lambda_{1}Y_{1}+\ldots+\lambda_{m}Y_{m}=0$ .

2. Let the inhomogeneous coordinates of the generic point $P$ of $U$

be $(x_{1},\ldots, x_{N})$ such that

$\chi_{i^{=}}\xi/\xi_{0}$ $1\leqq i\leqq N$,

then we can assume, since $P$ does not belong to the base variety,

$f_{0}(x)=f_{0}(1, x_{1}, .., x_{N})\neq 0$ .

If we now define

$y_{i}=f_{i}(x)/f_{0}(x)$ $(1\leqq i\leqq m)$ , (3)

then $(x_{1}, ., x_{N},y_{1}, ..,y_{m})$ is the inhomogeneous coordinates of the generic
point of $W$ in the affine space $L^{N+m}$ .

Let us assume that the dimension of $V/k$ , i. e. of the field $ k\zeta\gamma$)
$=k(y_{1},\ldots,y_{m})$ over $k$ is not less than 2. Since $k(y)$ is regular over $k$ ,

5) See Weil’s book $\lfloor 3$]. Theor. 15, p. 108.
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we can conclude, by the fundamental lemma of Zariski,6) that if it is not
$k(y)\subset\{k(x)\}^{p},$ $K(\sum_{i=1}^{m}\lambda_{i}y)$ is algebraically closed in $K(x,y)=K(x)$ , where
$K=k(\lambda_{2},\ldots, \lambda_{m})$ and the $\lambda_{s}$ are independent indeterminates. Therefore

$(S^{N}\times H)\cdot W=mI^{7}$ (4)

and $I^{\tau}$ is defined over $\overline{K(\lambda_{0}}$) (algebraic closure of $K(\lambda_{0})=k(\lambda_{0},$ $\lambda_{1},\ldots,$ $\lambda_{m})$ ),
namely $\Gamma$ is absolutely irreducible.

3. Let $\mathfrak{P}=(F_{1}(\xi),\ldots, F_{\mu}(\xi))$ be the defining ideal of $U$ in $S^{N}$ and
$P(\xi)$ a point not belonging to the base variety with $f_{0}(\xi)\dashv 4$ . Then the
affine model $W$ may be defined locally at $P$ by

$(..., F_{i}(X),\ldots ;..., Y_{j}f_{0}(X)-f_{j}(X),\ldots)$ (5)
$1\leq i\leq\mu,$ $1\leq f\leq m$

Lemma. Let $P$‘ $(x^{\prime})$ be a simple point on $U$ not belonging to $t/le$ base
variety of the linear system $wit/\ell f_{0}(x^{\prime})\neq 0$ , and $Q^{\prime}(x^{\prime},y^{\prime})$ be the point on
$W$ wliiclt coresponds to $t\prime_{l}e$ point $P^{t}$ . $Th\ell n$ the $/lyperplaneS^{N}\times H^{\prime}$ passing
$throvg\prime_{l}P^{\prime}$

$\sum\lambda_{i}(Y-y_{i}^{\prime})$

is not transversal at $Q^{\prime}$ to $W$, if and $0\prime lytf$ the equations

$\Sigma_{i-1}\lambda D_{j}(y)=0$ , $y=f(x)/f_{0}(x)$ (6)

are consisknl at $P^{\prime}$ for all $\ell kriva\dot{\hslash}onsD_{j}$ of $k(x)$ .
Proof. It is clear that the hyperplane $S^{N}xH^{\prime}$ is not transversal at $Q^{\prime}$ to
$W$, if and only if the rank of the matri.x

$\left(\begin{array}{llllll}\frac{\partial F_{1}}{\partial x_{1}} & \cdots & \frac{\partial F_{l}}{\partial x_{N}} & 0. & \cdots & 0\\\cdots & \cdots & \cdots & \cdots & \cdots & \cdots\\\frac{\partial F_{N-r}}{\partial x_{1}} & \cdots & \frac{\partial F_{N- r}}{\partial x_{N}} & 0 & \cdots & 0\end{array}\right)$

6) See for the cae $p=0$ Zariski’s poper [1], Lem.5. Also see for the case $p>0$

Matsusaka [5], Theor. 2, 4. Also cf. Igusa [7].
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at $Q^{\prime}$ is not $N+m+1-r$ for any choice of $F_{1},$
$.,$

$F_{N-r}$ among polynomials
belonging to the ideal $\mathfrak{P}$ . Since $f_{0}(x^{\prime})\neq 0$ , this is equivalent to the condi-
tion, as we can see by easy calculation, that the rank of the matrix

$A=[\frac{\partial F_{N-r}}{\Sigma\lambda_{i^{\frac{\partial}{\partial x_{1}}}}\partial x1}(\frac{f_{i}}{f_{0}})\ldots\ldots\sum\lambda_{\frac{\partial}{\partial x}}\frac{\partial F_{A^{l}-r}}{N(\frac{\partial_{f_{i}}^{\chi}}{f_{0}})1}]$
(7)

at $P^{\prime}$ is not $N-r+l$ . While $P^{\prime}$ is smiple on $U$, we can choose $F_{1},\ldots,$ $F_{N-r}$

such that the rank of the first $N-r$ rows of $A$ is $N-r$ . Therefore any
derivation $D_{j}$ of $k(x)$ over $k$ as a solution-vector of equations

$\sum_{l\approx 1}^{N}\frac{\partial F_{i}}{\partial x_{l}}D_{j}x_{l}=0$ , $i=1,\ldots,$ $N-r$

satIsfies also

$\sum_{l\approx 1}^{N}(\Sigma\lambda_{i}\frac{\partial}{\partial x_{l}}(\frac{f_{i}}{f_{0}}))D_{j}x_{l}=0$

at $P^{\prime}$, namely at $P^{\prime}$ for any $D_{j}$ which is finite at $P^{\prime}$

$\Sigma\lambda_{i}D_{j}(f_{l}/f_{0})=0$ , q. e.d.

4. Let $P(x)$ be a generic point of $U$, $Q(x,y)$ the point on $W$

which corresponds to $P$, and $\lambda_{1},\ldots,$ $\lambda_{m}$ independent indeterminates with
respect to $k(x)$ . If we set $\lambda_{0}$ such that
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$-\lambda_{\Phi}=\sum\lambda_{i}y$ ,

then the hyperplane

$\lambda_{0}+\lambda_{1}Y_{1}+\cdots+\lambda_{m}Y_{m}=0$

passes through $Q$ . In order the hyperplane not to be transversal to $W$ at
$Q$ , as we see from the preceeding lemma, it must be

$\Sigma\lambda_{i}D(y)=0$

for any derivation $D$ of $k(x)$ . Whereas $D(y)\epsilon k(x)$ , and $\lambda_{\epsilon}$ are linearly
independent over $k(x)$ , hence it must be

$D(y_{1})=\ldots=D(y_{m})=0$

for any derivation $D$ . Therefore the field must satisfy

$k(y_{1},\ldots,y_{m})\subset|k(x)\}^{p}$ ,

where $p$ is the characteristic of $k$ . Thus we get the
Proposilion. $1fth^{\rho}re$ is at least one $y_{:}w/lich$ is not $tl_{l}ep^{th}$ pozver of

an element of $k(x)$ , then tlte $’\iota yperplane$ in $L^{N+m}$

$\lambda_{0}+\lambda_{1}Y_{1}+\ldots+\lambda_{m}Y_{m}=0$

wkose coeflcients $\lambda$ are $ind\ell pe\mathscr{A}nt$ in&krminaks, is transversal to $W$

By this proposittion and the general theory of intersections we see
the multiplicity of the intersection $(L^{N}\times H)\cdot W$ to be one,. and thus toge-
ther with the result at the end of the section 2

$(S^{N}\times H)\cdot W=\Gamma$, (8)

if $\dim l^{\prime}\geqq 2$ . And then $Q(x,y)$ is regular over $k(\lambda)=k(\lambda_{0}\ldots\lambda_{m})$ , so it
$\ddagger sP(x)$ over $k(\lambda)$ . Therefore

$C=proj_{U}\{(S\times H)\cdot W\}$ (9)

is absoluteiy irreducible over $k(\lambda)$ . Hence we get the Bertini’s theorem
(the first proposition in the introduction).

Theorem. $1f$ a linear system $wit/lout$ fixed components is not composed

of an algebraic pencil, the general section of $ tl_{l}\ell$ linear system is absolutely
irreducible, $provid\ell d$ thal it is not $k(y)\supset\{k(x)\}^{p}$.
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5. We assume througout hereafter in this paper not to be $ k(y)\subset$

$|k(x)_{1^{p}})$

Let $P^{\prime}$ be a point on the general section $C$ of the linear system,
simple on $U$ not belonging to the base variety of the linear system, $Q^{\prime}$

the point on $W$ which corresponds to $P^{f}$ , $\Gamma$ the subvariety on $W$ which
corresponds to $C$ We know already that $Q^{\prime}$ is simple on $W$ and $\Gamma$ is
absolutely irreducible. $F_{U1}ther$ we can see that if and only if $P^{f}i6$ sirnple
on $C$, then $Q^{\prime}$ is simple on $\Gamma^{7)}$

If the hyperplane $S^{N}\times H$ is transversal to $W$ at $Q^{\prime}$ , then $Q^{t}$ is simple
on the intersetion $1^{v}=(S^{N}\times H)\cdot W$ Thelefore by the lemma in section
3, we see that, if $P^{\prime}$ (or $Q^{\prime}$ ) is singular on $C$( $or$ I), then it must be

$\Sigma\lambda D(\gamma_{i})=0$

at $P^{\prime}$ for any derivation $D$ .
As to the converse let us suppose that $P^{\prime}(orQ^{\prime})$ is simple on $C(or\Gamma)$ .

Since the intersectIon $\Gamma=(L\times H)\cdot W$ as we have seen in the above
lemma, has multiplicity 1 and $Q^{\prime}$ is simple on $\Gamma$, the hyperplane $L^{N}\times H$

is transversal to $W$ at $Q^{\prime 8)}$ Therefore if it were for every derivation $D$ of
$k(x)$

$\Sigma\lambda_{i}D(y_{i})=0$

at $P^{\prime}$ , as we can conclude from the same lemma, $P^{\prime}$ would not be simple
on $C$. Hence we get the

Proposition. Let $P^{\prime}(x^{\prime})$ be a simple point on $U$ not $belon\dot{p}ng\acute{t}0$. the
base variety of $ th\ell$ linear system with $f_{0}(x^{\prime})\neq 0$ . $1n$ order tlat $P^{\prime}$ is
singular on the general section of the linear system, it is neccessary and
sufficie$nt$ that

$\Sigma_{i=1}^{m}\lambda D(y_{i})=0$ , $y_{i}=\frac{f_{i}(x)}{f_{0}(x)}$

at $P^{\prime}$ for $ a\varphi$ derivation $D$ of $k(x)$ .

6. Does there exist such a point with the c.onditions in the precee-
ding propoition ? The classical Bertini’s theorem asserts that it does never

7) See Theor. 15 (p. 108) in Weil’s book [3]. 8) Prop. 21 (p. 141) in Weil’s book [3].
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occur, if $p$ is zero. But if $p>0$ , as Zariski has pointed out, it does
occur. Namely let us take a plane as $U$ and the linear pencil

$ C:x^{p}+y^{2}=\lambda$ .
Then the point $P(\lambda^{\frac{1}{p}},0)$ is singnlar on $C$, though $P$ is simple on $U$ and
is not the base point of the pencil.

Let $uS$ now consider in each affine model of $U$ the locus of points
$\overline{P}(\overline{x})$ for which the $r$ equations $f$or $e$ach fixed $\sigma(0\leq\sigma\leq m)$

$\sum\lambda_{i}D_{j}(y_{i}^{(\sigma)})=0$ $(1\leqq j\leqq r)$

are solvable with respect to $\lambda_{1},\ldots,$ $\lambda_{m}$ , where $ D_{1},\ldots$ , D. are indeperident
derivations of $k(x)$ and $\overline{y}^{(\sigma)}=f_{\ell}(\overline{x})/f_{\sigma}(\overline{\dot{x}}),$ $f_{\sigma}(\overline{\hat{x}})\neq 0$ .

If $m>r$ , the variety $U$ itself is such a locus, but if $m\leqq r$ the locus
may be empty. In general the locus is clearly a bunch of varieties over
$k^{-}$ where $\overline{k}$ means the algebralc closure of $k$ . These varieties shall be
called the resultant varieties of the linear system.

Let $\overline{P}(\overline{x})$ ee the generIc point of a resultant variety $\Phi_{0}$ (we assume
here $\sigma=0$) and $r-s$ the rank of the matrix

$(D_{j}(\overline{y}_{j}))$ .
If there exist such poInts $P^{\overline{\prime}}(\overline{x}^{\prime})$ on $\Phi_{0}$ that the rank of the matrix

$(D_{j}(\overline{y}^{\prime}))$

at $P^{\prime}$ will be less than $r-s$ , the locus of these $P^{\prime}$ is a bunch of subvarie-
ties of $\Phi_{0}$ . These subvarieties $\Phi_{1}$ shall be called crilical varieties. Fur-
ther it there exi $st$ such points $\overline{P}^{\prime\prime}(\overline{x}^{\prime})$ on $\Phi_{1}$ that the rank of the matrix

$(D_{j}(\overline{y}^{\prime\prime}))$

is less than that of the matrix $(D_{j}(\overline{y}^{\prime}))$ , whe $re\overline{P}^{\prime}(\tilde{x}^{\prime})$ is generic $f$or $\Phi_{1}$

over $k^{-}$ then the $1_{0_{\vee}^{-}}us$ of $\overline{P}^{\prime\prime}$ shall be called critical varieties of higher
order, and so on.

We now consider the system of equations

$\left\{\begin{array}{l}\lambda+\Sigma\lambda_{\prime}y_{\prime}^{\prime}\Sigma^{0}\lambda_{i}D_{j}(y_{i})^{=}=^{0_{0}} (1\leqq]\leqq r)\\f_{0}(x’)y^{t_{i}}-f_{i}(x)=0 (1\leq i=<m)\end{array}\right.$ (10)
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defines an algebraic correspondence $\Delta_{l}$ between the m-dImensional pro-
jective space $\Lambda(\lambda_{0},\ldots, \lambda_{m})$ and the resultant (or clitIcal) variety $\Phi_{l}$ , where

$(x^{\prime})$ means the generic point of $\Phi_{l}$ .
Then it is readily to be seen that the Beltini’s theorem on movable

singularities will be maintained if $proj_{A}\Delta_{l}$ can not cover the the whole
space $\Lambda$ for any $\Phi_{l}$ .

7. Theorem. Let $(x)$ be the generic point of an affine model of $U$

on which $ th\ell$ critical (or resultant) $variet\rho/\Phi_{\iota}$ lies, and $P^{\prime}(x^{\prime})$ be $lhegen_{\ell^{\prime}}ric$

point of $\Phi_{l}\ovalbox{\tt\small REJECT}\tau$vith $f_{\sigma}(x^{\prime})\neq 0$ and $y_{i}^{\prime}=f_{i}(x^{\prime})/f_{\sigma}(x^{\prime})$ .
If $\overline{k}(x^{\prime})$ is separably generated over $\overline{k}(y^{\prime})$ for any $\phi_{l}$ then the Bertini’s

$tl_{l}eorem$ holds in the classical formulation.
Proof We assume here $\sigma=0$ . Let $p$ be the dimension of $\Phi=\Phi_{\iota}$

over $\overline{k}$, namely $\dim\overline{k}(x^{\prime})=\rho$ , and $s$ be the dimension of $\overline{k}(x^{t})$ over $\overline{k}(y^{\prime})$ .
Since $\overline{k}(x^{\prime})$ is separably geneated over $\overline{k}(y^{\prime})$ , the dimensi\’on of the deri-
vation-module of $k^{-}(x^{\prime})$ over $k(y^{\prime})$ is equal to $s$ . If we denote by $D^{\prime}$

derivations of $\overline{k}(x^{\prime})$ over $\overline{k,}$ there are $\rho$ linearly independent derivations
$D_{1}^{\prime},\ldots,$ $D_{\rho}^{\prime}$ . The derivations $\overline{1J}$ of $\overline{\chi,}$‘

$(x^{\prime})$ over $\overline{k}(y^{\prime})$ may be written in the
form

$\overline{D}=\mu_{1}D_{1}^{\prime}+\ldots+\mu_{p}D_{\rho}^{\prime}$ .
Since $\overline{D}y_{i}^{\prime}=0$ for any $i$, it must be

$\mu_{1}D_{1}^{\prime}y_{i}^{\prime}+\ldots+\mu_{\rho}D_{\rho}^{\prime}y_{i}^{\prime}=0$ , $1\leqq i\leqq m$

Hence the rank of the matrix
$(D_{j}^{\prime}(y_{j}^{\prime}))$ $1\leqq i\leqq m,$ $ 1\leqq j\leqq\rho$

is $\rho-s$, as it is by hypothesis $\dim$ $\{\overline{D}\}=s$ . Therefore we can take
$D_{1}^{\prime},\ldots,$ $D_{\rho-s}^{\prime}$ $1i_{11}early$ independent on $\overline{k}^{-}(y^{\prime})$ , snch that $\rho-s$ derivations
$D_{i}^{\prime\prime}$ of $\overline{k}(y^{\prime})$ induced by $D_{i}^{\prime}(1\leqq i\leqq\rho-s)$ on $k(y^{\prime})-$ $f_{01}m$ a complete
system of the derivatIon-module of $k^{-}(y^{\prime})$ over $\overline{k}$ . For, it is $\dim\lfloor\overline{k}(y^{\prime})$ : $\overline{k\rfloor}$

$=\rho-s$ and $\overline{k}(y^{t})$ is of course regular over $k^{-}$.
Let us now consider the correspondence $\Delta_{l}$ in the preceeding section:

$v$

$\left\{\begin{array}{l}\lambda_{0}+\Sigma\lambda_{i}y_{l}^{\prime}=0\\\Sigma\lambda_{i}D_{j}y_{i}^{\prime}=0\end{array}\right.$

$(0=<1\leq r)$
(10)



178 Y. AKIZUKI

If $(\lambda)$ corresponds to $P^{\prime}(x^{\prime})$ , it must be satisfied

$(1\leqq j\leqq\rho-s)$
(11)

$f$or any delivation $D_{j}^{\prime}$ of $\overline{k}(x^{\prime})^{9)}$ But we can consider this system $\{D_{1}^{\prime}\ldots$ ,
$D_{p-s}^{\prime}\}$ as above mentioned as a complete system of linearly inde-
pendent derivations $\{D_{i^{;;}},\ldots, D_{r-s}^{\prime\prime}\}$ of $\overline{k}(y^{\prime})$ over $\overline{k.}$ Therefore $(\lambda)$ must
satisfy

$\{\lambda+\Sigma\lambda_{i}y^{\prime}=0\Sigma^{0}\lambda D_{j}^{\prime}’ y_{i}^{\prime}=0(1=^{j}<\leqq\rho-s)$ (12)

As all coefficicients of these equations are rational in $k(y^{\prime})$ and as these
$equa\overline{t}ion\dot{s}$ are evidently all linearly independent, the dimension of $K(\lambda_{1},\ldots, \lambda_{m})$

ovef $K=k(y^{\prime}, \lambda_{0})$ is not greater than $m-\rho+s-1$ . And the dimension of
$k(y^{\prime})$ over $k$ is $\rho-s$.

We conside $f$ now the equations (12) as the algebraic correspondence
$\Delta^{\prime}$ between the projective space $\Lambda$ and the image $\Phi^{\prime}$ of $\Phi$ by the correspon-
dence $W$ As $(y^{\prime})$ is generic for $\Phi^{\prime}$ and

$(\rho-s)+(m-\rho+s-1)=m-1$ ,

we can readily deduce by the principle of “ Konstantentenz\"ahlung,’’ that
the subvarietiy of $\Phi^{\prime}$ is empty which corresponds to a generic point of $\Lambda$

by the correspondence $\Delta$ ‘.
Thus $proj_{A}\Delta$ can not cover the whole space $\Lambda$ . Hence by the remark

at the end of th $e$ preceeding $s$ection we get the theorem.

8. The special case, in which the linear system is the general linear
function of $(x)$ :

$\lambda_{0}+\lambda_{1}x_{1}+\ldots+\lambda_{N}x_{N}$

is very important. That the Bertini’s theorem holds in this case without
any other $condit\prime ons$ even when $p>0$ , has been proved very elegantly by
Y. Nakai. $1\ovalbox{\tt\small REJECT}$) But it follows also $f$rom our general theorem.

In fact in this case the resultant variety is $U$ itself. Further the

9) cf. S. Koizumi [8], Prop. 6, 7, p. 277. 10) See Y. Nakai [6].
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matrix $(D_{j}(y_{i}))$ becomes

$(D_{j}(x_{i}))=$

$(0.10.**00..110..\cdot...\cdot...\cdot...\cdot.\cdot.\cdot..\cdot.\cdot.\cdot.\cdot..\cdot..o..*.\cdot..\cdot...\cdot..\cdot....\cdot...\cdot..\cdot.\cdot..\cdot...\cdot.**\cdot.*)$ ,

and the rank of this matrix is $r$ at every point on $U$. Hence there does not
exist any critical subvariety. Moreover $k(x)$ is separably generated over
$k(y)=k(x)$ . Therefore by the preceeding theorem the Bertini’s theorem
holds in this case.

9. We will give here a new elementary proof of the Bertini’s the-
orem in the classical case.

We reduce it also as usual11) to the case of linear pencil $\lambda f_{0}+\lambda_{1}f_{1}$ .
Then the locus of singular points of the sections is clearly contained

in the locus defined by equations

$f_{1}D(f_{0}\rangle-f_{0}D(f_{1})=0$

for every derivation $D$ of $k(x)$ over $k$ , and this locus is clearly a bunch
of subvarieties $\Psi_{j}$ .

Let $\overline{P}(\overline{x})$ be a generic point of a $\Psi$ . If $\Psi$ does not lie on the singular
varieties of $U$ nor the base variety of the pencil, $\overline{P}$ is a simple point not
belonging to the base variety of the pencil and we can assume without
loss of generality $f_{0}(\overline{x})\neq 0$ , and then

$\mu=\frac{\lambda_{0}}{\lambda_{1}}=-\frac{f_{1}(\overline{x})}{f_{0}(\overline{x})}$

must be algebraic over the field $k$ .
In fact if we derivate the $re$ lation

$\mu f_{0}(x)+f_{J}(x)=0$

then we have

$(D\mu)\cdot f_{0}(x)+\mu Df_{0}(x)+Df_{1}(x)=0$

11) See $v$. $d$ . Waerden’s book [4].
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While, as $\overline{P}$ lies on $\Psi$ , by putting $x=\overline{x}$

$\mu Df_{0}(\overline{x})+Df_{1}(\overline{x})=0$

there $f$ore, as $f_{0}(R)\neq 0$ , it is on $\Psi D\mu=0$ for any derivation $D$ of $k(x)$

over $\chi$ , consequently $\overline{D}\mu=0$ for any derivation $\overline{D}$ of $k(\overline{x})$ over $k$ .
Hence $\mu$ must be algebraic over $k$ , as the characteristic of $k$ is zero.

While there exists $\Psi_{j}$ of only finite number, therefore the above $\mu$

also of finite number. Except for these finite $\mu$ , the above section has no
singularities outside the singular points of $U$ and outside the base variety
of the pencil, $q$ . $e$ . $d$ .

The idea of this apparently algebraic proof is essentially analytic, so
we can successfully apply this to the proof of

$Oka’ s$ lcmma. Let $R$ be a finite open region of n-dimensional complex
space, $\sum an$ analytic vasiety in $R,$ $f(2_{1},\ldots, Z_{n})(0\leqq i\leqq m)$ a set of analytic

$functio\prime\prime s$ of complex variables $Z_{J},$ $..,$ $2_{n}$ . $T/zen$ tlle set of points $(\lambda_{0}, \lambda_{1},\ldots, \lambda_{m})$

for $w/lic$’ the section of $\sum\delta yt1\iota e/lypersurfnce\lambda_{0}f_{0}+\ldots+\lambda_{m}f_{m}=0$ may have
singularities $ ontsid\iota$’the singular points of $\Sigma$ and outside $t/\iota c$ base points of
$t$he linesr system is only of the $\beta rstca_{\iota^{\wedge}}egor^{P}y$ .

Mathematical Institute,
$Ky6to$ University.

Bibliography.

[1] O. Zariski, Pencils on an algebraic variety and a new proof of a theorem of Bertini,
Trans. Amer. Math. Soc. 50 (1941).

[2] O. Zariski, The theorem of Bertini on the variable singular points of linear system
of varieties, Trans. Amer. Math. Soc. 56 (1944).

[3] A. Weil, Foundations of algebraic geometry.
[4] v. d. Waerden, Einf\"uhrung in die algebraischen Geometrie.
[5] T. Matsusaka, The theorem of Bertini on linear systems in modular fields, Mem. Col.

of Science, Univ. Ky\^oto, Ser A, XXVI. (1950).
[6] Y. Nakai, On the section of an algebraic variety by the generic hyperplane, Mem. Col.

of Science, Univ. Ky\^oto, Ser A, XXVI (1951).
[7] J. Igusa, On the Picard varieties attached to algebraic varieties, This paper wll soon

be published in Amer. Jour. of Math.
[8] S. Koirumi, On differential forms of the first kind on the algebraic varieties, Jour.

of Math. Soc. of Japan, Vol. 2, 1949.


	Theorems of Bertini on ...
	1.
	2.
	3.
	4.
	5.
	6.
	7.
	8.
	9.
	Bibliography.


