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Integration of Fokker-Planck’s Equation with a Boundary Condition

K\^osaku YOSIDA

1. Introduction. We consider Fokker-Planck’s equation1)

(1) $\frac{\partial f(t,x)}{\partial t}=Af(t, x),$ $t\geqq 0$ ,

$(Af)(x)=-\frac{1}{\sqrt{g(x)}}\frac{\partial^{0}}{\partial x^{i}\partial^{\chi\cdot J}}(\sqrt{g(x)}b^{ij}(x)f(x))$

$+\frac{1}{\sqrt{g\cdot(x)}}\frac{\partial}{\partial x^{i}}(-\sqrt{g(x)}a^{;}(x)f(x))$

in a connected region $R$ of an n-dimensional orientable Riemannian space
with the metric $ds^{2}=g_{ij}(x)dx^{i}dx^{j}$ . As usual, the volume element in $R$ is
defined by $dx=\sqrt{g(x)}dx^{1}dx^{2}\cdots dx^{n},g(x)=det(g_{ij}(x))$ . We assume that the
contravariant tensor $b^{ij}(x)$ be such that $b^{ij}(x)^{\xi_{i}\xi_{j}}>0$ in $R$ (for $\Sigma\xi_{i}^{2}>0$).

The $a^{i}(x)$ obeys, by the coordinate change $x\rightarrow\overline{x}$ , the transformation rule

(2) $\overline{a}^{i}(\overline{x})=\frac{\partial\overline{x}^{t}}{\partial x^{k}}a^{k}(x)+\frac{\partial^{\underline{o}}\overline{x}^{J}:}{\partial x^{k}x^{\epsilon}}b^{ks}(x)$ .

These propelties of the coefficients $a^{i}(x)$ and $b^{ij}(x)$ are connected with
the probabilistic meaning of the equation (1).

We assume that $g_{ij}(x),$ $a^{i}(x)$ and $b^{i_{j}}(x)$ are infinitely differentiable
functions of the coordinates $x=(x^{1}, x^{2}, \cdots, x^{n})$ . The purpose of the present
note is to consider a certain natural boundaly condition on the boundary
$\partial R$ of $R$ for the probability density $f(t, x)$ at the time moment $t>0$ and
to discuss, for this boundary condition, the stochastic integrability (in the
sense to be explained in \S 3) of the equation (1). As in the previous
papers, our treatment and the method of proof relies upon the theory of
semi-group of linear operators which is, so to speak, an operator-theo-

1) A. Kolmogoroff: Zur Theorie der stetigen zuf\"alligen Prozess, Math. Ann., 108 (1933),

149-160. K. Yosida: An extension of Fokker-Planck’s equation, Proc. Japan Acad., 25 (1949),

(9), 1-3.
2) E. Hille: Functional Analysis and Semi-groups, New York (1948). K. Yosida:

On the differentiability and the representation of one-parameter semi-group of linear operators,

Journ. Math. Soc. Japan, 1 (1949), 1, 15-21, and K. Yosida: An operator-theoretical treatment
of temporally homogeneous Markoff process, ibid., 1 (1949), 1, 244-235.
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retical adaptation of the Laplace transform method in partial differential
equations.

2. Green’s formula and the boundary condition. Let $A^{\prime}$ be the
formally adjoInt operator of $A$ :

(3) $(A^{\prime}h)(x)=b^{ij}(x)\frac{\partial^{\underline{o}}h}{\partial x^{\ell}\partial x^{j}}+a^{i}(x)\frac{\partial h}{\partial x^{i}}.\cdot$

By partial integration, we obtai $n$ the Green’s formula :

(4) $\int_{G}(h(x)(Af)(x)-f(x)(A^{\prime}h)(x))dx=$

$\int\sqrt{g(x)}b^{ij}(x)(h(x)\frac{\partial f}{\partial x^{j}}-f(x)\frac{\partial/l}{\partial x^{j}})lI(x)dS+$

a $G$

$\int_{\delta G}(\frac{\partial\sqrt{g(x)}b^{ij}(x)}{\partial x^{j}}-\sqrt{g(x)}a^{i}(x))\Pi_{:}(x)f(x)h(x)dS$ ,

where $\Pi_{i}(x)$ is $\cos(n, x^{i}),$ $n$ being outer normal at the point $x$ of the
boundary $\partial G$ of the $con1^{\urcorner}ected$ domain $G\subseteqq R$ , and $dS$ denotes hypersulface
area on $\partial G$ . If $b^{;_{j}}(x)Jl_{i}(x)JJ_{j}(x)>0$ at $x\epsilon\partial G$ , we may define the outer
transversal direetion $\nu$ at $x$ by

(5) $\frac{dx}{\sqrt{}\overline{g(x)}b^{ij}(x)/l_{j}(x)}=d\nu$ $(i=], 2, \cdots, n)$

so that

(6) $\sqrt{g(x)}b^{ij}(x)(h(x)\frac{\partial_{f^{\sim}}}{\partial x^{j}}-f(x)\frac{\partial/z}{\partial x^{j}})\Pi_{i}(x)dS=$

$(1\ell(x)\frac{\partial f}{\partial\nu}-f(x)\frac{\partial/l}{\partial\nu})dS$ .

Wc consider $A$ to be an additive operator defined for the totality $D(A)$

of infinitely differentiable functions $f(x)$ on $R$ which vanish outside some
compact set (depending upon $f(x)$ ) and which also satisfy the boundary
condition on $\partial R$ :

(7) $\sqrt{g(x)}b^{ij}(x)\frac{\partial f}{\partial x^{j}}\Pi_{i}(x)+(\frac{\partial\sqrt \mathscr{S}(x}{\partial}\frac{\overline{)}b^{ij}(x)}{x^{j}}$

$-\sqrt{g(x)}a^{i}(x))JI_{i}(x)f(x)=0$ .

$D(A)$ is surely dense in the Banach space $L_{1}(R)$ of integrable (with respect
to $dx$) functions on $R$ , metrized by the norm $||f||=\int_{lt}|f(x)|dx$ . Thus $A$
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may be considered as an additive operator defined for $D(A)\subseteqq L_{1}(R)$ with
values in $L_{1}(R)_{\mathscr{C}}$

3. Stochastic integration of (1) with the bouhdary condition (7).
We first prove

Lemma 1. Let $f(x)\epsilon D(A)$ be positive (negative) in a connected
domain $G\subseteqq R$ such that $f(x)$ vanishes on $\partial G-\partial R$ , vi il. on the part of $\partial G$

not contained in $\partial R$ . Then we have, for any positive number $m$ , the
inequality
(8) $G|(f(x)-m^{-1}(Af)(x))dx\geqq\int_{G}f(x)dx>0(\leqq\int_{(i}f(x)dx<0)$ .

Proot. By (4) $-(7)$ , we have

$\rfloor(Af)(x)d\iota=\int_{(G7-}\frac{\partial f}{\partial^{li}\partial\nu}dS\leqq 0$

$(\underline{->-}0)$ .

Corollary. For any $f(x)\epsilon D(A)$ , we have

(9) $\Vert f-m^{-1}Af\Vert\geqq|\psi\Vert$ for $m>0$ , and for $’\epsilon D(A)$ .
Proof. Let $h(x)$ be $=1,$ $-1$ or $0$ according as $f(x)$ is $>0,$ $<0$ or $=0$ .

Since the conjugate space $L_{1}(R)^{*}$ of $L_{1}(R)$ is the space of all the essentially
bounded measurable functions $k(x)$ with the norm $\Vert k||^{*}=essential$ $\sup$

$|k(x)|$ , we have, by the above lemma,

$\Vert f-m^{-1}Af\Vert\geqq\int_{R}h(x)(f(x)-m^{-1}(Af)(x))dx=\int_{R}|f(x)|dx$

$-m^{-1}\sum\int(Af)(x)dx+m^{-1}\sum_{jN}\int_{ji}(Af)(x)dxiP$

where $P(lV)$ is connected domain in which $f(x)>0(<0)$ such that $f(x)$

vanishes on the boundary $\partial P(\partial N)$ . Q. E. D.
Thus, there exists the bounded additive inverse

(I0) $(I-m^{-1}\tilde{A})^{-1}$ ,

where 1 and $\tilde{A}$ respectively denote identity operator and the smallest closed
extension of $A$ . Thus we have the

Lemma 2. The resolvent $1_{m}$ ( $=everywhere$ defined inverse (1
$-m^{-1}\tilde{A})^{-1})$ exists if and only if the range $\{(1-m^{-1}A)f;f\epsilon D(A)\}$ of the
operator $(1-m^{-1}A)$ is dense in $L_{1}(R)$ . Moreover, if the lesolvent $1_{m}$

exists, it is a transition operator, viz.
(11) $f(x)\geqq 0$ and $f\epsilon L_{1}(R)$ imply $(1_{m}f)(x)\geqq 0$ and $\int_{R}(I_{m}f)(x)dx=\int_{A}.f(x)dx$ .

Proof. The first palt of the lemmq is evident. Let the resolvent $1_{m}$
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exist, For any $g(x)>0=$ of $L_{1}(R)$ , there exists a sequence $\{f_{k}(x)\}\subseteqq D(A)$

such that
strong $\lim_{k\rightarrow\infty}f_{k}=f$ exists and strong $\lim_{k\rightarrow\infty}(f-\prime n^{-1}Af_{k})=f-m^{-1}\tilde{A}f=g$

On the other hand, by the boundary condition (7), we have

$\int_{R}(f_{k}(x)-m^{-1}(Af_{k})(x))dx=_{/}.\int f_{k}(x)dx$.
Hence, in the limit $ k\rightarrow\infty$ , we have

$\int_{R}g(x)dx=\int_{R}f(x)dx$ and $\int_{Ji}|g(x)|dx\geqq\int_{R}|f(x)|dx$ (by (9)).

Therefore $f(x)\geqq 0a[most$ everywhere and $||g||=||f||$ . Q. E. D.
By the semi-group theory, there exists a one-parameter semi-group of

transition operators $T_{\ell}$ satisfying the conditions:
(12) $T_{\ell}T_{s}=T_{t+s},$ $(s, t=>0),$ $T_{0}=the$ identity,

strong
$\lim_{\ell\rightarrow l_{0}}T_{t}f=T_{c_{0}}f,$

$f\epsilon L_{1}(R)$ ,

strong $\lim_{\delta\rightarrow 0}\frac{\tau_{\ell+\delta}-\tau_{\ell}}{\delta}f=\tilde{A}T_{t}f$ for $f$ in the domain $D(A\tilde{)}$ of $\tilde{A}$,

if and only if the resolvents $1_{m}$ (for $m>0$) exist as transition operators.
This $T_{t}$ is, in fact, defined by
(13) $T_{t}f=strong\lim_{m\rightarrow\infty}(1-m^{-1}t\tilde{A})^{-m}f,$ $f\epsilon L_{1}(R)$ .
The existence of this semi-group is just the stochastic integrability me.$n-$
tioned in the introduction. That $T_{\ell}f(t>0),$ $f\epsilon L_{1}(R)$ , satisfies the boundary
condition (7) in a limiting sense may be seem fiom (13) and the defini-
tion of the smallest closed extention $\tilde{A}$ of $A$ .

4. The theorem. Since the conjugate space of $L_{1}(R)$ is the space
of essentially bounded measurable functions, we see that the stochastic
integrability of (1) is equivalent to the non-existence of bounded measurable
$functio\cdot 1h(x)$ such that
(14) $||h||^{*}>0$ and $\int_{R}h(x)(f(x)-m^{-1}(Af)(x))dx=0$ for all $f\epsilon D(A)$ .
Thus, if we define the distribution $H(f)$ in the sense of L. Schwartz:
(15) $H(f)=\int_{Ji}h(x)f(x)dx$,

we see that $H$ satisfies the elliptic differential equation (in the sense of
the distributioii)3)

(16) $A^{\prime}H=rnH$.

3) L. Schwartz: Th\’eorie des distributions, 1, Paris (1950).
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Hence,4) if $n\geqq 2$ , there exists a function $\tilde{h}(x)$ infinitely differentiable in $R$

such that

(17) $(A^{t}\tilde{h})(x)=m\tilde{h}(x)$ in $R,$ $H(f)=\int_{/i}\tilde{h}(x)f(x)dx$ .

Surely $/\iota(x)\sim$ is equal to $h(x)$ almost evelywhere, and so does not vanish
identically. Let $\{R_{k}\}$ be a monotone increasing sequence of connected
domains $\subseteqq R$ such that the boundary $\partial R_{k}$ tends, as $ k\rightarrow\infty$ , to the boundary
$\partial R$ very smoothly. Then we have, by the Green’s formula (4), (14) and
(17),

(18) $\int_{\partial R_{k}}\sqrt{}\overline{g(x)}b^{ij}(x)(\tilde{h}(x)\frac{\partial f}{\partial x^{j}}-f(x)\frac{\partial\tilde{h}}{\partial x^{j}})\Pi_{l}(x)dS+$

$\int_{i\}R_{k}}(\frac{\partial\sqrt{g(x)}b^{j}(x)}{\partial x^{j}}\sqrt{}\overline{g\cdot(x)}a^{i}(x))\Pi_{i}(x)f(x)^{\sim_{l}}\nearrow(x)dS=0,f\epsilon D(A)$ .

By the boundedness of $\tilde{h}(x)$ and the boundary condition of $f(x)\epsilon D(A)$ .
we have

(19)
$\lim_{k\rightarrow\infty}\int_{ar_{\iota_{k}}}\sqrt{}\overline{g(x)}b^{ij}(x)f(x)\frac{\partial\tilde{h}}{\partial x^{j}}\Pi_{i}(x)dS=0,$

$f\epsilon D(A)$ .

Therefore we have the
Theorem. Let the dimension $n$ of $R$ be $\geqq 2$ . Then the stochastic

integrability of (1) with the boundary condition (7) is equivalent to the
non-existence, for $m>0$ , of bounded solution $\tilde{h}(x)\equiv|\equiv 0$ of

(20) $(A^{\prime}\tilde{h})(x)=m\tilde{h}(x)$ in $R$

satisfying the boundary candition (19).
Remark. The above $condition_{s}of$ the stochastic ir.tegrability is satisfied

in the case of compact Riemannian spach $R$ , as is shown by the following
argument. At a maximizing (minimizing) poi, $tx_{0}$ of $\tilde{h}(x)$ we have
$(A^{\prime}\tilde{h})(x_{0})\leqq(\geqq)0$ , so that a continuous solution $\tilde{h}(.i\iota\cdot)$ of (20) cannot have
either a positive maximum or a negative minimum. Other applications of
the Theorem to concrete examples will be published elsewhere.

Nagoya University

4) L. Schwartz: loc. cit. Cf. also an early paper by K. Kodaira: Harmonic tensor fields
in Riemannian manifolds, Ann. of Math., 50 (1949), 587-655.

5) Cf. K. Yosida: Integration of Fokker-Planck’s equation in a compact Riemannian
space, Aikiv f\"or Matematik, 1, (1949), 9, 1-3.
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