On Baire's Theorem concerning a Function f(x, y), which is Continuous with respect to Each Variable x and y.

Masatsugu Tsuji.

(Received Jun. 14, 1949)

The purpose of this paper is to give a simple proof of the following Baire's theorem¹⁾.

Theorem. Let f(x, y) be defined in a square $\Delta: 0 \le x \le 1$, $0 \le y \le 1$ and be continuous with respect to each variable x and y. Then there exists a set X on the x-axis, which is dense on [0,1], such that for any $x_0 \in X$, f(x, y), considered as a function of two varibles (x, y), is continuous at every point of the segment $x=x_0$, $0 \le y \le 1$. Similarly there exists a set Y on the y-axis, which is dense on [0, 1], such that for any $y_0 \in Y$, f(x, y) is continuous on the segment $y=y_0$, $0 \le x \le 1$

Proof. We will prove the existence of the set X, which satisfies the conditions of the theorem. The existence of the set Y can be proved similarly.

We define $f_n(x, y)$ $(n=1, 2\cdots)$ in Δ as follows:

$$f_{n}(x,y) = f(x,\frac{\nu}{2^{n}}) + \frac{f(x,\frac{\nu+1}{2^{n}}) - f(x,\frac{\nu}{2^{n}})}{\frac{1}{2^{n}}} \left(y - \frac{\nu}{2^{n}}\right)$$
(1)

for
$$0 \le x \le 1, \frac{\nu}{2^n} \le y \le \frac{\nu+1}{2^n}, \quad (\nu=0,1,2,\dots,2^n-1).$$

Then $f_n(x, y)$ is continuous in Δ and

$$f(x, y) = \lim_{n \to \infty} f_n(x, y), \tag{2}$$

$$\lim_{n \to \infty} \left[\underset{0 \le y \le 1}{\text{Max.}} \left| f(x, y) - f_n(x, y) \right| \right] = 0, \text{ for a fixed } x.$$
 (3)

From (2), it follows that f(x, y) is of the first class of Baire. For a fixed $\varepsilon > 0$, we define a set $E_n(\varepsilon)$ on the x-axis by

$$E_n(\varepsilon) = E\left[\max_{0 \le y \le 1} |f(x, y) - f_n(x, y)| \le \varepsilon \right], \tag{4}$$

¹⁾ R. Baire: Sur les fonctions de variables réelles. Annali di Matematica. (3) 3 (1899). K. Bögel: Über die Stetigkeit und die Schwankung von Funktionen zweier Veränderlichen. Math Ann. 81 (1920).

then $E_n(\varepsilon)$ is a closed set and from (3) follows

$$I_0 = \sum_{n=1}^{\infty} E_n(\varepsilon)$$
, where $I_0 = [0, 1]$. (5)

Hence by Baire's theorem, in any interval $(a, \beta) \subset I_0$, there exists a certain interval $U(x_0, r_0)$: $|x_0 - x_0| < r_0$, such that for a suitable n_0 ,

$$I_0 \cdot U(x; r_0) = E_{n_0}(\varepsilon) \cdot U(x_0; r_0). \tag{6}$$

If we take $\varepsilon = \frac{1}{\nu}$ ($\nu = 1, 2, \dots$) then there exists a neighbourhood $U(x_{\nu}; r_{\nu})$ and n_{ν} such that

$$I_0 \cdot U(x_{\nu}; r_{\nu}) = E_{n_{\nu}} \left(\frac{1}{\nu}\right) \cdot U(x_{\nu}; r_{\nu}), \tag{7}$$

where we may assume that $U(x_{\nu}; r_{\nu}) \subset U(x_{\nu+1}; r_{\nu+1}), r_{\nu} \to 0$, so that $U(x_{\nu}; r_{\nu})$ converges to a point x_0 , such that

$$x_0 \in U(x_{\nu}; r_{\nu}) \quad (\nu = 1, 2, \dots). \tag{8}$$

We will prove that f(x, y) is continuous at every point (x_0, φ_0) on the segment: $x=x_0$, $0 \le y \le 1$.

Since $f_{n_{\nu}}(x, y)$ is continuous at (x_0, y_0) , there exists a neighbourhood $U_0: |x-x_0| < \delta, |y-y_0| < \delta$, such that for any $(x, y) \in U_0$,

$$\left| f_{n_{\nu}}(x, y) - f_{n_{\nu}}(x_{0}, y_{0}) \right| < \frac{1}{\nu}.$$
 (9)

Since $x_0 \in U(x_v, r_v)$, we can take δ so small that the interval $|x-x_0| < \delta$ is contained in $U(x_v, r_v)$.

Hence if $(x, y) \in U_0$, then $x \in U(x_v; r_v)$, so that by (7), $x \in E_{n_v}(\frac{1}{\nu})$, hence by (4),

$$|f(x, y) - f_{n_{y}}(x, y)| \le \frac{1}{y}, \quad 0 \le y \le 1,$$
 (10)

especially

$$|f(x_0, y_0) - f_{n_y}(x_0, y_0)| \leq \frac{1}{\nu}.$$
 (11)

Hence for $(x, y) \in U_0$,

$$|f(x_0, y_0) - f(x, y)| \le |f(x, y) - f_{n_y}(x, y)| + |f_{n_y}(x, y) - f_{n_y}(x_0, y_0)|$$

$$+|f_{n_{\nu}}(x_{0},y_{0})-f(x_{0},y_{0})|<\frac{3}{\nu}.$$

Hence f(x, y) is continuous at (x_0, y_0) . Since $x_0 \in (\alpha, \beta)$ and α, β are arbitrary, the set X of x_0 is dense on [0, 1], which proves theorem.

Remark. Let K be a continuum contained in Δ and K_x , K_y be its projection on the x-and y-axis respectively, then at least one of K_x , K_y consists of a closed interval, so that $K_x \cdot X \neq 0$, or $K_y \cdot Y \neq 0$, hence there exists a point on K, where f(x, y) is continuous. From this it follows that any continuum in Δ contains infinitely many points, where f(x, y) is continuous.

Mathematical Institute. Tokyo University.