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Introduction

In 1913, E. Cartan proved two remarkable theorems which give a
penetrating method for the determination of all irreducible representations
of semi-simple complex Lie algebras [2].1) These theorems can be for-
mulated as follows:

I. $TJ_{l}ere$ exists $a$ one-to-one correspondence between the irreducible repre-
sentations of $a$ give$n$ semi-simple Lie algebra $\tilde{L}$ and the $hig/\iota est$

(possible) $weig1_{l}ts$ of $\tilde{L}$.
Thus every highest possible weight $\xi$ is actually a highest weight of some
irreducible representation $P$ of $\tilde{L}$ and conversely $P$ is uniquely determined
by $\xi$ up to equivalence. (In this sense, we write $P=P_{\xi}.$ )

II. All the highest $(possibl_{6})$ weigl $ts$ of $\tilde{L}$ form a semi-group, iso-
$morpJ\iota ic$ to the direct product of $n$ semi-groups, each of whicli is

$form^{\underline{\rho}}d$ of all non-negative integers, $u$ denoting the rank of $L^{\sim}$

$i$ $e$ . the (complex)dimension of maximal abelian subalgebras in $L^{\sim}$

Thus the sum $\xi+\xi^{\prime}$ of two highest possible weights $\backslash ^{\wedge}$’ and $\xi^{\prime}$ of $\tilde{L}$ is
again a highest possible weight of $L^{\sim}$ and the corresponding irreducible
representation $P_{\epsilon+\sigma}$ , is composed from those of $\xi$ and $\xi^{\prime}$ through a definite
process. (We call it the Carlan composite of $P_{\xi}$ and $P_{\overline{\zeta}}$ ) In this manner,
all the irreducible representations of $L^{\sim}$ can be generated from $n$ of them,
called fundamental.

The essential part of these theorems consists in the existence of
an irreducible representation for every highest possible weight (in I), and
in that of $n$ fundamental weights for the semi-group (in II). Cartan’s
original proof deals separately with the different types of simple algebras.
So his proofs of I and II both depend on his former results on the clas-
sification of simple Lie algebras [1]. Shortly afterwards, H. Weyl [10]
remarked that Theorem I might be obtained without the classification-
theory by means of the completeness of prime characters of compact
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groups, established by Peter and himself [8]2). Furthermore, he deduced
in his lecture [11] also without the classification-theory the existence of
bases of root systems, essentially equivalent to the Theorem II of Cartan,
from the detailed considerations of certain finite transformation groups $\mathfrak{S}^{\theta}$

In the present note we shall give a direct proof of the existence of bases
of root systems in simplification of Weyl’s method, together with some
applications to the related problems. For the sake of completeness we
include in the Appendix a proof of Weyl’s theorem concerning compact
semi-simple Lie groups.4)

Notations. We denote by $E^{n}$ an n-dimensional (real) Euclidean
space. Its origin (or zero vector) is denoted by $0$ . $E^{n}$ is also considered
as a linearly ordered vector group, the order being defined lexicographi-
cally by

$x<y\Leftrightarrow x^{(1)}=y^{(1)},\cdots,$ $x^{(i-1)}=y^{(i-1)},$ $x^{(i)}<y^{(i)}$ ,

for $x=x^{(1)}\theta_{1}+\cdots+x^{(n)}\theta_{n},$ $y=y^{(1)}\theta_{1}+\cdots+y^{(n)}\theta_{n}$ ,

where $\{\theta_{1},\cdots, \theta_{n}\}$ is a fixed base of $E^{n}$ . (This is the only method to
make a $ve$ctor space into a linearly ordered vector group.) For a subset
$\mathfrak{a}$ of $E^{n},$ $\{\{\mathfrak{a}\}\}$ and $\{\{\mathfrak{a}\}\}_{l}$ denote the additive closure of $\mathfrak{a}$ and the linear
closure of $\mathfrak{a}$ with real coefficients, respectively.

$\xi$ being any element of $E^{n}$ and $(\xi, x)$ the inner product of $\xi,$ $x$ in
$E^{n}$, every character of $E^{n}$ is given by the formula

$e^{2\pi^{\bigwedge_{-1(\xi,x)}}}$ for $x\epsilon E^{n}$ .

We shall identify the character $r^{o_{\pi}\bigwedge_{-1(\xi,x)}}$ with the element $\xi$ , and the
character group of $E^{n}$ with $E^{n}$ itself. The annihilator of a closed subgroup
$\Gamma$ of $E^{n}$ in this sense will be denoted by $\Gamma^{\wedge}$ . Then the following
formulae are obvious:

$\Gamma^{\wedge\wedge}=I^{\backslash }$,
(0.1)

$\Gamma\Gamma\subseteq 1$ implies $\Gamma^{\wedge}\supseteq\Gamma_{1^{\wedge}}$ and $I_{1}^{\prime}/\Gamma\sim=l^{-\prime}\wedge/\Gamma_{1^{\wedge}}$ .

We denote by $S_{\epsilon}(k)$ the reflection of $E^{n}$ with respect to a hyperplane
$\pi_{\mathfrak{k}}(k)=\{x;x\epsilon E^{n},(\xi, x)=k\}$ ; in particular, we put $\pi_{\epsilon}=\pi_{g}(0),$ $S_{\xi}=S_{\epsilon}(O)$ .
Obviously we have
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$ S_{\mathfrak{k}}x=x-\frac{2(\xi x)}{(\xi,\xi)}\xi$ for $x\epsilon E^{n}$ , (0.2)

$S_{\mathfrak{k}}(k)=T(\frac{2k\xi}{(_{\overline{\backslash ^{\wedge}}},\xi)})S_{g}$ , (0.3)

where $T(\gamma)$ denotes the translation of $E$“ defined by the addition of a
vector $\gamma$ in $E^{n}$ . X $(\Gamma)$ denotes the group composed of all $T(\gamma)(\gamma\epsilon\Gamma)$ .

\S 1. Preliminaries.

We shall give in this section some special notations and theorems on
semi-simple complex Lie algebras, which are necessary for our later con-
siderations.

Let $\tilde{L}$ be a semi-simple complex Lie algebra. We take and fix one
of its Cartan decomposition

$\tilde{L}=\tilde{H}+\Sigma_{\alpha}M_{\alpha}$
$(a\epsilon \mathfrak{r})$ ,

(complex) $\dim\tilde{H}=n=rank$ of $\tilde{L}$ , (1.1)

$\mathfrak{r}=root$ system of $\tilde{L}$.

For convenience, we define an inner product in $\tilde{H}$ by

$(h, /\iota)=-\frac{1}{(2\pi)^{2}}\varphi(h)$ for $h\epsilon\tilde{H}$,
(1.2)

$\varphi(h)=\Sigma_{\alpha}a(1_{l})^{2}=fundamental$ quadratic form of $\tilde{L}$,

and we always consider the roots of $\tilde{L}$ as vectors in $\tilde{H}$ in the following
way:

$a(h)=2\pi\sqrt{}\overline{-1}(a, h)$ for $h\epsilon\tilde{H}$. (1.3)

$\mathfrak{r}$ is thus regarded as a subset of $\tilde{H}$.
If we put $\Theta=\{\{\mathfrak{r}\}\}_{l},$

$\theta$ becomes an n-dimensional (real) Euclidean
space according to the above-defined inner product, and $\mathfrak{r}$ satisfies in $\theta$ the
following four conditions:

(i) Oer,
(ii) when $a\epsilon \mathfrak{r},$ $-a$ is also a vector of $\mathfrak{r}$ , and $\{\{a\}\}_{l}$ contains no
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other vector of $\mathfrak{r}$ ,

(iii) for any $a,$ $\beta\epsilon \mathfrak{r},\frac{2(a,\beta)}{(a,a)}$ is an integer,

(iv) when $a,$ $\beta\epsilon \mathfrak{r},$
$S_{\alpha}\beta=\beta-\frac{2(a,\beta)}{(a,a)}a$ is contained in $\mathfrak{r}$ , too.

It is known that, conversely, these conditions are sufficient to characterize
loot systems

Now let $P$ be any (complex) representation of $\tilde{L}$ on the representation
module $\mathfrak{M}$ . As is well-known, $\mathfrak{M}$ is completely reducible and we may
choose a base $\{e_{1},\cdots, e_{N}\}$ of $\mathfrak{M}$ such that

$he_{i}=\lambda^{i}(/\iota)e_{i}$ for $h\epsilon\tilde{H}$

$(i=1,\cdots, \Lambda^{7})$ , (1.4)

where $\grave{A}^{i}$ is a linear form on $\tilde{H,}$ called a weight of this representaion.
The root forms (and the zero form) are nothing other than the weights
of the adjoint representation of $\tilde{L}$. We shall call the linear form which
appears as a weight of some representation of $\tilde{L,}$ simply a weight of $\tilde{L}$

It is readily seen that the set of all weights of $\tilde{L}$ forms an additive group
$\Lambda$ of linear forms on $\tilde{H}$.

As in (1.3) we can regard weights of $\tilde{L}$ as vectors contained in $\tilde{H}$

Then it is proved that for any weight $\lambda$ and any root $a,$ $\frac{2(a,\lambda)}{(a,a)}$ is an in-

teger (this shows that $\lambda\epsilon\Theta$) and that the following forms

$\lambda,$ $\lambda-ea,$ $\lambda-2ea,\cdots,$ $\lambda-\frac{2(a,\lambda)}{(a,a)}a(=S_{\alpha}\lambda)$ ,
(1.5)

$\epsilon=sign(a, \lambda)^{6)}$

are weights of one and the same representation of $\tilde{L}$. In particular $ S_{\alpha}\lambda$

has the same multiplicity as that of $\lambda$ .
We now fix a linear order in $\Theta$ once for all. If we put. $\mathfrak{r}^{*}=\{2a^{*};$ $a^{*}=$

$\frac{a}{(a,a)},$
$a\epsilon \mathfrak{r}$ }, the above-mentioned property of weights may be written simply

as
$\Lambda\subseteq\{\{\mathfrak{r}^{*}\}\}^{A}$ . (1.6)

Each element of the right hand side of (1.6) will be called a possible
weight of $\tilde{L}$. Let $\mathfrak{S}$ be the (finite) $g_{1}oup$ of Euclidean transformations
of $\theta$ generated by $S_{\alpha}(\alpha\epsilon \mathfrak{r})$ . If the inequalities
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$ S_{*}^{\approx}\leq\xi$ for all $S\epsilon \mathfrak{S}$ (1.7)

are satisfied for a possible weight $\xi$ , we shall call it a highest possible
weight.

It is convenient to state here the following
Proposition 1. $\Lambda=\{\{\mathfrak{r}^{*}\}\}^{\wedge}$ .
From this “ criterion for weights ‘’ follows immediately that every

highest possible weight is actually a highest weight of some reprsentation,
$i$ . $e$ . the first half of Theorem I in the $I_{\mathfrak{l}1}trodnction$ . We shall give a
proof in the Appendix.7)

\S 2. Properties of root systems.

In \S \S 2, 3 we consider root systems in abstracto. So we call here a
root system every (finite) set of vectors in $E^{n}$ with the four properties
stated in \S 1. The dimensionality, congruence, irreducibility...etc for root
systems are defined as usual and all irreducible root systems can be deter-
mined explicitly, whence the complete classification of simple Lie algebras
is obtained.s)

Proposition 2. Let $\mathfrak{r}$ be a root system in $E^{n}$. Then $\mathfrak{r}^{*}=\{2a^{*};$ $a^{*}=$

$\frac{a}{(a,a)}a\epsilon \mathfrak{r}\}$ is again a root system in $\mathscr{X}$

Remark, As one $re$adily sees, the factor 2 before $a^{*}$ is inessential
and can be replaced by any other real number $k\neq 0$ , but it will be con-
venient to take $k=2$ in succeding sections. In the next proof we consider
the case $k=1$ .

Proof. The first two conditions for root systems are clearly satisfied

by $\mathfrak{r}^{*}$ . When $a^{*}=\frac{a}{(a,a)},$ $\beta^{*}=\frac{\beta}{(\beta,\beta)}$ are in $\mathfrak{r}^{*}$ , we have easily

$\frac{2(a^{*},\beta^{*})}{(a^{*},\alpha^{*})}=\frac{2(a,\beta)}{(\beta,\beta)}(=integer)$ , (2.1)

$S_{\alpha}*\beta^{*}=S_{\alpha}\beta^{*}=(S_{\alpha}\beta)^{*}$ , (2.2)

which proves (iii) and (iv) respectively, $q$ . $e$ . $d$ .
We shall call $\mathfrak{r}^{*}$ in Proposition 2 the inverse system of $\mathfrak{r}$ Obviously

$\mathfrak{r}^{**}=\mathfrak{r}$ (2.3)
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ane as $S_{\alpha}=S_{2\alpha\alpha^{\backslash }}t^{r}$. the transformatIon group $\mathfrak{S}$ generated by $S_{\alpha}(a\epsilon \mathfrak{r})$

coincides with that generated by $S_{2\alpha}*(2a^{*}\epsilon \mathfrak{r}^{*})$ and it holds by (2.2),
$S\beta^{*}=(S\beta)^{*}$ for all $S\epsilon \mathfrak{S}^{7)}$

Lemma 1. Let $a,$
$\beta\epsilon \mathfrak{r},$ $a\neq\pm\beta(i. e. \{\{a\}\}_{l}\neq\{\{\beta\}\}_{l})$ . $Th\ell n\beta-\epsilon a\epsilon \mathfrak{r}$ ,

where $e=sign(a, \beta)$ .
Proof. On account of the condition (ii), we have only to consider

the case $(a, \beta)>0$ , $(a, a.)\geq(\beta, \beta)$ . Then as $(a, a)>2(a, \beta)-(\beta, \beta)$ , it

holds $(a, a)>(a, \beta)>0$ . But the inequality $1>\frac{(\alpha,\beta)}{(/.,a)}>0$ implies by (iii)

$\frac{‘ J_{J}(a,\beta)}{(a,a)}=1$ . Hence we have from (iv) $\beta-\alpha=S_{\alpha}\beta\epsilon \mathfrak{r},$ $q$ . $e$ . $d$ .
Lemma 2. Let $\{a_{i}\},$ $\{\xi^{i}\}(i=1,\cdots, n)$ be a pair of mutually dual bases

of $E^{n}$ such that $(a_{i}, \xi_{j})=\delta_{ij}^{10)}(i, j=1,\cdots, n)$ . If $(a_{i}, a_{j})\underline{<}0$ for $i\neq j$. then it
holds $(\xi_{i}, \xi_{j})\geq 0$ for all $i,$ $j=1,\cdots,$ $n$ .

We omit the easy proof by induction with respect to $n$ .
From now on we shall regard $E^{n}$ as a linearly ordered vector group

by means of an arbitrary (but fixed) linear order and consider the con-
nections between a root system and the linear orders.

Proposition 3. Let $\mathfrak{r}$ be an n-dimensional root system in $E^{n}$ . $1f$ we
put $\mathfrak{r}^{+}=\{a)a\epsilon \mathfrak{r}, a>0\}$ , Ofere exist $n$ basic roots $a_{1},\cdots,$ $a_{n}$ in $\mathfrak{r}^{+}$ so that any
positive root $a$ can be expressed uniquely as folJaws

$a=p_{J}a+\cdots+p_{n}a_{n}$ ($p_{i}$ : non-negative integers). (2.4)

Before the proof we give some remarks. If we assume that the propos-
ition is prov $ed$ and that $a_{i}$ are arranged in the increasing order

$a_{1}<a_{2}<\cdots<a_{n}$ ,

then we have naturally

$\left\{\begin{array}{l}a_{1}={\rm Min}(\mathfrak{r}^{+}),\\\alpha_{2}={\rm Min}(\mathfrak{r}^{+}-\{\{a_{1}\}\}_{l})^{11)}\\\ldots\cdots\\ a_{n}={\rm Min}(\mathfrak{r}^{+}-\{\{a_{1},\cdots,\alpha_{n-l}\}\}_{l}).\end{array}\right.$ (2.5)

Thus the set of basic roots $\{a_{1},\cdots, a_{n}\}$ , which we call simply a base of $\mathfrak{r}$ ,
will be determined uniquely for a given linear order in $E^{n}$ .

Further, $a_{j}-ea_{i}$ , $\epsilon=sign(a_{i}, a_{j})$ are roots for $i<j$ by Lemma 1.
Therefore if $(a_{i}, \alpha_{j})>0,$ $i$ . $e$ . $\epsilon=+1$ , we would have $a_{j}>a_{j}-\epsilon a_{i}\epsilon \mathfrak{r}^{+}-$
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$\{\{a_{1},\cdots, a_{j-1}\}\}_{l}$ , which contradicts to (2.5). Hence it holds

$(a_{i}, a_{j})\leq 0$ for $i\neq j$. (2.6)

Proof of Proposrtion 3. We proceed by induction on the dimension $n$.
If $n=1$ , then $\mathfrak{r}^{+}$ contains only one vector, and the proposition is obvious. Let
$n>1$ . We define $\alpha_{1},\cdots,a_{n}$ by (2.5) and put $\mathfrak{r}^{\prime}=\mathfrak{r}\cap\{\{a_{I},\cdots, a_{n-1}\}\}_{l}$ ; clearly
it forms an $(n-1)$ -dimensiorial root system and $\mathfrak{r}^{t+}=\mathfrak{r}^{+}\subset\{\{a_{1},\cdots, a_{n\Rightarrow 1}\}\}_{l}$ .
We can also verify

$\left\{\begin{array}{l}a_{l}={\rm Min}(\mathfrak{r}^{\prime+}),\\u_{2}={\rm Min}(\mathfrak{r}^{\prime+}-\{\{a_{1}\}\}_{l}),\\\ldots\cdots\\ a_{n-1}=Mi_{11}(\mathfrak{r}^{\prime+}-\{\{a_{1},\cdots,a_{n-2}\}\}_{l}).\end{array}\right.$ (2.5) ’

If follows from the assumption of iiiduction that any positive root $a^{\prime}$ of $\mathfrak{r}^{\prime}$

may be expressed in the form

$a^{\prime}=p_{1}^{\prime}a_{1}+\cdots+p_{n=1}^{\prime}a_{n-1}$ ($p_{i}^{\prime}$ : non-negative integers). (2.4)

$\dot{N}$ow we prove the proposition inductively from lower to higher $a$ .
When $0<a<a,.,$ $a$ being contained in $\mathfrak{r}^{r+}$ , the proposition is valid by
(2.4), and it is also obvious for $a=a_{n}$ . We may assume therefore $\alpha>a_{n}$

$(>a_{n-1}>\cdots>a_{1})$ and we consider $n$ vectors $a-a_{i}(i=1,\cdots, n)$ . We have
only to prove that at 1east one of them is a root; then this vector will
be indeed a positive root lower than $a,$ having an expression of type
(2.4) by the assumption of second induction, so that the $e$xpression of $a$

. follows immediately. Suppose, on the contrary, that all $a-a_{i}$ were not in
$\mathfrak{r}$ We would have by Lemma 1, $\epsilon=sign(a_{i}, a)\neq+1$ , namely

$(a_{i}, a)\underline{<}0$ $(i=1,\cdots, n)$ ,

On the other hand, by (2.6) and Lemma 2

$(\hat{\sigma}_{i}, \xi_{j})\underline{>}0$ $(i,j=1,\cdots, n)$ ,

for the dual base $\{\xi_{i}\}$ to $\{\alpha_{i}\}$ . These two systems of inequalities would
imply

$a=\Sigma_{i}(a, a_{i})_{\overline{\backslash }i}=\Sigma_{i,j}(a.a_{i})(\xi_{i},\xi_{j})\alpha_{j}\leq 0$ ,

which contradicts to $a>0,$ $q$ . $e$ . $d$ .
In the above proof, the expression $a=\Sigma_{i}p_{i^{CJ}i}$ of the root $a>a_{n}$ has
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at least two positive coefficients, so that if $(a_{i_{0}}, \alpha)>0$ ,

$S_{ai_{0}}\alpha=(p_{i_{0}}-\frac{2(a_{i_{0}},a)}{(\alpha_{i}oa_{\dot{l}_{O}})})/x_{i_{0}}+\Sigma_{i\neq i_{O}}p_{i}a_{i}$

has at least one positive coefficient. Therefore it is also a positive root by
Proposition 1 and thus $\alpha>S_{\alpha i_{O}}a>0$ . We shall call for a while a set $\mathfrak{a}$ of
roots closed, when $a,$

$\beta\epsilon \mathfrak{a}$ implies $S_{\alpha}\beta\epsilon \mathfrak{a}$ ; then it follows by the same argu-
ments as in the above $P^{loof}$ the following

Corollary 1. A root system $\mathfrak{r}$ is the minimal closed set containing its
base $\{\alpha_{1},\cdots, \alpha_{n}\}$ . (Thus a root system is uniquely detelmined by any one
of its bases.)

Corollary 2. The transformation group $\mathfrak{S}$ is generated by $n$ reflections
$S_{a_{1}},\cdots,S_{a_{n}^{12)}}$.

For we have $S_{S_{\alpha}\beta}=S_{\alpha}S_{\beta}S_{\alpha}^{-1}$ .

\S 3. Some applications.

We denote by $\Pi$ the (open) angular domain of $E^{n}$ defined by in-
equalities

$(a, x)>0$ for all $a\epsilon \mathfrak{r}^{+}$ . (3.1)

According to Proposition 3, we may replace (3.1) by

$(a_{i}, x)>0$ for $i=1,\cdots,$ $n$ , (3.1)

where $\{a_{i}\}$ is a base of $\mathfrak{r}$ Therefore the angular domain $\Pi$ is.limited by
just $n$ faces.

Obviously $\Pi$ is one of the connected components of $E^{n}-\bigcup_{\alpha}\pi_{\alpha}^{11)}$ and,

since the set $\bigcup_{\alpha}\pi_{\alpha}$ is $\mathfrak{S}$ -invariant, it holds

$ SJl=\Pi$ or $S\Pi_{\cap}\Pi=\phi^{1^{\underline{o}}}$
) for any $S\epsilon \mathfrak{S}$ . (3.2)

More precisely, it $Ais$ known that II is a “ fundamental domain “ of $\mathfrak{S}$ and
so we hav $e$

Lemma 3. $ S\Pi n11=\phi$ for every $S\epsilon \mathfrak{S},$ $S\neq 1^{14)}$

The proof will be given in the Appendix.15)
We now consider the relation between the bases of $\mathfrak{r}$ correspoding

to different linear orders of $E^{n}$ .
Proposition 4. Le$t\{a_{1},\cdots,a_{n}\},$ $\{\beta_{I},\cdots,\beta_{n}\}$ be two bases of $\mathfrak{r}$ corresponding
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to $lwo$ linear orders of $E^{n}$ . Then there exists a uniquely determined trans-

formation $S$ in $\mathfrak{S}$ such that in some arrangement of $\{\beta_{i}\}$ we have

$\beta_{i}=Sa_{j}(i=1,\cdots, n)$ . (3.3)

(It follows that the number of various bases of $\mathfrak{r}$ is equal to the order
of $\mathfrak{S}$ )

Proof. The angular domain defined by inequalities

$(\beta_{i}, x)>0$ for $i=1,\cdots,$ $n$ (3.1)

is, like the one defin$ed$ by (3.1), a connected component of $ffl-\bigcup_{\alpha}\pi_{\alpha}$ .
Hence it coincides with some $ S\Pi$ , where $S$ is uniquely determined accor-
ding to Lemma 3, and we have $\pi_{\beta_{i}}=S\pi_{a_{i}}=\pi_{S\alpha_{i}}$ in some arrangement of
$\{\beta_{i}\}$ . If follows that $\beta_{i}=\pm Sa_{i}$ , and that for any point $x$ in $\Pi$ we have

$(Sa_{i}, Sx)=(a_{i}, x)>0,$ $(\beta_{i},Sx)>0$ ,

whence we have (3.3), $q$ . $e$ . $d$ .
We denote by $\mathfrak{T}$ the group of all Euclidean transformations of $E^{n}$

which leave $\mathfrak{r}$ invariant, and by $\mathfrak{P}$ the subgroup of $\mathfrak{T}$ which leaves the
base $\{a_{i}\}$ invariant. We have immediately

Corollary. $\mathfrak{S}$ is a normal subgroup of $\mathfrak{T}$ and

$\mathfrak{T}=\mathfrak{P}\cdot \mathfrak{S}$, $\mathfrak{P}\cap \mathfrak{S}=\{1\}$ , (3.4)

where $\mathfrak{P}$ consists of the so-called “ particular rotations “, $i$. $e$ . if $P\epsilon \mathfrak{P}$ is $re-$

garded $a_{S}$ a permutation of $\mathfrak{r}$ , the sum of the root vectors in each cycle of
$ th\ell$ permutation $P$ does not vanish.16)

For if $a\gtrless O$ we have $Pa><0,$ $P^{2}a><0,\cdots etc$ , so that $ a+P\alpha+P\alpha+\cdots$

$\neq 0$ .
We have seen already that a base of a root system satisfies the fol-

lowing three conditions:
(i) $\alpha_{1},\cdots,$ $a_{n}$ are linearly independent,

(ii) $\frac{2(a_{i},a_{j})}{(a_{i},\alpha_{i})}$ are integers for $i,j=1,\cdots,$ $n$ ,

(iii) $(a_{i}, \alpha_{j})\underline{<}0$ for $i\neq J$ ,
and, if moreover the root system is an irreducible one, we have by the
Cor. 1 to Prop. 3,

(iv) for any $a_{i},$ $a_{j}$ there exists a chain $a_{i}=a_{i_{0}},$ $a_{i_{1}};\cdots,$ $a_{i,}=a_{j}$ such that
$(a_{ik-1}, a_{i_{k}})<0(k=1,\cdots, r)$ .
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Now we can easily classify the sets of vectors satisfying these conditions,
the method being quite similar to that of van der Waerden’s classificatIon
of the irreducible root systems. We can illustrate the result as follows.17)

$A_{n}$ : $0-0-\cdots-O$ $B_{n}$ : $\circ 2-O2-\cdots-02-0$

$D_{n}$ : $0-0-\cdots-0_{\backslash _{\circ}^{\circ}}^{/}$ $C_{n}$ : $0-0-\cdots-0-O2$

$E_{6}$ : $0-0-0-0-0$ $F_{4}$ : $0-0-O^{2}-O2$

$O^{1}$

$E_{7}$ : $0-0-0-0-0-0$ $G_{2}$ : O–O
$O^{1}$

$E_{8}$ : $0-0-0-O-O-O-O$
$O^{1}$

In these schemata the small circles represent the vectors and the lines
connecting two circles show that the corresponding vectors are not ortho-
gonal. The number $malT<ed$ in a circle is the ratio of length of the cor-
responding vector to that of any unmarked one, the lengths of the vectors
corresponding to these unmark$ed$ circles being all equal to each other.
The angle between two vectors which are not orthogonal is $120^{o},$ $135^{o}$ and
$150^{o}$ according a\S the ratio of lengths of them (the ratio of the ldnger
to the shorter) is 1, 2 and 3, respectively.

$l$

It follows fiom this result that the conditions (i), (ii), (iii) charac-
terize completely the bases of the root systems. It implies, in particular,
together with (2.2) and Cor. 1 to Prop. 3 that if $\{a_{1},\cdots, a_{n}\}$ is a base of

$\mathfrak{r},$
$\{2\alpha_{1}^{*},\cdots, 2a_{n}^{*}\}$ is a base of the inverse system $\mathfrak{r}^{*}$ and the schema of the

latter is obtained from that of the former by replacing the numbers in
the circles by their inverses. Thus $B_{n}$ and $C_{n}$ are mutually inverse, while
all the other irreducible root spstems are self-inverse.18)

On the other hand, if we denote by $A(\tilde{L})$ the group of all autom-
$o\iota$ phisms of $\tilde{L}$ and by $I(\tilde{L})$ the adjoint group, $i$ . $e$ . the group of all inner
automorphisms of $\tilde{L}$ , it is known after Gantmacher [7] that

$A(\tilde{L})/I(\tilde{L})\cong \mathfrak{T}/\mathfrak{S}\cong \mathfrak{P}$ . (3.5)
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By the above schemata, $\mathfrak{P}$ can be readily determined, for it can be
considered as the group of all permutations of a base, which leave invariant
the configuration of the corresponding schema. Thus if $L^{\sim}$ is simple, $\mathfrak{P}$

reduces to the unity group except for $A_{n},$ $D_{n}$ and $E_{t\}}$ . It consists of two
elements for $A_{n},$ $D_{n}(n\neq 4),$ $E_{;}$ and is isomorphic to the symmetlic group
of three letters for $D_{4}^{16)}$

\S 4. Cartan’s theorem.

We now prove Theorem II. By (1.6) and (1.7), the highest possible
weights of $\tilde{L}$ are characterized by the following two properties:

(i) $\cdot\xi\epsilon\{\{\mathfrak{r}^{*}\}\}^{A}$ ,

(ii) $ S\dot{\sigma}\leq\xi$ for all $S\epsilon \mathfrak{S}$ .
Therefore it is clear that they form an additive semi-group.

Condition (ii) implies in particular $ S_{\alpha};=\xi-\frac{2(a,\xi)}{(a,a)}\alpha\underline{<}\xi$ for all $a\epsilon \mathfrak{r}$ ,

namely

(ii)’ $(a,\xi)\geq 0$ for all $a\epsilon \mathfrak{r}^{+}$

These two conditions (ii), (ii)’ are equivalent. For if the (closed) do-
main defined in $\theta$ by the inequalities (ii) were not identical with that
defined by the inequalities (ii)‘, some outer point of the former would be
contained in the inner part of the latter, namely in $\Pi=\{\theta;\theta\epsilon\Theta,(\alpha, \theta)>$

$0$ for all $a\epsilon \mathfrak{r}^{+}$ }. It would then exist such $\theta_{0}$ in $\Pi$ and $S_{0}\neq 1$ in $\mathfrak{S}$ that
$S\theta_{0}\leq S_{0^{\hslash_{0}}}$ for all $S\epsilon \mathfrak{S}$ . This would imply in particular

$(\alpha, S_{0}\theta_{0})>0$ for all $\alpha\epsilon \mathfrak{r}^{+}$ ,

and thus $ S_{0}\theta_{0}\epsilon S_{0}\Pi_{\cap}\Pi$, what is impossible by Lemma 3.
By this remark, we may replace the conditions (i), (ii) by the fol-

lowing one
$(\xi, 2\alpha^{*})$ are non-negative integers for all $a\epsilon \mathfrak{r}^{+}$ (4.1)

Making use of our Propositions 2 and 3, (4.1) willl be again reduced to
the following form:

$(\xi, 2a_{i}^{*})$ are non-negative integers for $i=1,\cdots,$ $n$ , (4.2)

where $\$.\downarrow\prime_{\backslash }\ldots.,$ } is a base of $\mathfrak{r}^{*}$ . Therefore, in order to find the
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fundamental weights, it is sufficient to take the dual base $\{\xi_{J},\cdots, \xi_{n}\}$ to
$\{2a_{1}^{*},\cdots, 2a_{n}^{*}\}$ in the Euclidean space $\Theta$ ; for $\xi_{i}$ obviously satisfy (4.2) and
we have for any highest possible weight $\xi$

$\xi=\Sigma_{i}(\xi 2a_{i}^{*})_{\backslash i}^{\xi}$ ,

where $(\xi, 2a_{i}^{*})$ are by (4.2) non-negative integers for all $i$ . The Theorem
II is thus proved.

$ Exampl\ell$ . The method employed ih the above proof is also useful for
the actual determination of fundamental weights of a given semi-simple
Lie algebra. We indicate it here only for the simple algebras of type $A_{n}$ .

Let $\theta^{0},$ $\theta^{1},\cdots,$ $\theta^{n}$ be the weights of its irreducible representation $SL$

$(n+1, C)^{19)}$ Then $\{\theta^{1},\cdots, \theta^{n}\}$ is a base of $\Theta$ and we have

$\mathfrak{r}=\{\theta^{i}-\theta^{j} ; i\neq j, i,j=1,\cdots. n\}$ ,
(4.3)

$\theta^{0}+\theta^{1}+\cdots+\theta^{n}=0$ .
If we take the dual base $\{\theta_{1},\cdots, \theta_{n}\}$ to $\{\theta^{1},\cdots, \theta^{n}\}$ , the inner product in $\theta$

will be expressed as follows (cf. (1.2), (1.3)) :

$(\theta, \theta)=\Sigma_{\alpha}(a, \theta)^{2}=\Sigma_{i,j}g_{ij}(\theta^{i},\theta)(\theta^{j},\theta)=\Sigma_{i.j}g^{ij}(\theta_{i}, \theta)(\theta_{j}, \theta)$ , (4.4)

where we can easily show that $g_{ij}=(2n+2)(1+\delta_{ij})^{10)}$ In order to sim-
plify our calculations, we shall neglect in the following the inessential
factor $2n+2$ of $g_{ij}$ . Thus

$(g_{ij})=\left(\begin{array}{lll}21 & \cdots & 1\\12 & \cdots & 1\\\vdots\vdots & \ddots & \vdots\\\vdots 11 & \cdots & 2\end{array}\right)$

and

$(g^{ij})=(g_{ij})^{-1}=\frac{1}{n+1}\left(\begin{array}{llll} & -1 & \cdots & -1\\-1n & n & \cdots & -1\\\vdots & \vdots & . & \vdots\\-1-1\cdot & \vdots .\cdot & & n\end{array}\right)$

Hence, the square of the lengths of the roots being all equal to 2, $\mathfrak{r}=\mathfrak{r}^{*}$

and the expression of $\mathfrak{r}^{*}$ in $\{\theta_{1},\cdots,\theta_{n}\}$ is

$\mathfrak{r}^{*}=\{\theta_{i}-\theta_{j},\pm\theta_{i} ; i\neq J^{\prime}, i,j=1,\cdots, n\}$ . (4.5)

If we consider the lexIcographical linear order of $\Theta$ with respect to $\{\theta_{1}$ ,
,..

$f^{\theta_{n_{l}}\}}$ , the basic roots of $\mathfrak{r}^{*}$ , arranged in the decreasing $order_{\dagger}$ are
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$\mathfrak{i}^{/}2^{*}2_{\subset/=\theta}^{a_{1}^{*,}=.\theta_{1}-\theta_{2}}2_{\alpha_{n-1}^{2}=_{n}^{2}\theta_{n-1^{3}}^{-\theta}-\theta_{n}}2^{a_{n}^{\star}.=\theta}$

{

(4.6)

The expression of the fundamental weights in $\{\theta^{1},\cdots, \theta^{n}\}$ can be obtained
simply by the computation of the $i$nverse matrix; we have namely

$\left(\begin{array}{llll}1 & -1 & & 0\\ & -11 & & \\ & . & & \\ & & & -1\\0 & & 1 & 1\end{array}\right)$ $\left(\begin{array}{llll}11 & \cdots & 1 & 1\\1 & \cdots & 1 & 1\\ & . & \vdots & \vdots\\ & & 1 & 1\\0 & & & 1\end{array}\right)=(\delta_{ij})$

and thus

$\left\{\begin{array}{l}\xi_{1}=\theta^{1},\\\xi_{2}=\theta^{1}+\wp\\\ldots\\\xi_{n^{=\theta^{1}+\#+\cdots+\theta^{n}=-\theta^{o.\underline{\circ}o)}}}\end{array}\right.$ (4.7)

Appendix

We shall give here a proof of Proposition 1 in \S 1. To the purpose,
we shall recall one of the main results of Weyl’s paper [10]. After
some preparations in \S \S 5, 6, we shall obtain in \S 7 the main result which
contains Weyl’s theorem in a sharpened form. A proposition equivalent

.to Prop. 1 will be obtained by way of the proof of this theorem.

\S 5. Preliminaries

While we have been hitherto exclusively concerned with subjects of
purely algebraic character, we must $e$mploy analytical methods in the
following considerations

It is well-known that the unitary restriction of the Cartan decomposition
(1.1) affords a compact (real) $for\ddagger\eta LpP\tilde{L}$ , We $ha_{Y}e$ thus a $decom-$

$P^{ositi_{Q_{\vee}}n_{\succ}}$
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$ L=H+\cdots$ . $H=\tilde{H}\cap L$, (5.1)

where $H$ is identical with $\theta=\{\{\mathfrak{r}\}\}_{l}$ .
We shall denote generally by $\tilde{\mathfrak{G}}$ a connected semi-simple (complex)

Lie group which corresponds to the Lie algebra $\tilde{L,}$ and by $\tilde{\mathfrak{H}},$ $\mathfrak{G}$ and $\mathfrak{H}$

the (real) analytic subgroups of $\tilde{\mathfrak{G}}$ corresponding to $\vee\tilde{H,}L$ and $H$, respec-
tively. $\mathfrak{G}$ is called the $ compa\phi$ form of $\tilde{\mathfrak{G}}$ We denote, in particular, the
simplg connected Lie group and the adjoint group of $\tilde{L}$ by $\hat{\mathfrak{G}}^{0}$ and $\tilde{\mathfrak{G}}_{0}$ ,
and their compact forms by $\mathfrak{G}^{0}$ and $\mathfrak{G}_{0}$ , respectively.22) Similarly, we
shall make use of notations such as $\Delta^{0},$ $\Delta,$ $\Delta_{0}$ to denote the corresponding
notIons concerning $\tilde{\mathfrak{G}}^{0},\tilde{\mathfrak{G}},\tilde{\mathfrak{G}}_{0}$ respectively.

(After that Weyl’s theorem is proved to be valid, it will follow, as
we shall show it, that $\mathfrak{G}$ is a maximal compact subgroup of $\tilde{\mathfrak{G}}$ , while $\mathfrak{H}$ is
a maximal torus subgroup of $\mathfrak{G}$ and is identical with its centralizer $Z(\mathfrak{H})$

in $\mathfrak{G}$ , and that the (left) homogeneous space $\tilde{\mathfrak{G}}/\mathfrak{G}$ is homeomorphic to a
Euclidean space, while $\mathfrak{G}/\mathfrak{H}$ is a simply connected and compact space.)

As the subalgebra $\tilde{H}$ is abelian, the exponential mapping from $\tilde{H}$ onto
$\tilde{\mathfrak{H}}$ gives a group-theoretical homomorphism; we denote by $\Delta$ the kernel
of this homomorphism. If ($Eb_{1}$ is a homomorphic image of $\tilde{\mathfrak{G}}$ , we have $\Delta$

$\subseteq\Delta_{1}$ and, in particular,

$\Delta^{0}\subseteq\Delta\subseteq\Delta_{0}$ . (5.2)

(It will be proved in the following section, that $\Delta$ is a discrete subgroup
of rank $n$ contained in $\theta.$ )

On the other hand, let $u$ be an element of the normalizer $\Lambda^{\gamma}(\mathfrak{H})$ of $\mathfrak{H}$

in $\mathfrak{G}$ and $S(u)$ the Euclidean transformation of $\theta$ induced in $\theta=H$ by th $e$

adjoint representation of $u$ . The set of all $S(u)(u\epsilon N(\mathfrak{H}))$ forms a trans-
formation group $\mathfrak{S}_{1}$ , which is a homomorphic image of $N(\mathfrak{H})$ . As the kernel
of this homomorphism is obviously $Z(\mathfrak{H})$ , it holds the natural isomorphism

$\mathfrak{S}_{1}\cong N(\mathfrak{H})/z(\mathfrak{H})$ (5.3)

It should be noted that $\mathfrak{S}_{1}$ is determined by the Lie algebra $L$ and is in-
dependent of the choice of the Lie group $\mathfrak{G}$ . (It will be proved in \S 7
that $\mathfrak{S}_{1}$ is identical with $\mathfrak{S}\cdot$ )

When $\Delta\subseteq\Theta^{2i!)}\Delta$ is clearly $\mathfrak{S}_{1}$-invariant, whenc $e$ follows that the com-
posite $\mathfrak{S}_{1}(\Delta)$ of the groups $\mathfrak{S}_{1}$ and $\mathfrak{T}(\Delta)$ splits into the following form:
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$\mathfrak{S}_{1}(\Delta)=\mathfrak{S}_{1}\cdot \mathfrak{T}(\Delta),$ $\mathfrak{S}_{1}n\mathfrak{T}(\Delta)=\{1\}$ ,

$(5.4\rangle$

$\mathfrak{T}(\Delta)$ : normal subgroup of $\mathfrak{S}_{1}(\Delta)$ .
If we consider the group of Euclidean transformations generated by

all $S_{\alpha}(k)(\alpha\epsilon \mathfrak{r}, k=0, \pm 1,\cdots)$ , we obtain an algebraic analoge $\mathfrak{S}(\{\{\mathfrak{r}^{*}\}\})$

of $\mathfrak{S}_{1}(\Delta)$ ; we have then from (0.3) and $\mathfrak{S}$-invariance of $\{\{\mathfrak{r}^{*}\}\}$

$\mathfrak{S}(\{\{\mathfrak{r}^{*}\}\})=\mathfrak{S}\cdot \mathfrak{T}(\{\{\mathfrak{r}^{*}\}\}),$ $\mathfrak{S}\cap \mathfrak{T}(\{\{\mathfrak{r}^{*}\}\})=\{1\}$ ,
(5.5)

$\mathfrak{T}(\{\{\mathfrak{r}^{*}\}\})$ : normal subgroup of $\mathfrak{S}(\{\{\mathfrak{r}^{*}\}\})$ .

\S 6 Relations between the weight group $\Lambda$, the kernel $\Delta$

and the root system $\mathfrak{r}$

We denote by $\Lambda$ the subgroup of $\theta$ composed of all weights of $\tilde{L}$

that appear in some one-valued representations of $\tilde{\mathfrak{G}}$ . Accordingly, the
group of all weights of $\tilde{L,}$ formerly denoted by $\Lambda$ , will be written now as
$\Lambda^{0}$ . Since $\{\{\mathfrak{r}^{*}\}\}^{A}\supseteq\Lambda\supseteq\{\{\mathfrak{r}\}\}$ , it is clear that $\Lambda$ is a discrete group of
rank $n$ .

When $\mathfrak{G}$ is compact it holds the following
Proposition 5. $\Delta$ is the $anni/ulator$ of $\Lambda$ . (Thus $\Delta$ is also a discrete

group of rank $n$ contained in $\theta.$ )

Proof. Let $\mathfrak{P}$ be a one-valued representation of $\tilde{\mathfrak{G}}$ and $P$ the repre-
sentation of $\tilde{L}$ derived from $\mathfrak{P}$ . If we choose the base (1.4) in the repre-
sentation module, any $/l$ in $\tilde{H}$ will $b\leftrightarrow$ represented by a matrix of the form

$P(h)=(2\pi_{0}\sqrt{-1}(\lambda^{1}, /\iota).02\pi\sqrt{}--1(\lambda^{N}, h)$ $)$ ,

where $\lambda^{I},\cdots,\lambda^{N}$ are weights of this representation. Therefore, if $ h\epsilon\Delta$ , the
matrix

$\mathfrak{P}(\exp h)=\exp(P(h))=$
$(^{e_{0^{\sqrt{-1}}e^{2\pi(\lambda^{N}}}^{2\pi(\lambda^{1_{I}}.’.h.)_{\bigwedge_{-1}}}0_{h)}})$

should be equel to the unit matrix and it follows $h\epsilon\{\{\lambda^{1},\cdots,\lambda^{N}\}\}^{\Lambda}$ . If we
take a faithful representation $\mathfrak{P}$ of $\tilde{\mathfrak{G}}$ , which exists surely since we assu-
med $\mathfrak{G}$ to be compact,24) we see immediately that the converse of the above
argument is also true. We have thus
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$\Lambda\wedge\subseteq\{|\lambda^{1},\cdots,\lambda^{N}\}\}^{\wedge}=\Delta\subseteq\Lambda^{\wedge}$ ,

which completes the proof.
Corollary 1. $A$ one-valued representation $\mathfrak{P}$ of $\tilde{\mathfrak{G}}$ is failhful, if and

only if its weiglts $\{\lambda^{1},\cdots\lambda^{N}\}$ generate the whole weight group $\Lambda$ of $\tilde{\mathfrak{G}}$

Corollary 2. $\Delta_{o}=\{\{\mathfrak{r}\}\}^{A}=\bigcap_{\alpha}\bigcup_{k}\pi_{\alpha}(k)$ . $(a\epsilon \mathfrak{r}, k=0, \pm 1,\cdots)$

Corollary 3. $\Delta\supseteq\{\{\mathfrak{r}^{*}\}\}$ .
The second half of Corollary 1 is included in the above proof, while

its first half is a consequence of the existence of a faithful representation
of $\tilde{\mathfrak{G}}$ , as well as the fact that a representation of $\tilde{\mathfrak{G}}$ is uniquely deter-
mined by the highest weights of its $irl$ educible parts. Corollaiy 2 is a special
case of the proposition, but also evident $f$rom the definition of $\pi_{\alpha}(k)$ , and,
in fact, is independent of the compactness of $\mathfrak{G}_{o}$ Corollary 3 comes from
(1.6), (0.1) and the above proposition.

By a similar reason as above, we can also conclude from Peter-Weyl’s
theorem that $\mathfrak{S}$ is contained in $\mathfrak{S}_{1^{\underline{o}-)}}$ ; therefore if $\mathfrak{G}^{0}$ compact,o3) we have

$\mathfrak{S}\subseteq \mathfrak{S}_{1},$ $T(\{\{\mathfrak{r}^{*}\}\})\subseteq T(\Delta^{0})$ . (6.1)

More precisely, we shall prove in the next section
Proposition 6. $\mathfrak{S}=\mathfrak{S}_{1}(\cong N(\mathfrak{H})/\mathfrak{H})_{*}\{\{\mathfrak{r}^{*}\}\}=\Delta^{0}$ .
On the other hand, as we shall have $Z(\mathfrak{H}^{0})=\mathfrak{H}^{0},$ $\mathfrak{H}^{0}$ is the complete

inverse-image of $\mathfrak{H}$ with respect to the covering homomorphism of $\mathfrak{G}^{0}$

onto $\mathfrak{G}$ Therefore the Poincar\’e group of $\mathfrak{G}(or\tilde{\mathfrak{G}})$ isomorphic to $\Delta/\Delta^{0^{\underline{\mathfrak{n}}}6)}$

It follows from Cor. 2 to Prop. 5, Prop. 6 and (0.1) the following
Corollary. The Poincar\’e group of $t/le$ adjoint $gro?tp$ of $\tilde{L}$ is isoneorphic

to $\{\{\mathfrak{r}\}\}^{\wedge}/\{\{\mathfrak{r}^{*}\}\}$ . Thus if the root systems of two semi-simple complex Lie
algebras are mufnally inverse, the Poincar\’e groups of their adjoint groups
are mutually $iso\prime norphic$ (cf. (2.3)).

Remark. We note here some remarks on the results so far obtained.
We have proved, or shall prove, the following three propositions:

(i) $\Lambda^{0}=\{\{\mathfrak{r}^{*}|\}^{\wedge}$ (Prop. 1),

(ii) $\Lambda^{0}=\Delta^{0\wedge}$ (Prop. 5),

(iii) { $\{\mathfrak{r}^{*}|\}=\Delta^{0}$ (Prop. 6).

It is easy to see that any one of them is a direct consequence of the other
two. Inparticular, proposition 6 is sufficient for the proof of Proposition 1.
On the other hand, it is worth noting that (iii) might be verified indepen-



300 I. SATAKE.

dently of Proposition 5 Therefore if the Proposition 1 in question could
be proved directly, it would follow (ii) and whence we should have a new
proof of the faithful representability of connected semi-simple’complex Lie
groups.

\S 7. Weyl’s theorem.

Let us denote by $\mathfrak{G}^{(r)}$ the set of all “ regular ‘’ elements in $\mathfrak{G},$ $ie$ .
the elements which have the eigen-value 1 only $n$ times in the adjoint
representation; we set $\mathfrak{G}^{(\theta)}=\mathfrak{G}-\mathfrak{G}^{(r)11)}\mathfrak{H}(r)=\mathfrak{H}\cap \mathfrak{G}^{(r)},$ $\mathfrak{H}^{(s)}=\mathfrak{H}^{n\mathfrak{G}^{(s)}}$ . The
complete inverse-image of $\mathfrak{H}^{(s)}$ in $ H=\theta$ by the exponential mapping is
equal to the union of $\pi_{\alpha}(k)(a\epsilon \mathfrak{r}, k=0, \pm 1,\cdots)$ , which we denote by $H^{(s)}$ ;
we set $H^{(r)}=H-H^{(\$)}$ and denote by $\Xi$ an arbitrary connected component
of $H^{(r)^{\underline{o}}8)}$ It should be noted that the transformations in $\mathfrak{S}_{1}(\Delta)$ leave
$H^{(s)}=\bigcup_{\alpha,k}\pi_{\alpha}(k)$ invariant as follows.

$S(u)\pi_{\alpha}(k)=\pi_{s(\cdot)\alpha}(k),$ $T(\delta)\pi_{\alpha}(k)=\pi_{\alpha}(k+(\alpha, \delta))$ . (7.1)

(An automorphism of $L$ , which leave $H$ invariant, induces in $\theta$ a permutation
of $\mathfrak{r}$ . Cf. also (5.2) and Cor. 2 to Prop. 5.) Consequently it holds

$ S^{\prime}\Xi=\Xi$ or $ S^{\prime}\Xi n\Xi=\phi$ for every $S^{\prime}\epsilon \mathfrak{S}_{1}(\Delta)$ . (7.2)

We put $\mathfrak{S}_{1}(\Delta)_{-}\overline{-}=\{S^{\prime} ; S^{\prime}\epsilon \mathfrak{S}_{1}(\Delta), S^{\prime}\Xi=\Xi\}$ . If we replace the group $\mathfrak{S}_{1}$

by $\mathfrak{S}$ , quite $ana^{l}ogous$ formulae will be obtained.
When $\mathfrak{G}$ is compact, $\mathfrak{B}$) it is known that $\mathfrak{G}^{(s)}$ is a closed set whose

dimension is by 3 less than that of $\mathfrak{G}$ and that the Poincar\’e group of $\mathfrak{G}$

is identical with that of the connected subset $\mathfrak{G}^{(r})_{\wedge}\eta$)

After these preparations we shall prove
Weyl’s Theorem. Let $\mathfrak{G}$ be a connected semi-simple Lie grottp correspon-

ding to the compact form $L$ of $\tilde{L}$ . $T1_{t}en\mathfrak{G}$ is compact and $7ve$ have
(i) $\Xi\times[\mathfrak{G}/\mathfrak{H}]$ is a simply connected covering space of $\mathfrak{G}^{(r)}$ ,vith

respect to $t1_{l}e$ mapping
$\Xi\times[\mathfrak{G}/\mathfrak{H}]\epsilon(\theta,\overline{u})\rightarrow u(exp\theta)u^{-1}\epsilon \mathfrak{G}^{(r)}$ . (7.3)

(From the fact that $Z(\mathfrak{H})=\mathfrak{H},$ $\mathfrak{G}/\mathfrak{H}$ has a topological structure which
depends only on the Lie algebra $L$ , but not on the Lie group $\mathfrak{G}.$ )

(ii) Every element of $t/lePoi$ncar\’e.group of $\Xi\times[\mathfrak{G}/\mathfrak{H}]$ with respect to
$t/\iota e$ covering mapping (7.3) may be identifed with a certain transformation
$S^{\prime}$ in $\mathfrak{S}(\Delta)_{\Xi}$ by the relation
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$s$’

$(\theta_{1}, \overline{u}_{1})\rightarrow(\theta_{2}, \overline{u}_{2})\Leftrightarrow\theta_{2}=S^{\prime}\theta_{1},$ $u_{2}=u_{1}u^{-1i0)}$ (7.4)

zvhere $S^{\prime}=T(\delta)S(u)(\delta\epsilon\Delta, u\epsilon N(\mathfrak{H}))$ . (In particular, $\mathfrak{S}(\Delta)_{\Xi}$ being a finite
group, the Poincar\’e group is also finite !)

We limit ourselves only to sketch the proof, adding some conside-
rations lacking in the original proof of Weyl. We devide our proof in several
steps; the last one will prove Proposition 6 in the previous section. Re-
placing $\mathfrak{H}$ and $\mathfrak{S}$ by $Z(\mathfrak{H})$ and $\mathfrak{S}_{1}$ respectively, we first prove the theorem
in a modified form.

1) We assume first $\mathfrak{G}$ is compact and is a compact form of $\tilde{\mathfrak{G}}^{\mathfrak{B})}$

Weyl’s proof starts from the verification of. the fact that every conjugate
class of $\mathfrak{G}$ contains at least an element in $\mathfrak{H}$ ; in other words, the image
of the mapping

$f$

$\mathfrak{H}\times[\mathfrak{G}/z(\mathfrak{H})]\epsilon(w, \overline{u})\rightarrow uwu^{-1}\epsilon \mathfrak{G}$ (7.5)

coincides with $\mathfrak{G}$ . Moreover it is shown that this mapping is locally
homeomorphic at the regular points of $\mathfrak{G}^{29)}$ If we put

$\tilde{\mathfrak{V}}=\mathfrak{H}\times[\mathfrak{G}/Z(\mathfrak{H})],\tilde{\mathfrak{V}}_{1}=\mathfrak{H}^{(r)}\times[\mathfrak{G}/Z(\mathfrak{H})]$ ,
$\mathfrak{V}=\mathfrak{G}$ , $\mathfrak{V}_{1}=\mathfrak{G}^{(r)}$ ,

the following conditions are fulfiled:
(i) $\tilde{\mathfrak{V}}$ is compact,
(ii) $\overline{\mathfrak{V}}_{1}$ is a locally connected open subset of $\tilde{\mathfrak{V}}$,
(iii) $f$ is a continuous mapping of $\tilde{\mathfrak{V}}$ onto $\mathfrak{V}$ , and especially it is a

local homeomorphism on $\tilde{\mathfrak{V}}_{1}$ ,

(iv) $\tilde{\mathfrak{B}}_{1}=f^{-1}(\mathfrak{V}_{1})$ .
From these facts we can conclude that.every point of $\mathfrak{V}_{1}(=\mathfrak{G}^{(r)})$ has an
$\iota$ ‘ evenly covered ” neighbourhood. $0\sim 6$) Since $\mathfrak{G}^{(r)}$ is connected, any compo-
nent of $\mathfrak{H}^{(r}$

)
$\times\lfloor \mathfrak{G}/Z(\mathfrak{H})$ ] becomes a covering space of $\mathfrak{G}^{(\gamma)}$ with respect to

the mapping (7.5).
2) By (7.2), it halds $ T(\delta)\Xi n\Xi=\phi$ for any $\delta\epsilon\Delta,$ $\delta\neq 0$ . Therefore

the exponential mapping induces a homomeorphism of $\Xi$ onto one of the
components of $\mathfrak{H}^{(r)}$ . Thus $\Xi\times[\mathfrak{G}/Z(\mathfrak{H})]$ is a covering space of $\mathfrak{G}^{(r)}$ with
repect to the mapping,which is defined by replacing $\mathfrak{H}$ by $Z(\mathfrak{H})$ in (7.3).
It follows from the particular form of this covering mapping and from the
fact the fact that $\Xi$ is a polyhedron, that a closed curve in $\mathfrak{G}^{(r}$

) is
$b\sigma)tIt^{oto}P^{ic}$ to zero if $qndon1\gamma$ if its continuous $inverse- ima_{\epsilon_{u}}^{\sigma}e$ in $\Xi\times[\mathfrak{G}/$
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$Z(\mathfrak{H})]$ becomes a closed curve. This proves the simply-connectedness of
$\Xi\times[\mathfrak{G}/z(\mathfrak{H})]$ .

3) As $\mathfrak{H}$ is clearly a maximal connected abelian subgroup of $\mathfrak{G}$ , it
follows readily that $\mathfrak{H}$ coincides wth its closure and that it is a maximal
torus subgroup of $\mathfrak{G}$ . If it were not identical with its centralizer $Z(\mathfrak{H})$ ,
the homogeneous space $\mathfrak{G}/\mathfrak{H}$ would cover $\mathfrak{G}/Z(\mathfrak{H})$ essentially, which
contradicts to the above statement. The first half of the theorem is the-
reby proved.

4) Now we proceed to the proof of the latter half. It can be readily
seen that the homeomorphism of $\Xi\times[\mathfrak{G}/\mathfrak{H}]$ defined by replacing $\mathfrak{S}$ by $\mathfrak{S}_{1}$

in (7.4), gives an element of the Poincar\’e group. Conversely, let us sup-
pose that a transformation $(\theta_{1},\overline{u}_{1})\rightarrow(\theta_{2}, \overline{u}_{2})$ of the Poincar\’e group is given,
namely $u_{1}(\exp\theta_{1})u_{1}^{-1}=u_{2}(exp\theta_{2})n_{2}^{-1}$ . It is sufficient to prove (ii) at one
special point $(\theta_{1}.u_{1})$ of $\Xi\times[\mathfrak{G}/\mathfrak{H}]$ such that $\exp\theta_{1}$ generates an every-
where dense subgroup of $\mathfrak{H}$ . We have then $u=n_{2}^{-1}n_{1}\epsilon N(\mathfrak{H})$ and $\exp\theta_{2}=$

$\exp(S(n)\theta_{1})$ . Putting

$\theta_{2}=S(l\ell)\theta_{1}+\delta,$ $\delta\epsilon\Delta$ ,
$S^{t}=T(\delta)S(u)\epsilon \mathfrak{S}_{1}(\Delta)$ ,

we have $ S^{\prime}\Xi n\Xi\neq\emptyset$ , which means by (7.2), $S^{\prime}\Xi=\Xi,$ $S^{\prime}\epsilon \mathfrak{S}(\Delta)--$ .
(ii) is thus proved in a modified $f$orm.

5) Since $\Xi$ is a (finite) polyhedron, the Poincar\’e group identified with
$\mathfrak{S}_{1}(\Delta)_{-}-$ is finite. It follows, as the adjoint group $\mathfrak{G}_{0}$ of $L$ is surely
compact, that all connected Lie groups corresponding to $L$ are compact,
for they are covering groups of $\mathfrak{G}_{0}$ . It $f$ollows that $\tilde{\mathfrak{G}}$ is the “ algebraic
group” associated with the compact group $\mathfrak{G}$ and thus $\tilde{\mathfrak{G}}$ is topologically
the direct product of $\mathfrak{G}$ and an 4-dimensional Euclidean space In par-
ticular, $\mathfrak{G}^{0}$ is compact and, as $\tilde{\mathfrak{G}}^{0}$ is simply connected, $\mathfrak{G}_{0}$ is also simply
connected. We may now, therefore, legitimately consider the simply con-
nected compact group $\mathfrak{G}^{0}$ .

6) If we take up the simply connected group $\mathfrak{G}^{o}$, the Poincar\’e group
$\mathfrak{S}_{1}(\mathscr{N})$ : contains only the identical transformation; this means that

$S^{\prime}\Xi(S^{\prime}\epsilon \mathfrak{S}_{1}(\Delta^{0}))$

cover $H^{(r}$) at most once. On the other hand, as the group $\mathfrak{S}(\{\{\mathfrak{r}^{*}\} ])$

contains all reflections of $\theta$ with respect to the $hy_{\wedge}p$erplanes of the $ f_{or}:\eta$

$\pi_{9}(k)(a\epsilon \mathfrak{r}_{t}k=0,\pm 1_{!}\cdots)_{\mathfrak{j}}$
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$ S^{\prime}\Xi$ $(S\epsilon S(\{\{\mathfrak{r}^{*}\}\})$

cover $H^{(r}$) at least once. But from the formula (6.1), which was justified
just above, we have

$\mathfrak{S}(\{\{\mathfrak{r}^{*}\}\})\subseteq \mathfrak{S}_{1}(\Delta^{0})$

From these facts we can conclude $\mathfrak{S}(\{\{\mathfrak{r}^{*}\}\})=\mathfrak{S}_{1}(\Delta^{0})$ and consequently
$\mathfrak{S}=\mathfrak{S}_{1},$ $\mathfrak{T}(\{\{\mathfrak{r}^{*}|\{)=\mathfrak{T}(\Delta^{0})$ .

. Weyl’s theorem is thus proved completely.

As a consequence of above considerations we add here

Proof of Lemma $ 4\neg$ If we take $ $

$-$ to be { $\theta;\theta\epsilon\Theta,$ $0<(a, \theta)<1$ for
all $\alpha\epsilon \mathfrak{r}^{*}$ }, $\Xi$ is the only component of $\Pi-H^{(s)}$ such that the origin of $\Theta$

is contained in the boundary of $\Xi$ . Hence if $S\Pi=Jl$ for $S\epsilon \mathfrak{S},$ $S\neq 1$ , we
would have $ S\Xi=\Xi$ , namely $S\epsilon \mathfrak{S}(\Delta^{0})--$ . Then the group $\mathfrak{G}^{0}$ would be
covered $essa_{l1}tially$ by $\Xi\times[\mathfrak{G}^{0}/\mathfrak{H}^{0}]$ , contrary to the simply-connectedness
of $\mathfrak{G}^{0},$

$q$ . $e$ . $d$ .
Faculty of $Gel$] $eral$ Culture,

Tokyo University.
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